苏教版九年级上册数学期中测试卷
- 格式:doc
- 大小:156.18 KB
- 文档页数:11
苏教版九年级数学上册期中试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:3244a a a -+=__________.3x 1+有意义,则x 的取值范围是_______. 4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、D6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、2(2)a a -;3、x 1≥-且x 0≠4、22.5°5、3166、245三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)x 1=12-+,x 2=12-(2)m <543、(1)略(2-14、(1)略;(2)4.95、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。
最新苏教版九年级数学上册期中测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12 B .12<x<32 C .x<32 D .0<x<327.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.2539B.2539+C.18253+D.25318+二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.因式分解:a3-a=_____________.3.若代数式32xx+-有意义,则实数x的取值范围是__________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE ,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、C5、B6、B7、B8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、a (a -1)(a + 1)3、x ≥-3且x ≠24、3或32.5、x=26三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、11m m +-,原式=.3、(1) 65°;(2) 25°.4、(1)2(2)略5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.75。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
苏科版九年级上册数学期中考试试题一、单选题1.若()22230m x x --+=是关于x 的一元二次方程,则m 的取值范围是()A .m>2B .m≠0C .m≤2D .m≠22.用配方法解一元二次方程2870x x -+=,方程可变形为()A .2(4)9x +=B .2(4)9x -=C .2(8)16x -=D .2(8)57x +=3.小红连续5天的体温数据如下(单位相C ︒):36.6,36.2,36.5,36.2,36.3.关于这组数据下列说法正确的是()A .中位数是36.5C ︒B .众数是36.2C ︒C .平均数是36.2C︒D .极差是0.3C︒4.关于x 的一元二次方程220x kx --=(k 为实数)根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定5.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为()A .-2B .2C .4D .-36.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是()A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=1827.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为()A .10B .11C .12D .138.如图,在长为100m ,宽为80m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为()A .100×80-100x -80x=7644B .(100-x)(80-x)+x 2=7644C .(100-x)(80-x)=7644D .100x +80x -x 2=76449.我国古代数学著作《九章算术》中记载了弓形面积的计算方法.如图,弓形的弦长AB为,拱高(弧的中点到弦的中点之间的距离)CD 为15cm ,则这个弓形的面积是()cm 2.A .B .C .D .10.如图,在矩形ABCD 中,AB =4,AD =8,点E 、点F 分别在边AD ,BC 上,且EF ⊥AD ,点B 关于EF 的对称点为G 点,连接EG ,若EG 与以CD 为直径的⊙O 恰好相切于点M ,则AE 的长度为()A .3BC .D .6二、填空题11.某中学为了选拔一名运动员参加市运会100米短比赛,有甲、乙两名运动员备选,他们最近测试的10次百米跑平均时间都是12.83秒,他们的方差分别是21.3S=甲(秒2)2 1.7S =乙(秒2),如果要选择一名成绩优秀且稳定的人去参赛,应派______去.12.已知a 是关于x 方程x 2﹣2x ﹣8=0的一个根,则2a 2﹣4a 的值为_______.13.将半径为6cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______cm .14.如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.15.设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.16.在△ABC 中,∠BAC=60°,∠ABC=45°,AB=2,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值是________.17.如图,P 为⊙O 外一点,PA 切⊙O 于A ,若PA =3,∠APO =45°,则⊙O 的半径是_____.三、解答题18.解下列方程:(1)2(1)40--=x (2)x 2﹣6x ﹣3=0(3)3x (x ﹣1)=2(1﹣x )(4)2x 2﹣5x+3=019.如图,在平面直角坐标系中,M 经过原点,且与x 轴交于点(4,0)A -,与y 轴交于点(0,2)B ,点C 在第二象限M 上,且60AOC ∠=︒,则OC =__.20.因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T 恤,已知这种T 恤的进价为40元一件.经市场调查,当售价为60元时,每天大约可卖出300件;售价每降低1元,每天可多卖出20件.在鼓励大量销售的前提下,商场还想获得每天6080元的利润,问应将这种T 恤的销售单价定为多少元?21.如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD ,连结AC .(1)△ACD 为等边三角形;(2)请证明:E 是OB 的中点;(3)若AB =8,求CD 的长.22.某篮球队员在篮球联赛中分别与甲队、乙队对阵各四场,下表是他的技术统计.场次对阵甲队对阵乙队得分(分)失误(次)得分(分)失误(次)第一场252273第二场300311第三场273202第四场262264(1)他在对阵甲队和乙队的各四场比赛中,平均每场得分分别是多少?(2)利用方差判断他在对阵哪个队时得分比较稳定;(3)根据上表提供的信息,判断他在对阵哪个队时总体发挥较好,简要说明理由.23.如图,四边形ABCD 内接于O ,AC 为O 的直径,D 为 AC 的中点,过点D 作DE AC ,交BC 的延长线于点E .(1)判断DE 与O 的位置关系,并说明理由;(2)若O 的半径为5,8AB ,求CE 的长.24.如果关于x 的一元二次方程ax 2+bx +c =0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断方程2x 2﹣+1=0是否是“邻根方程”?(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;25.如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .(1)求证:CD 2=CA•CB ;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,tan ∠CDA=23,求BE 的长.26.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 的长为半径画弧,交线段AB于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,设BC =a ,AC =b .(1)请你判断:线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根吗?说明理由;(2)若线段AD =EC ,求ab的值.参考答案1.D 【解析】【详解】解:∵()22230m x x --+=是关于x 的一元二次方程,∴20m -≠,∴2m ≠.故选:D 【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键.2.B 【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x+7=0,x 2-8x=-7,x 2-8x+16=-7+16,(x-4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.3.B 【解析】【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.【详解】A .将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3C ︒,故此选项错误B .36.2出现了两次,故众数是36.2C ︒,故此选项正确;C .平均数为1(36.236.236.336.536.6)36.365++++=(C ︒),故此选项错误;D .极差为36.6-36.2=0.4(C ︒),故此选项错误,故选:B .【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.4.A 【解析】【分析】根据一元二次方程根的判别式,可判断根的情况.【详解】一元二次方程20(a 0)++=≠ax bx c 中,24b ac -叫做一元二次方程()200++=≠ax bx c a 的根的判别式,通常用“∆”来表示,即2=4∆-b ac ,当0∆>时,方程有2个实数根,当=0∆时,方程有1个实数根(2个相等的实数根),当∆<0时,方程没有实数根.方程220x kx -+=根的判别式()22=-41(2)80k k ∆-⨯⨯-=+>,所以有两个不相等的实数根.【点睛】本题考查根据一元二次方程根的判别式判断根的个数.5.A 【解析】【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【详解】设一元二次方程的另一根为x 1,∵关于x 的方程x 2+3x+a=0有一个根为-1,∴﹣1+x 1=﹣3,解得:x 1=﹣2.故选A .6.B 【解析】【分析】设平均每月的增长率为x ,则二月份生产零件501x +()万个,三月份生产零件()2501x +万个,由此可得出方程.【详解】解:设二、三月份平均每月的增长率为x ,则二月份生产零件501x +()个,三月份生产零件2501x +()个,则得:250501501182x x ++++=()().故答案为:B .【点睛】本题主要考查了求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为21a x b ±=().7.A 【解析】【分析】作正多边形的外接圆,连接AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为36036°°=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.8.C【解析】【分析】可以根据图形平移的规律,把阴影部分的分别平移到最边上,把剩下的面积变成一个新的长方形【详解】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是读懂题意,把道路进行平移后找到等量关系.9.D【解析】【分析】设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,在构造的Rt △OAD 中,利用垂径定理和勾股定理即可求出弧ACB 的半径长,即弓形面积=扇形AOB 面积-△AOB 面积.【详解】解:设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,∵CD ⊥AB ,∴C ,D ,O 三点共线,在Rt △OAD 中,设OA=xcm ,则OD=x-CD=(x-15)cm ,12AD AB ==cm ),∴222OA OD AD =+,即222(15)x x =-+,解得:3x =0,∴OD=15cm ,AO=30,∴∠OAD=30°,∴∠AOD=60°,∴∠AOB=120°,∴2212030300360AOBS cmππ⨯⨯==扇形,21152AOB S =⨯⨯= ,所以所求弓形面积2(300cm π=-,故选:D .【点睛】此题考查弓形面积求解,涉及知识点有垂径定理,扇形面积公式,30°所对直角边等于斜边一半,勾股定理等,通过构造辅助线求出半径长是解此题的关键.10.D 【解析】【分析】设AE =x ,则ED =8﹣x ,易得四边形ABFE 为矩形,则BF =x ,利用对称性质得FG =BF=x,则CG=8﹣2x,再根据切线长定理得到EM=ED=8﹣x,GM=GC=8﹣2x,所以EG =16﹣3x,在Rt△EFG中利用勾股定理得到42+x2=(16﹣3x)2,然后解方程可得到AE的长.【详解】解:设AE=x,则ED=8﹣x,∵EF⊥AD,∴四边形ABFE为矩形,∴BF=x,∵点B关于EF的对称点为G点,∴FG=BF=x,∴CG=8﹣2x,∵∠ADC=∠BCD=90°,∴AD和BC为⊙O的切线,∵EG与以CD为直径的⊙O恰好相切于点M,∴EM=ED=8﹣x,GM=GC=8﹣2x,∴EG=8﹣x+8﹣2x=16﹣3x,在Rt△EFG中,42+x2=(16﹣3x)2,整理得x2﹣12x+30=0,解得x1=6,x2=,即AE的长为6.故选:D.【点睛】本题考查了切线长定理、矩形的性质与判定、勾股定理、以及轴对称的知识.经过圆外一点的切线,这一点和切点之间的线段的长叫做这点到圆的切线长,从圆外一点引圆的两条切线,它们的切线长相等.11.甲【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵21.3S =甲,2 1.7S =乙,∴S 2甲<S 2乙,∴选择一名成绩优秀且稳定的人去参赛,应派甲去.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.16【解析】【分析】根据一元二次方程的根的定义“使一元二次方程左右两边相等的未知数的值叫一元二次方程的解,也叫一元二次方程的根”得2280a a --=,则228a a -=,再将224a a -提出公因数2,即可得.【详解】解:∵a 是一元二次方程2280x x --=的一个根,∴2280a a --=,∴228a a -=∴22242(2)2816a a a a -=-=⨯=,故答案为:16.【点睛】本题考查了一元二次方程的根和代数式求值,解题的关键是掌握一元二次方程的根的定义.13.2【解析】【分析】根据弧长公式、圆锥的性质分析,即可得到答案.【详解】解:根据题意,得圆锥底面周长12064180ππ︒⨯⨯==︒cm ,∴这个圆锥底面圆的半径422ππ==cm,故答案为:2.【点睛】本题考查了扇形、圆锥的知识;解题的关键是熟练掌握弧长公式、圆锥的性质,从而完成求解.14.25【解析】【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=100°,求出∠AOC,根据等腰三角形的性质计算.【详解】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=40°,∴∠BOC=180°-40°×2=100°,∴∠AOC=100°+30°=130°,∵OC=OA,∴∠OAC=∠OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.15.2【解析】【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】解:由根与系数的关系可得:123x x +=,12·x x k =,∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=;故答案为:2.【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为b a-,两根之积为c a .16.2【解析】【分析】过O 点作OH ⊥EF ,垂足为H ,连接OE ,OF ,由圆周角定理可知∠EOH =12∠EOF =∠BAC=60°,即可求出EF =,所以当半径OE 最短时,EF 最短.而由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,所以只要在Rt △ADB 中,解直角三角形求出最短直径AD ,即可得到最短半径OE ,进而求出线段EF 长度的最小值.【详解】解:如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H ,∴12EH EF =,∵OE=OF ,OH ⊥EF ,∠BAC=60°∴1===602EOH FOH EOF BAC =︒∠∠∠∠,∴∠OEH=30°,∴12OH OE =,∴EH =,∴EF =,∴要使EF 要最小,即半径OE 最小,即直径AD 最小,∴由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,∵在Rt △ADB 中,∠ABC =45°,AB =2,∴AD =BD ,222BD AD AB +=,∴224AD =,∴AD BD ==∴22EF AD ==【点睛】本题主要考查了垂径定理,圆周角定理,垂线段最短,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够把求EF 的最小值转化成求直径AD 的最小值.17.3.【解析】【分析】连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,问题得解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP =90°,∵∠APO =45°,∴OA =PA =3,故答案为:3.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.18.(1)11x =-,23x =(2)13x =+23x =-(3)11x =,223x =-(4)132x =,21x =【解析】【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可;(4)原方程运用公式法求解即可.(1)2(1)40--=x [(1)2][(1)2]0x x -+--=(1)(3)0x x +-=10x +=,30x -=∴11x =-,23x =(2)x 2﹣6x ﹣3=0263x x -=26912x x -+=2(3)12x -=3x -=±∴13x =+23x =-(3)3x (x ﹣1)=2(1﹣x )3(1)2(1)0x x x -+-=(1)(32)0x x -+=10x -=,320x +=∴11x =,223x =-(4)2x 2﹣5x+3=0在这里2,5,3a b c ==-=2=4252410b ac ∆-=-=>∴514x ±=∴132x =,21x =【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法、公式法解一元二次方程.19.【解析】【分析】连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .利用勾股定理构建方程解决问题即可.【详解】解:连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .∵∠AOB=90°,∴AB 是直径,∵A (-4,0),B (0,2),∴AB ∴=∵∠AMC=2∠AOC=120°,AC =∴=,在Rt △COH 中,1cos 60,22OH OC a CH a ︒=⋅===,142AH a ∴=-,在Rt △ACH 中,AC 2=AH 2+CH 2,∴22115(4)()22a a =-+,∴或OC >OB ,所以,∴OC=2+,故答案为:.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.20.应将这种T 恤的销售单价定为56元/件.【解析】【分析】设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据总利润=每件的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据题意得:(x-40)[300+20(60-x )]=6080,整理得:x 2-115x+3304=0,解得:x 1=56,x 2=59.∵鼓励大量销售,∴x=56.答:应将这种T 恤的销售单价定为56元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC =AD =CD 即可(2)要证明:E 是OB 的中点,只要求证OE =12OB =12OC ,即证明∠OCE =30°即可;(3)在直角△OCE 中,根据勾股定理就可以解得CE 的长,进而求出CD 的长.(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E ,∴ AC AD,AC =AD ,∵过圆心O 的线CF ⊥AD ,∴AF =DF ,即CF 是AD 的中垂线,∴AC =CD ,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=ACF DCF∴∠=∠=30°,在Rt△COE中,OE=12 OC,∴OE=12 OB,∴点E为OB的中点;(3)解:在Rt△OCE中,AB=8∴OC=12AB=4,又∵BE=OE,∴OE=2,∴CE==∴CD=2CE=【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.22.(1)他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分;(2)他在对阵甲队时得分比较稳定;(3)他在对阵甲队时总体发挥较好,理由见解析.【解析】【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差公式进行计算,再根据方差的意义即可得出答案;(3)根据失误次数和方差的意义即可得出答案.【详解】(1)解:x 甲=253027264+++=27,x 乙=273120264+++=26.答:他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分.(2)解:2S 甲=2222(2527)(3027)(2727)(2627)4-+-+-+-=3.5,2S 乙=2222(2726)(3126)(2026)(2626)4-+-+-+-=15.5.由可知22S S <甲乙,他在对阵甲队时得分比较稳定.(3)解:他在对阵甲队时总体发挥较好.理由:由x x >乙甲可知他对阵甲队时平均得分较高;由22S S <甲乙可知,他在对阵甲队时得分比较稳定;计算得他对阵甲队平均失误为1.75次,对阵乙队平均失误为2.5次,由1.75次<2.5次可知他在对阵甲队时失误较少.【点睛】考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.(1)详见解析;(2)254CE =.【解析】【分析】(1)连接OC ,由AC 为O 的直径,得到90ADC ∠= ,根据 AD CD =,得到AD CD =,根据平行线的性质得到45CDE DCA ∠=∠=o ,求得90ODE ∠= ,于是得到结论;(2)根据勾股定理得到AD CD ==90ABC ∠= ,求得6BC =,根据相似三角形的性质即可得到结论.【详解】(1)DE 与O 相切,理由如下:如图,连接OD ,∵AC 为O 的直径,∴90ADC ∠= ,∵D 为 AC 的中点,∴ AD CD =,∴AD CD =,∴45ACD ∠= ,∵O 是AC 的中点,∴45ODC ∠=o ,∵DE AC ,∴45CDE DCA ∠=∠=o ,∴90ODE ∠= ,∴DE 与O 相切;(2)∵O 的半径为5,∴10AC =,∴52AD CD ==∵AC 为O 的直径,∴90ABC ∠= ,∵8AB =,∴6BC =,∵BAD DCE ∠=∠,45ABD CDE ∠=∠=o ,∴ABD CDE ∆∆:,∴ABADCD CE =,252CE =,∴254CE =.【点睛】本题考查直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.24.(1)2x 2﹣+1=0是“邻根方程”;(2)m =0或−2【解析】【分析】(1)根据解一元二次方程的方法解出已知方程的解,再比较两根的差是否为1,从而确定方程是否为“邻根方程”;(2)先解方程求得其根,再根据新定义列出m 的方程,注意有两种情况【详解】解:(1)2x 2﹣+1=0,∵21a b c ==-=,,∴(22=442=4b ac -=--⨯ ,∴x =,∵1=+122,∴2x 2﹣+1=0是“邻根方程”;(2)解方程得:(x−m )(x +1)=0,∴x =m 或x =−1,∵方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,∴m =−1+1或m =−1−1,∴m =0或−2.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.25.(1)见解析;(2)见解析;(3)BE 的长为5.【解析】【分析】(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论.(2)如图,连接OD.欲证明CD是⊙O的切线,只需证明CD⊥OA即可.(3)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.【详解】解:(1)证明:∵∠CDA=∠CBD,∠C=∠C,∴△ADC∽△DBC,∴AC DCDC BC,即CD2=CA•CB.(2)证明:如图,连接OD,∵AB是⊙O的直径,∴∠ADB=90°.∴∠1+∠3=90°.∵OA=OD,∴∠2=∠3.∴∠1+∠2=90°.又∵∠CDA=∠CBD,即∠4=∠1,∴∠4+∠2=90°,即∠CDO=90°.∴OD⊥OA.又∵OA是⊙O的半径,∴CD是⊙O的切线.(3)如图,连接OE,∵EB、CD均为⊙O的切线,∴ED=EB,OE⊥DB.∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°.∴∠ABD=∠OEB .∴∠CDA=∠OEB .∵tan ∠CDA=23,∴OB 2tan OEB BE 3∠==.∵Rt △CDO ∽Rt △CBE ,∴CD OD OB 2CB BE BE 3===.∵BC=12,∴CD=8.在Rt △CBE 中,设BE=x ,∴(x+8)2=x 2+122,解得x=5.∴BE 的长为5.考点:切线的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理.26.(1)线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根,理由详见解析;(2)34.【解析】【分析】(1)方程变形即可得到22222x ax a a b ++=+,根据勾股定理得到22()x a AB +=,由BD BC a ==,即可得到结论;(2)由题意得,12AD b =,根据勾股定理列出2221()2a b a b +=+,整理得到34a b =,即可求得34a b =.【详解】解:(1)∵在△ABC 中,∠ACB =90°,∴AB 2=AC 2+BC 2,∵BC =a ,AC =b .∴AB 2=a 2+b 2,方程x 2+2ax ﹣b 2=0变形为:x 2+2ax+a 2=a 2+b 2,∴(x+a )2=AB 2,∵BD =BC =a ,∴(x+BD )2=AB 2,∵(AD+BD )2=AB 2,∴线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根;(2)∵AD =EC ,∴AC =2AD =2AE =b ,12AD b ∴=,12AB a b ∴=+,222AB AC BC =+ ,2221()2a b a b ∴+=+整理得34a b =,∴34ab =.【点睛】本题考查了解一元二次方程的应用,根据题意列出一元二次方程并利用配方法得到22()x BD AB +=是解题的关键.。
苏科版九年级上册数学期中考试试题一、单选题1.下列方程中,是一元二次方程是()A .234x y +=B .210x +=C .2210x x -+>D .12x x=+2.如图,点A ,B ,C 在⊙O 上,∠AOB=72°,则∠ACB 等于()A .36°B .54°C .18°D .28°3.利用配方法解方程2450x x -=+,经过配方,得到()A .2(2)9x +=B .2(2)9x -=C .2(4)9x +=D .2(4)9x -=4.O 的半径为5cm ,点A 到圆心O 的距离3cm OA =,则点A 与O 的位置关系为()A .点A 在O 上B .点A 在O 内C .点A 在O 外D .无法确定5.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的()A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点6.一元二次方程4x 2﹣2x+14=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为()A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=10008.如图,M 的半径为4,圆心M 的坐标为(6,8),P 是M 上的任意一点,PA PB ⊥,且PA 、PB 与x 轴分别交于A 、B 两点.若点A 、B 关于原点O 对称,则AB 长的最小值为A .6B .8C .12D .16二、填空题9.将方程(1)(5)2x x -+=化为一般形式得________.10.已知扇形的圆心角为120︒,半径为3,则扇形的面积为________.11.当a =________时,关于x 的一元二次方程a 2x 2+(2a -1)x +1=0有一根为1.12.正六边形的边长为4,则它的外接圆半径是_____________.13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =10,AE =1,则弦CD 的长是_____.14.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2019的值为________.15.在实数范围内定义运算“☆”和“★”,其规则为:a ☆b =a 2+b 2,a ★b 2ab=,则方程3☆x =x ★12的解为___.16.如图,某小区有一块长为30m 、宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为2480m ,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .三、解答题17.解方程:(1)2220x x --=(2)2(3)4(3)x x x -=-18.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若50C ∠︒=,求P ∠的度数.19.若关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,求m 的值.20.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标为;(2)这个圆的半径为;(3)直接判断点D(5,﹣2)与⊙M 的位置关系,点D(5,﹣2)在⊙M(填内、外、上).21.已知关于x 的方程24310x x a -+-=有两个实数根.(1)求实数a 的取值范围;(2)若a 为正整数,求方程的根.22.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分(弧BC 、线段BD 及CD 围成的图形)的面积.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价4元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,有一点到终点运动即停止.问几秒后PDQ 的面积等于228cm25.如图,O 是ABC 的内切圆,切点分别是D 、E 、F .已知100A ∠︒=,20C ∠︒=,(1)则DFE ∠的度数=__________°.(2)连接OA 、OC ,则AOC ∠的度数=__________°.(3)连接DE ,若ABC 的周长为20cm 6cm AC ,=,求DE 的长.26.阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±;∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+.27.如图,在平面直角坐标系中,⊙A 的半径为1,圆心A 点的坐标为(0),直线OB 是一次函数y =x 的图象,让⊙A 沿x 轴负方向以每秒1个单位长度移动,移动时间为t 秒.(1)直线OB 与x 轴所夹的锐角度数为°;(2)求出运动过程中⊙A 与直线OB 相切时的t 的值;(3)运动过程中,当⊙A 与直线OB 相交所得的弦长为1时,直接写出t =.参考答案1.B 2.A 3.A 4.B 5.B 6.B 7.D 8.C9.2470x x +-=【详解】解:(1)(5)2x x -+=化为一般形式为:2470x x +-=.故答案为:2470x x +-=.10.3π【详解】解:扇形的面积212033360S ππ⨯==,故答案为:3π.11.-2【详解】解:将x=1代入22(21)10a x a x +-+=,得:a 2+2a=0,解得:a 1=-2,a 2=0.∵a 2≠0,∴a≠0,∴a=-2.故答案为:-2.12.4【分析】先画出图形,再连接OA 、OB ,求出∠AOB 的度数,根据等边三角形的判定得出△AOB 是等边三角形,根据等边三角形的性质得出OA=AB=4,即可得出选项.【详解】解:连接OA 、OB ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴∠AOB==60°,∵OA=OB ,∴△AOB 是等边三角形,∵AB=4,∴OA=OB=AB=4,即正六边形ABCDEF 的外接圆的半径是4,故答案为4.13.6【分析】连接OC ,根据勾股定理求出CE ,根据垂径定理计算即可.【详解】连接OC ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CD =2CE ,∠OEC =90°,∵AB =10,AE =1,∴OC =5,OE =5﹣1=4,在Rt △COE 中,CE =3,∴CD =2CE =6,故答案为6.14.2021【分析】根据一元二次方程的解的定义,将m 代入方程中,再计算求解即可.【详解】解:由题意可知:22310m m --=,∴2231m m -=.∵()224620192232019m m m m -+=⨯-+,∴24620192120192021m m -+=⨯+=.故答案为:2021.15.x=3【分析】根据新定义运算列式,对方程进行变形,由此求得方程的解;【详解】解:由题意得:3☆x =x ★12即,32+x 2=122x 9+x 2=6x x 2-6x+9=0(x-3)2=0∴x 1=x 2=3故答案为:x=316.2【分析】设人行通道的宽度为xm ,由题意得(30-3x )(24-2x )=480,解方程即可.【详解】解:设人行通道的宽度为xm ,由题意得(30-3x )(24-2x )=480,解得x 1=2,x 2=20(舍去),∴人行通道的宽度为2m ,故答案为:2.17.(1)11x =21x =(2)13x =,21x =-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.(1)解:2220x x --=x 2-2x=2x 2-2x+1=3(x-1)2=3∴x1x 2(2)2(3)4(3)x x x -=-(x-3)2-4x (x-3)=0(x-3)(x-3-4x )=0∴x-3=0或-3-3x=0,∴13x =,21x =-.18.80°【分析】利用切线的性质连接OA 与OB ,如图(见详解),可知90∠=∠=︒PAO PBO ,再利用圆周角定理可求得AOB ∠的度数,最后利用四边形的内角和定理即可求得答案.【详解】解:连接OA 、OB ,如图所示,∵PA 、PB 是⊙O 切线,∴PA OA ⊥,PB OB ⊥,∴90∠=∠=︒PAO PBO .∵50C ∠=︒,∴2100AOB C ∠=∠=︒.∵360P PAO AOB PBO ∠+∠+∠+∠=︒,∴180********P AOB ∠=︒-∠=︒-︒=︒.19.4【分析】根据关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,得到m 2-3m-4=0,m+1≠0,解得m 值即可.【详解】解:∵关于x 的一元二次方程22(1)5340m x x m m +++--=的常数项为0,∴m 2-3m-4=0且m+1≠0,∴(m-4)(m+1)=0,且m≠-1,解得m=4或m=-1,且m≠-1,∴m=4.20.(1)(2,0);(2)(3)内【详解】解:(1)如图,圆心M 的坐标为(2,0);(2)(0,4)A ,(2,0)M ,MA ∴==,即M 的半径为(3)(5,2)D - ,(2,0)M ,DM ∴==,∴点D 在M 内.21.(1)53a ≤;(2)1222x x =+=-.【分析】(1)由关于x 的方程x 2-4x+3a-1=0有两个实数根,根据判别式得到关于a 的不等式,然后解不等式即可求出a 的取值范围;(2)根据(1)的结果和a 为正整数可求特殊的a 值,然后方程的解就可以求出.【详解】解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.解得53a ≤.∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222x x =+=-.22.(1)见解析(2)83π-【解析】(1)(1)连接OC ,求出∠A =∠D =30°,由OA =OC 可得∠ACO =∠A =30°,从而可知∠OCD =90°,问题得证;(2)首先求出∠COD =60°,即可求出扇形BOC 的面积,然后解直角三角形求出CD ,再计算出△OCD 的面积即可求出阴影部分面积.(2)证明:连接OC ,∵AC =CD ,∠ACD =120°,∴∠A =∠D =30°,∵OA =OC ,∴∠ACO =∠A =30°,∴∠OCD =∠ACD −∠ACO =90°,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)由(1)可知:∠OCD =90°,∵∠D =30°,∴∠COD =60°,∵⊙O 的半径为4,∴S 扇形BOC =260483603ππ⋅=,在Rt △OCD 中,tan60°=4CDCDOC ==,∴CD =∴S △OCD =12OC×CD =12×4×∴阴影部分面积为:83π.23.(1)28(2)10元【分析】(1)根据题意“发现销售单价每降低1元,平均每天可多售出2件”即可求解;(2)根据题意列出一元二次方程,解方程即可求解,根据每件盈利不少于25元取舍.(1)解: 销售单价每降低1元,平均每天可多售出2件∴降价4元,则平均每天销售数量为202428+⨯=,故答案为:28;(2)解:设每件商品降价x 元时,该商店每天销售利润为1200元,根据题意得,()()402021200x x -+=,解得1210,20x x ==,4025x -≥,解得15x ≤,∴10x =.答:当每件商品降价10元时,该商店每天销售利润为1200元.24.2秒或4秒【分析】可先设出未知数,△PDQ 的面积可由矩形与几个小三角形的面积之差表示,所以求出几个小三角形的面积,进而即可求解结论.【详解】解:存在,t=2s 或4s .理由如下:可设t 秒后其面积为28cm 2,即S 矩形ABCD-S △ADP-S △BPQ-S △DCQ=12×6-12×12t-12(6-t )·2t-12×6×(12-2t )=28,解得t 1=2,t 2=4,当其运动2秒或4秒时均符合题意,所以2秒或4秒时面积为28cm 2.25.(1)60(2)120(3)4cm【分析】(1)由已知中∠A=100°,∠C=20°,根据三角形内角和定理,可得∠B 的大小,结合切线的性质,可得∠DOE 的度数,再由圆周角定理即可得到∠DFE 的度数.(2)根据切线长定理,可得∠FAO=∠DAO=12∠DAF=50°,∠FCO=∠ECO=12∠ECF=10°,根据三角形内角和定理即可求解;(3)根据题意以及切线长定理求得4BE ,证明BDE 是等边三角形即可求解.(1)解:∵O 是ABC 的内切圆,切点分别是D 、E 、F∴∠BDO=∠BEO=90°∴∠BDO+∠BEO=180°∵∠B=180°-∠A-∠C=180-100°-20°=60°,∴∠DOE=180°-∠B=180°-60°=120°,∴∠DFE=12∠DOE=60°,故答案为:60;(2)如图,连接,,OA OC OF ,∵O 是ABC 的内切圆,切点分别是D 、E 、F ,∴CE=CF ,AD=AF ,∴∠FAO=∠DAO=12∠DAF=50°,∠FCO=∠ECO=12∠ECF=10°,∴∠AOC=180°-∠FAO-∠FCO=120°,故答案为:120;(3)如图,连接DE ,∵O 是ABC 的内切圆,切点分别是D 、E 、F ,∴CE=CF ,AD=AF ,BD=BE ,设AD=AF=a ,BD=BE=b ,CE=CF=c ,∵ABC 的周长为20cm 6cm AC ,=,∴()220a b c ++=cm ,a+c=6cm ,∴b=4cm ,即BD=BE=4cm ,∵BD=BE ,∠B=60°,∴BDE 是等边三角形,DE BD ∴==4cm .26.1352x -+=,2352x --=.【解析】设x 2+3x=y ,则原方程变为y 2+4y+3=0,求出y=-1,或y=-3,再分别解方程即可.【详解】解:设x 2+3x=y ,则原方程变为y 2+4y+3=0,∴(y+1)(y+3)=0,解得y=-1,或y=-3,当y=-1时,x 2+3x=-1,即x 2+3x+1=0,解得x=12x x =当y=-3时,x 2+3x=-3,即x 2+3x+3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去;∴原方程有两个根:132x -+=,232x -=.27.(1)45°(2)(3)2或2【分析】(1)过B 点作BH ⊥x 轴于H ,设B (t ,t ),则BH =OH =t ,于是可判断△OBH 为等腰直角三角形,所以∠BOH =45°;(2)当⊙A 与直线OB 相切时,有⊙A′与OB 相切,⊙A″与OB 相切,作A′M′⊥OB 于M′,A″M″⊥OB 于M″,利用等腰直角三角形的性质得OA′=OA″,则AA′=AA″=A 与直线OB 相切时t 的值;(3)如图3,设⊙A′交直线OB 于C 、D ,则CD =1,作A′E ⊥OB 于E ,连接A′C ,根据垂径定理得CE =DE =12,在Rt △A′CE 中,利用勾股定理得AE =2,在Rt △OA′E 中解直角三角形得OA′A′E =2OA″=2,所以AA′=2,AA″=(1)解:如图,过B 点作BH ⊥x 轴于H ,设B (t ,t ),则BH =OH =t ,∴△OBH 为等腰直角三角形,∴∠BOH =45°,即直线OB 与x 轴所夹的锐角度数为45°,故答案为:45;(2)如图2,当⊙A 与直线OB 相切时,有⊙A′与OB 相切,⊙A″与OB 相切,作A′M′⊥OB 于M′,A″M″⊥OB 于M″,则A′M′=A″M″=1,∵直线OB 与x 轴所夹的锐角度数为45°,∴△OA′M′和△OA″M″是等腰直角三角形,∴OA′=OA″AA′==AA″==A 的移动速度为每秒1个单位长度,∴运动过程中⊙A 与直线OB 相切时t 的值为:(3)如图3,设⊙A′交直线OB 于C 、D ,则CD =1,作A′E ⊥OB 于E ,连接A′C ,∴CE=DE =12,在Rt △A′CE 中,A′E 2==,在Rt △OA′E 中,OA′OA″AA′=AA″=A 的移动速度为每秒1个单位长度,∴当⊙A 与直线OB 相交所得的弦长为1时,t 的值为2.故答案为:2或2+.。
苏教版九年级数学上册期中考试及答案【汇总】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A .13B .13C .3D .32.若a ≠b ,且22410,410a a bb 则221111ab的值为()A .14B .1C ..4D .33.下列计算正确的是()A .a 2+a 3=a5B .3221C .(x 2)3=x5D .m 5÷m 3=m24.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A .平均数B .中位数C .众数D .方差5.如果分式||11x x 的值为0,那么x 的值为()A .-1B .1C .-1或1D .1或0 6.对于二次函数,下列说法正确的是()A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3 C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A→B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,已知AB AD,那么添加下列一个条件后,仍无法判定ABC ADC≌的是()A.CB CD B.BAC DACC.BCA DCA D.90B D9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.2510.如图,在矩形ABCD中,AB=10,4AD,点E从点D向C以每秒1个单位长度的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD 的直线MN也从点C向点D以每秒2个单位长度的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.103B.4 C.143D.163二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.因式分解:a3-a=_____________.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x1x4x22.先化简,再求值:822224x xxx x,其中12x.3.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、D5、B6、B7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、a(a-1)(a + 1)3、如果两个角是等角的补角,那么它们相等.4、140°5、136、2 5三、解答题(本大题共6小题,共72分)1、x32、3.3、(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.4、(2)略;(2)四边形EBFD是矩形.理由略.5、(1)90人,补全条形统计图见解析;.(2)48;(3)560人.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
苏教版九年级数学上册期中考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A .13B .13C .3D .32.若分式211xx的值为0,则x 的值为()A .0B .1C .﹣1D .±13.如果a 与1互为相反数,则|a+2|等于()A .2B .-2C .1D .-14.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是()A .32bB .32bC .32b D .-3<b<-26.若3x >﹣3y ,则下列不等式中一定成立的是()A .0xyB .0xy C .0xy D .0xy 7.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是()A .3cmB .6 cmC .2.5cmD .5 cm8.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A ′的坐标是()A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A .45°B .60°C .75°D .85°10.如图,四边形ABCD 内接于⊙O ,F 是CD 上一点,且DFBC ,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为()A .45°B .50°C .55°D .60°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:201820195-252的结果是__________.2.分解因式:2x 2﹣8=_______. 3.已知关于x 的分式方程233x k x x 有一个正数解,则k 的取值范围为________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC,则∠B′CD=__________.5.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为___________.6.如图.在44的正方形方格图形中,小正方形的顶点称为格点.ABC的顶点都在格点上,则BAC的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:3211x x x2.先化简,再求值:22122()121x x x xx x x x,其中x满足x2-2x-2=0.3.如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面积.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、A6、A7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、522、2(x+2)(x﹣2)3、k<6且k≠34、30°5、36、5 5三、解答题(本大题共6小题,共72分)1、1x2、1 23、(1)略;(2)S平行四边形ABCD=244、河宽为17米5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
最新苏教版九年级数学上册期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°9.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:3244a a a -+=__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、B7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、2(2)a a -;3、24、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、4x =2、(1)k ﹥34;(2)k=2.3、()1略;()2BEF 67.5∠=.4、河宽为17米5、(1)补图见解析;50°;(2)35.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
2024-2025学年九年级数学上学期期中模拟卷(扬州专用)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第4章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平面内O e 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与O e 的位置关系为( )A .圆内B .圆外C .圆上D .无法确定2.若3x =-是一元二次方程20x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .2,6-B .―2,6C .4,12-D .4-,123.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是( )A .众数是6吨B .平均数是5吨C .中位数5.5吨D .方差是1.24.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围是( )A .1k > B .0k ¹ C .1k < D .1k <且0k ¹5.若m n ,是方程2320240x x --=的两个实数根,则代数式22m m n -+的值等于( )A .2029B .2028C .2027D .20266.如图,一枚飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖,击中黑色区域的概率是( )A .12B .38C .14D .137.如图,四边形ABCD 内接于O e ,若140AOC Ð=°,则ABC Ð=( )A .110°B .120°C .130°D .140°8.“已知MON Ð,点A ,B 是ON 边上不重合的两个定点,点C 是OM 边上的一个动点,当ABC V 的外接圆与边OM 相切于点C 时,ACB Ð的值最大.”这是由德国数学家米勒提出的最大角问题,我们称之为米勒定理.已知矩形ABCD ,4=AD ,点E 是射线AD 上一点,点F 是射线AB 上的一动点.当12AE =时,则DFE Ð的值最大为( )A .30°B .45°C .60°D .90°第Ⅱ卷二、填空题:本题共10小题,每小题3分,共30分。
----
奋斗教育初三测试姓名:班级:得分:
一、选择题(每小题 3 分,共30 分)
2)+4x=0 的解是(1.一元二次方程x
4x=﹣﹣4 B.x=0,A.x=C.x=4 D.x=0,x=42121 22.用配方法解方程x﹣4x﹣5=0 时,原方程应变形为()
2222A.(x+1)=6 B.(x+2)=9C.(x﹣1)=6 D.(x ﹣2)=9
2)的解是(.方程x=x 3
A.x=1 B.x=0 C.x=1,x=0D.x =﹣1,x=02121 4.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20
x,根据题意可列方万元.设这两年的销售额的年平均增长率为万元增加到80
)程为(
)=80.().×()22)1+x20(D.
=801+x.201+x =80 C 20(A20 1+2x=80B 2
).若抛物线22),则它也经过(经过P(1,﹣
5y=ax
A.(2,1)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)
A B 点,以相同的速度从点到邻近的两半圆相切,两只小虫同时出发, 6.图中的五个半圆,
甲虫沿ADAA EA A FA AGB ACB 路线爬行,乙虫沿路线爬行,则下列结论131223
正确的是)(
BB点甲先到B. 乙先到A. 点无法确定D. C. 甲、乙同时到
O AC // OB BAO25 BOC 的度数为中,,则如图,在⊙(7.)
°C. 60B. 50°A. 25°°D. 80
O OD ABC AO O E EC .于点弦于点若,连接,连接并延长交⊙如图,⊙的半径8.
8 CD2 EC AB的长为,则,()
215213210A. C.D.8B.
第1页(共5页)
--
----
lOO l rr的取值范围是(的距离为与半径为) 的⊙6 相交,且点,则9. 直线到直线
6rr 66rr6D. B.A. C.
10.如图,将边长为1cm 的等边三角形沿直线向右翻动
(不滑动),点从开始到结束,所经过
路径的长度为()
3(23) 4cmB. cmcmD. 3 cmA.C.
322
3 分,共2
4 分)二、填空题(每小题
的一元二次方程:.写出一个解为1和 2 11.
24x﹣m=0没有实数根,那么m的取值范围12.如果关于x 的一元二次方程x +
是.222mn+n,则m﹣﹣5=0 的两根为m ,n.已知一元二次方程﹣6x.
=x13
2=,则x+x,14.一元二次方程x﹣4x﹣5=0 的两个根分别是xx.2211
则这个圆锥的高为15.用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,cm.
AB为0.8m 1m,其中水面的宽,则排如图,水平放置的圆柱形排水管道的截面直径是16.
水管内水的深度为m.
CDO,AOC 30 P AB 的⊙1cm17. (2015?临清
二模) 如图,直线、相交于点,半径为
O P B AB A 的速度,沿由的的圆心在直线6cm上,且与点向,如果⊙1cm/s以的距离为
P CD .方向移动,那么相切秒后⊙与直线
Rt ABCACB 90 , AC BC 2 BC AB D, P 为直径的半圆交中,,以18. 如图,在,于
第2页(共5页)
--
----
AP AP CD 的最小值是上的一个动点,连接,则是.三、解答题
19.解方程:
224=0;x﹣6x﹣①.②x﹣12x+27=0
2.x+2=0)+(2k+120.已知关于x 的方程kx
(1)若方程有两个不相等的实数根,则k 的取值范围是;
(2)求证:无论k 取任何实数时,方程总有实数根.
21.太仓港区某企业2013 年收入2500 万元,2015 年收入3600 万元.
(1)求2013 年至2015 年该企业收入的年平均增长率;
(2)根据(1)所得的平均增长率,预计2016
年该企业收入多少万元?
第3页(共5页)
--
----
2.+4x y=﹣x22.已知二次函数
2+4x 图象的对称轴;)写出二次函数y=﹣x(1 2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(
的取值范围.x <0 时,(3)根据图象,写出当y
23.已知等腰△ABC三边分别为a,b,c,其中a=4,若关于x 的一元二次方程2的周长.ABC 6x+b=0 有两个相等的实数根.求等腰△x﹣
2.要建一个面积为24养鸡场的一边靠着的长方形养鸡场,为了节省材料,150m
原有的一条墙,墙长am,另三边用竹篱笆围成.如果篱笆的总长为40m,设养
鸡场垂直于墙的一边长为xm,求养鸡场的长和宽.
第4页(共5页)
--
----
OAB 20OBOAB P. 交于点45°得到半圆的直径,将半圆绕点,与25. 如图,半圆顺针旋转
AP的长;(1)求
(2)求图中阴影部分的面积(结果保留).
26.如图,已知:AB 是⊙O 的弦,过点B 作BC⊥AB 交⊙O 于点C,过点C 作⊙O 的切线交AB
的延长线于点 D ,取AD 的中点E,过点 E 作EF∥BC 交DC 的延长线于点F,连接AF 并延长交
BC 的延长线于点G.
求证:
(1)FC =FG ;
2.)2 AB=BC?BG(
第5页(共5页)
--
----
专业资料学习资料教育培训考试建筑装潢
资料--。