2019-2020年九年级数学期中测试卷及答案
- 格式:doc
- 大小:533.00 KB
- 文档页数:15
2019-2020年第一学期九年级期中数学考试试卷一、精心选一选(本大题有10小题,每小题4分,共40分) 1. 已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm2.若37a b =,则b aa -等于( ) A .43 B.34 C. 37 D. 733.抛物线y =x 2-2x +3的对称轴为( )A .直线x =1B .直线x =-1C .直线x =2D .直线x =-24. 如图,在⊙O 中,点M 是︵AB 的中点,连结MO 并延长,交⊙O 于点N ,连结BN .若∠AOB =140°,则∠N 的度数为( )A .70°B .40°C .35°D .20°第4题 第6题 第8题5.在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是( ) A .12B .38C .13D .146. 如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA =OB =OC =2,则这朵三叶花的面积为( ) A .33-πB .63-πC .36-πD .66-π7. 已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC•BCB .BC 2=AC•BC C .AC=BC D .BC=AC8. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA 交于点F ,则BF EF的值为( ) A.41 B.422- C.221- D.212- O N MBA9. 如图,抛物线y =x 2+b x +c 与直线y=x 交于(1,1)和(3,3)两点,以下结论:①b 2﹣4c >0;②3b+c+6=0;③当x 2+b x +c >时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( ) A .①②④B .②③④C .②④D .③④10. 若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-2mx +m -1(m >0)与 x 轴交于 A 、 B 两点,若该抛物线在 A 、B 之间的部分与线段 A B 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( ) A .18≤ m ≤ 14 B .19< m ≤ 14 C .19 ≤ m < 12 D .19 < m < 14二、细心填一填(本大题有6小题,每小题5分,共30分)11.已知线段c 是线段a 、b 的比例中项,且a =4,b =9,则线段c 的长度为 . 12.小颖在二次函数y=2x 2+4x+5的图象上找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为___________.(用 < 号连接)13. 如图水库堤坝的横断面是梯形,BC 长为30m ,CD 长为20m ,斜坡AB 的坡比为1:3,斜坡CD 的坡比为1:2,则坝底的宽AD 为 m 。
第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。
2019-2020学年河北省保定十七中九年级(上)期中数学试卷一、选择题(本大题共17小题,共45.0分)1.下列方程中,是关于x的一元二次方程的是()A. 1x2+1x−2=0 B. ax2+bx+c=0C. 3x2+3x+7=3x2D. 5x2=42.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A. xy =23B. xx−y=3 C. x+yy=53D. xx+y=253.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.4.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=195.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8006.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm7.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A. 25B. 36C. 25或36D. −25或−368.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. OBCD =32B. αβ=32C. S1S2=32D. C1C2=329.若关于x的一元二次方程mx2+6x−9=0有两个实数根,则m的取值范围是()A. m≤1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠010.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个11.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于()A. 5:8B. 3:8C. 3:5D. 2:512.有长为24米的篱笆,一边利用墙(墙的最大可用长度为a=10米),围成如图所示的花圃,则能围成的花圃的最大面积为()平方米.A. 40B. 48C. 1003D. 140313.一个等腰三角形的两条边长分别是方程x2−7x+10=0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或914.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEF=3,则S△BCF为()A. 3B. 6C. 9D. 1215.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a−b+ c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,则mn值为()A. 2B. 0C. −2D. 316.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A. 6B. 8C. 10D. 1217.如图,若干个正三角形的一边在同一条直线a上,这边对的顶点也在同一条直线b上,它们的面积依次为S1,S2,S3,S4…若S1=1,S2=2,则S6等于()A. 16B. 24C. 32D. 不能确定二、填空题(本大题共3小题,共10.0分)18.已知x=1是一元二次方程x2+mx+n=0的一个根,则2−m−n的值为______.19.如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为______ 米.20.如图,已知在Rt△ABC中,AB=AC=3√2,在△ABC内作第一个内接正方形DEFG,则第1个内接正方形的边长______;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为______.三、解答题(本大题共8小题,共76.0分)21.用适当的方法解方程:(1)2x2+3x=1;(2)(x−2)(x+5)=18;(3)(x−1)2=4;(4)x(3x−6)=(x−2)2.22.定义新运算“⊕”如下:当a≥b时,a⊕b=ab−a;当a<b时,a⊕b=ab+b.);(1)计算:(−2)⊕(−12(2)若2x⊕(x+1)=8,求x的值.23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,−1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)B点的对应点B′的坐标是______;C点的对应点C′的坐标是______(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标是______.24.小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.25.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入−维护费用)26.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.27.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2−7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=16,试判断△AOE与△AOD是否相似?并说明理3由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.答案和解析1.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B、当a=0时,不是一元二次方程,故本选项不符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选:D.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】B【解析】【分析】此题主要考查了比例的性质和应用,根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:A.∵2x=3y,∴xy =32,∴选项A不正确;B.∵2x=3y,∴xy =32,∴xx−y =33−2=3,∴选项B正确;C.∵2x=3y,∴xy =32,∴x+yy =3+22=52,∴选项C不正确;D.∵2x=3y,∴xy =32,∴xx+y =33+2=35,∴∴选项D不正确.故选B.3.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.4.【答案】D【解析】【分析】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.5.【答案】C【解析】【分析】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.6.【答案】A【解析】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比.理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.7.【答案】C【解析】解:设这个两位数的个位数字为x,那么十位数字应该是x−3,由题意得10(x−3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选:C.可设这个数的个位数为x,那么十位数字应该是x−3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴OBOD =32,A错误;∴S1S2=94,C错误;∴C 1C 2=32,D 正确; 不能得出αβ=32,B 错误;故选:D . 9.【答案】D【解析】解:∵关于x 的一元二次方程mx 2+6x −9=0有两个实数根,∴△≥0且m ≠0,∴36+36m ≥0且m ≠0,∴m ≥−1且m ≠0,故选:D .根据一元二次方程的定义以及根的判别式的意义可得△=36+36m ≥0且m ≠0,求出m 的取值范围即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a,b,c 为常数)根的判别式△=b 2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.【答案】C【解析】【分析】本题考查了相似三角形及相似多边形的判定,以及位似图形的概念;解题关键是熟练掌握相似三角形及相似多边形的性质及判定.解题时,根据相似三角形和相似多边形的判定方法进行判定即可.注意:对于菱形,矩形等多边形,即使角度对应相等,但边长的比例不确定,不能判断其相似.【解答】解:①中两个角对应相等,为相似三角形,故①正确;②顶角相等且为等腰三角形,即底角也相等,是相似三角形,故②正确;③菱形的角不确定,所以不一定相似,故③错误;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,故④正确;所以①②④正确,故选C.11.【答案】A【解析】【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE//BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF//AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE//BC,∴CE:AC=BD:AB=5:8,∵EF//AB,∴CF:CB=CE:AC=5:8.故选:A.12.【答案】D【解析】解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.24−3x≤10,x≥143,这时面积S=x(24−3x)=−3x2+24x=−3(x−4)2+48(143≤x<8),当x=143时,S有最大值是1403,∴能围成的花圃的最大面积为1403平方米,故选:D.可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,求出最大值即可.本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.13.【答案】A【解析】【分析】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2−7x+10=0,(x−2)(x−5)=0,x−2=0,x−5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+ 5=12;即等腰三角形的周长是12.故选A.14.【答案】D【解析】【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.利用平行四边形的性质得到AD//BC,AD=BC,则DE=1BC,再证明△DEF∽△BCF,然后根据相似三角形的性质计算S△BCF的值.2【答案】解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∵点E是边AD的中点,∴DE=1BC,2∵DE//BC,∴△DEF∽△BCF,∴S△DEFS△BCF =(DEBC)2=14,∴S△BCF=4×3=12.故选:D.15.【答案】B【解析】解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为−1,所以一元二次方程2x2+mx+n=0的根为1和−1,所以2+m+n=0,2−m+n=0,解得m=0,n=−2,所以mn=0.故选:B.根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为−1,则2+m+n=0,2−m+n=0,然后求出m、n的值后计算mn的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】B【解析】【分析】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE//BF//DG//CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE//DF//CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴ABAD =BQMD=12,BQCH=ABAC=13,∴△BPQ∽△DKM∽△CNH,∴QBMD =12,∴S1S2=14,S1S3=19,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.17.【答案】C【解析】解:∵△AEF、△BFG、△CGH 都是等边三角形,∴∠AFE=∠BGF=60°,∠BFG=∠CGH=60°,∴AF//BG,BF//CG,∴∠BAF=∠CBG,∠ABF=∠BCG,∴△ABF∽△BCG,∴AFBG =BFCG.∵△AEF、△BFG、△CGH都是等边三角形,∴△AEF∽△BFG∽△CGH,∴S△AEFS△BFG =(AFBG)2,S△BFGS△CGH=(BFCG)2,∴S△AEFS△BFG =S△BFGS△CGH,∴S1S2=S2S3,∴S22=S1⋅S3.∵S1=1,S2=2,∴S3=4.同理S32=S2⋅S4,则有S4=8;S42=S3⋅S5,则有S5=16;S52=S4⋅S6,则有S6=32.故选:C.易证△ABF∽△BCG,则有AFBG =BFCG.易得△AEF∽△BFG∽△CGH,则有S△AEFS△BFG=(AFBG)2,S△BFG S△CGH =(BFCG)2,从而可得S22=S1⋅S3,同理S32=S2⋅S4,S42=S3⋅S5,S52=S4⋅S6,就可求出S6,从而解决问题.本题主要考查了等边三角形的性质、相似三角形的判定与性质、三角形的面积等知识,运用相似三角形的面积比等于相似比的平方是解决本题的关键.18.【答案】3【解析】【分析】本题考查了一元二次方程的解.正确理解方程的解的含义是解答此类题目的关键.根据一元二次方程的解的定义,将x=1代入一元二次方程x2+mx+n=0,求得m+n 的值,即可得出答案.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴x=1满足一元二次方程x2+mx+n=0,∴1+m+n=0,∴m+n=−1,∴2−m−n=2−(m+n)=2+1=3.故答案是:3.19.【答案】4【解析】解:如图,∵两次日照的光线互相垂直,∴∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,又∵∠CDE=∠FDC=90°,∴△CDE∽△FDC,∴CDDF =DECD,由题意得,DE=2,DF=8,∴CD8=2CD,解得CD=4,即这颗树的高度为4米.故答案为:4.在图形标注字母,然后求出△CDE和△FDC相似,根据相似三角形对应边成比例可得CD DF =DECD,然后代入数据进行计算即可得解.本题考查了相似三角形的应用,平行投影,确定出相似三角形是解题的关键,标注字母更便于叙述.20.【答案】2122018【解析】解:∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=13BC,∴DE=2,即第1个内接正方形的边长为2.∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴EIKI =PFEF=12,∴EI=12KI=12HI,∵DH=EI,∴HI=12DE=(12)2−1×2,第n个内接正方形的边长为:2×(12)n−1,则第n个内接正方形的面积为14n−2.∴第2020个内接正方形的边长为122018.故答案为:2;122018.首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.21.【答案】解:(1)2x 2+3x −1=0,∵a =2,b =3,c =−1,∴Δ=b 2−4ac =32−4×2×(−1)=17>0,∴x =−b±√b 2−4ac 2a=−3±√174, ∴x 1=−3+√174,x 2=−3−√174;(2)(x −2)(x +5)=18;∵x 2+3x −28=0,∴(x +7)(x −4)=0,即x +7=0或x −4=0,∴x 1=−7,x 2=4;(3)∵x −1=±2,∴x −1=2或x −1=−2,∴x 1=3,x 2=−1;(4)x(3x −6)=(x −2)2,∵3x 2−6x =x 2−4x +4,∴x 2−x −2=0,∴(x −2)(x +1)=0,即x −2=0或x +1=0,∴x 1=2,x 2=−1.【解析】(1)先化为一般式2x 2+3x −1=0,可得a =2,b =3,c =−1,即可算出根的判别式△的值,根据求根公式计算即可得出答案;(2)先应用多项式乘法法则进行计算,再化为一般式,再应用十字相乘法进行分解即可得出答案;(3)应用直接开平方法进行求解即可得出答案;(4)先化为一般式,再应用十字相乘法进行求解即可得出答案.本题主要考查了解一元二次方程,熟练应用解一元二次方程的方法进行求解是解决本题的关键.22.【答案】解:(1)(−2)⊕(−12)=(−2)×(−12)+(−12)=1+(−12)=12;(2)当2x ≥x +1时,即:x ≥1时,2x(x +1)−2x =8,解得:x =±2,∵x ≥1,∴x =2;当2x <x +1时,即:x <1时,2x(x +1)+x +1=8,2x 2+3x −7=0解得:x 1=−3+√654,x 2=−3−√654, ∵x <1,∴x =−3−√654.【解析】(1)首先根据a ⊕b =ab −a ,认真分析找出规律,即可求出(−2)⊕(−12)的值;(2)首先分两种情况进行讨论,当2x ≥x +1和2x <x +1时,分别解出x 的取值范围,即可得出x 的值.此题考查了解一元二次方程−公式法,本题属于新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.23.【答案】(1)如图,△OB′C′为所作;(2)(−6,2)(−4,−2)(3)(−2x,−2y)【解析】解:(1)见答案(2)B点的对应点B′的坐标是(−6,2);C点的对应点C′的坐标是(−4,−2);故答案为:(−6,2),(−4,−2)(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标为(−2x,−2y).故答案为:(−2x,−2y).(1)(2)把B、C点的横纵坐标都乘以−2得到B′、C′点的坐标,然后描点即可;(3)把P点的横纵坐标都乘以−2得到P′点的坐标.本题考查了作图−位似变换:利用关于原点为位似中心的对应点的坐标之间的关系先写出对应的坐标,然后描点画图.24.【答案】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:1;3;故答案为:13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;∴建议小明在第一题使用“求助”.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)60−x 10;200+x ;(60−x 10)×20;(2)依题意得:(200+x)(60−x 10)−(60−x 10)×20=14000,整理,得x 2−420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60−x 10=28(间).当x =100时,有游客居住的客房数量是:60−x 10=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为x 10,∴入住的房间数量=60−x 10,房间价格是(200+x)元,总维护费用是(60−x 10)×20.故答案为:60−x 10;200+x ;(60−x 10)×20;(2)见答案.(1)住满为60间,x 表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为x 10,入住量=60−房间空闲个数,列出代数式;(2)用每天的房间纯收入=每间房实际定价×入住量−总维护费用,每间房实际定价=200+x ,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】48 6n 91 [n ×3(n −1)+1=3n 2−3n +1]【解析】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n 中黑点的个数分别是48,6n ;故答案为:48,6n ;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n 个点阵中有圆圈个数为:n ×3(n −1)+1=3n 2−3n +1.故答案为:91;n ×3(n −1)+1=3n 2−3n +1.(2)会;第11个点阵.3n 2−3n +1=331整理得,n 2−n −110=0解得n 1=11,n 2=−10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2−3n+1=331,整理得,n2−n−110=0,解得n1=11,n2=−10(负值舍去),进而得结论.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.27.【答案】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO于点M,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC =AMAD,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)如图2,过点O作OH⊥BC交BC于点H,则OH=12CD=12AB=3cm,由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE(ASA),∴BE=PD=8−t,则S△BOE=12BE⋅OH=12×3(8−t)=12−32t.∵FQ//AC,∴△DFQ∽△DOC,相似比为DQDC =t6,∴S△DFQS△DOC =t236,∵S△DOC=14S矩形ABCD=14×6×8=12cm2,∴S△DFQ=12×t236=t23,∴S五边形OECQF =S△DBC−S△BOE−S△DFQ=12×6×8−(12−32t)−t23=−13t2+32t+12;∴S与t的函数关系式为S=−13t2+32t+12;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF :S△ACD=(−13t2+32t+12):24=9:16,解得t=3,或t=32,∴t=3或32时,S五边形OECQF:S△ACD=9:16.【解析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.(3)根据题意列方程得到t=3或t=32,可求解.本题是四边形综合题,考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.【答案】解:(1)x2−7x+12=0,因式分解得,(x−3)(x−4)=0,由此得,x−3=0,x−4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=12×4⋅OE=163,解得OE=83,∵OEOA =834=23,OAOD=46=23,∴OEOA =OAOD,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6−3=3,由勾股定理得,AC=√OA2+OC2=√42+32=5,易求直线AB的解析式为y=43x+4,设点F的坐标为(a,43a+4),则AF2=a2+(43a+4−4)2=259a2,CF2=(a−3)2+(43a+4)2=259a2+143a+25,①若AF=AC,则259a2=25,解得a=±3,a=3时,43a+4=43×3+4=8,a=−3时,43a+4=43×(−3)+4=0,所以,点F的坐标为(3,8)或(−3,0);②若CF=AC,则259a2+143a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=−4225,4 3a+4=43×(−4225)+4=4425,所以,点F的坐标为(−4225,4425),③若AF=CF,则259a2=259a2+143a+25,解得a=−7514,4 3a+4=43×(−7514)+4=−4414,所以,点F的坐标为(−7514,−227),综上所述,点F的坐标为(3,8)或(−3,0)或(−4225,4425)或(−7514,−227)时,以A、C、F为顶点的三角形是等腰三角形.【解析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=43x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.本题是四边形综合题型,主要利用了解一元二次方程,三角形的面积,相似三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,利用勾股定理表示出△ACF的三条边求解更简便.。
2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。
2019-2020年九年级下期中考试数学试题含解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内) 1、下面哪个数的倒数是15-( ) .A 15 B.-5 C.15- D.52.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 933)(a a =--3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B .C .D.4. 下列数据是2017年4月10日6点公布的中国六大城市的空气污染指数情况:城市 北京 合肥 南京 哈尔滨 成都 南昌 污染指数34216316545227163A .164和163B .105和163C .105和164D .163和1645. 将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )6. 如图,学校大门出口处有一自动感应栏杆,点A 是栏杆转动的支点,当车辆经过时,栏杆AE 会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB ⊥BC ,支架AB 高1.2米,大门打开的宽度BC 为2米,以下哪辆车可以通过?( )(栏杆宽度,汽车反光镜忽略不计) (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)A .宝马Z4(4200mm×1800mm×1360mm )B .奔驰smart (4000mm×1600mm×1520mm )DCBAACBC .大众朗逸(4600mm×1700mm×1400mm )D .奥迪A6L (4700mm×1800mm×1400mm ) 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)7. 分解因式:822-x =________ 8. 在函数62-=x y 中使得函数值为0的自变量x 的值是________9. 江苏卫视《最强大脑》第三季正在热播,据不完全统计该节目又创收视新高,全国约有85600000人在收看,全国观看《最强大脑》第三季的人数用科学计数法表示为________人. 10. 已知点M(1-a ,2)在第二象限,则a 的取值范围是________11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是第11题 第12题 第13题 第16题12. 如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是 13.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上点,且30EDC ∠=,弦E F A B ∥,则EF 的长度为14.已知正整数a 满足不等式组 ⎩⎨⎧-≤+≥232a x a x (x 为未知数)无解,则函数41)3(2---=x x a y 图象与x 轴的坐标为15.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为 s .16. 如图,直线y =3x +43与x 轴、y 轴分别交于A 、B 两点, ∠ABC =60°,BC 与x 轴交于点C .动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿C -B -A 向点A 运动(不与C 、A 重合) ,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.若当△APQ 的面积最大时,y 轴上有一点M ,第二象限内存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形, 则点N 的坐标为三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17. (本题满分6分)计算:12)12(40-++-18. (本题满分6分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-1. 19. (本题满分8分)如图,在△ABC 中,(1)在图中作出△ABC 的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明过程)(2)若∠BAC = 2∠C ,在已作出的图形中,△ ∽△(3)画出△ABC 的高AE (使用三角板画出即可),若∠B=α,∠C=β,那么∠DAE= (请用含α、β的代数式表示)20. (本题满分8分)盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查. 调查结果如下图表:(1)此次共调查了多少人?BAC景点 频数频率 丹顶鹤 8729%麋鹿75盐渎公园 6321% 息心寺4715.7% 后羿公园 28 9.3%_ 0_ 80 _ 20 _ 100 _ 10_ 30 _ 70 _ 60 _ 40 _ 90 _ 50(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21.(本题满分8分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等...但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).22.(本题满分10分)如图,点A (1,a )在反比例函数(x >0)的图象上,AB垂直于x 轴,垂足为点B ,将△ABO 沿x 轴向右平移2个单位长度,得到Rt △DEF ,点D 落在反比例函数(x >0)的图象上.(1)求点A 的坐标; (2)求k 值.23.(本题满分10分)如图,在东西方向的海岸线上有一个码头M ,在码头M 的正西方向有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距360千米的A 处;经过3小时,又测得该轮船位于O 的正北方向,且与O 相距60千米的B 处.(1)求该轮船航行的速度;(2)当该轮船到达B 处时,一艘海监船从O 点出发以每小时16千米的速度向正东方向行驶,请通过计算说明哪艘船先到达码头M .(参考数据:41.12,73.13≈≈)24.(本题满分10分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为2,求BC 的长.25.(本题满分10分)五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中第21题一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元(优惠券在购买该物品时就可使用);不少于600元的,所赠优惠劵是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x (x≥400)元,优惠券金额为y 元,则:①当x =500时,y = ;②当x≥600时,y = ;(2)如果小张想一次性购买原价为x (400≤x <600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W 至少..应为多少?(W =支付金额-所送现金金额) 26.(本题满分12分)阅读材料并解答问题:关于勾股定理的研究有一个很重要的内容是勾股数组,在数学课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数(m≥3),则a=m ,b=(m 2﹣1)和c=(m 2+1)是勾股数. 方法2:若任取两个正整数m 和n (m >n ),则a=m 2﹣n 2,b=2mn ,c=m 2+n 2是勾股数. (1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的△ABC 是直角三角形;(2)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树 棵.(3)某家俱市场现有大批如图所示的梯形边角余料(单位:cm),实验初中数学兴趣小组决定将其加工成等腰三角形,且方案如下:①三角形中至少有一边长为10 cm ;②三角形中至少有一边上的高为8 cm ,请设计出三种面积不同的方案并在图上画出分割线,求出相应图形面积.27.(本题满分14分)如图,抛物线b ax x y ++-=2与直线121+=x y 交于A 、B 两点,其中A 在y 轴上,点B 的横坐标为4,P 为抛物线上一动点,过点P 作PC 垂直于AB ,垂足为C. (1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上,设P 的横坐标为m ,用m 的代数式表示线段PC 的长,并求出线段PC 的最大值及此时点P 的坐标. (3)若点P 是抛物线上任意一点,且满足0°<∠PAB ≤45°。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
2019~2020学年第一学期九年级期中质量监测卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.已知⊙O的半径为4,点A和圆心O的距离为3,则点A与⊙O的位置关系是A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.一元二次方程y2-4y+3=0配方后可化为A.()y-22=3 B.()y-22=0 C.()y+22=2 D.()y-22=1 3.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A. P(A)>P(B)B.P(A)<P(B)C.P(A)=P(B)D.无法确定4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15岁和16岁的人数看不清,则下列关于年龄的统计量可以确定的是A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差5.如图,点A、B、C在半径为6的⊙O上,AB⌒的长为2π,则∠C的度数是A.20°B.30°C.45°D.60°(第5题)(第6题)6.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是A.8π3B.8π3-2 3 C.4π3- 3 D.23-2π3A OCB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.方程x2=2x的解为▲ .8.一组数据:-1,3,2,0,4的极差是▲ .9.若x1,x2是一元二次方程x2-2x-4=0的两个实数根,则x1+x2-x1x2=▲ .10.某种商品原来售价100元,连续两次降价后售价为64元,则平均每次降价的百分率是▲ .11.如图,点A、B、C在⊙O上,若∠A=105°,则∠BOC=▲°.12.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为▲ cm.13.如图,A、B、C、D为一个外角为40°的正多边形的顶点,O为正多边形的中心.连接AD,则∠OAD=▲ °.14.如图,某单位院内有一块长30m,宽20 m的长方形花园,计划在花园内修两条纵向平行和一条横向弯折的道路(所有道路的进出口宽度都相等,且每段道路的对边互相平行),其余的地方种植花草.已知种植花草的面积为532 m2,设道路进出口的宽度为x m,根据条件,可列出方程▲ .15.如图,在△ABC中,∠A=90°,∠B=36°,点D为斜边BC的中点,将线段DC绕着点D逆时针旋转任意角度得到线段DE(点E不与A、B、C重合),连接EA,EC,则∠AEC=▲ °.16.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=▲ 时,满足条件的点C恰有三个.(第14题)(第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(11分)解下列方程:(1)x 2+2x -1=0; (2)()x -22=x -2.(3)直接写出x 3-x =0的解是 ▲ .18.(7分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.(1)甲射击成绩的众数为 ▲ 环,乙射击成绩的中位数为 ▲ 环; (2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(7分)某市有A 、B 两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩. (1)甲去A 公园游玩的概率是 ▲ ;(2)求三位同学恰好在同一个公园游玩的概率.20.(8分)已知关于x 的一元二次方程x 2-2mx +2m -1=0(m 为常数). (1)若方程的一个根为0,求m 的值和方程的另一个根; (2)求证:不论m 为何值,该方程总有实数根.甲5次射击训练成绩条形统计图成绩/成绩/环乙5次射击训练成绩统计图②B 21.(8分)如图,在□ABCD 中,AD 是⊙O 的弦,BC 是⊙O 的切线,切点为B .(1)求证:AB ⌒=BD ⌒;(2)若AB =5,AD =8,求⊙O 的半径.22.(6分)已知⊙O ,请用无刻度的直尺完成下列作图.(1)如图①,四边形ABCD 是⊙O 的内接四边形,且AB =AD ,画出∠BCD 的角平分线; (2)如图②,AB 和AD 是⊙O 的切线,切点分别是B 、D ,点C 在⊙O 上,画出∠BCD 的角平分线.23.(7分)某商店销售一批小家电,每台成本40元,经市场调研,当每台售价定为52元时,可销售180台;若每台售价每增加1元,销售量将减少10台. (1)如果每台小家电售价增加2元,则该商店可销售 ▲ 台; (2)商店销售该家电获利2000元,那么每台售价应增加多少元?24.(8分)已知⊙O 经过四边形ABCD 的B 、D 两点,并与四条边分别交于点E 、F 、G 、H ,且 EF ⌒=GH ⌒.(1)如图①,连接BD ,若BD 是⊙O 的直径,求证:∠A =∠C ;(2)如图②,若EF ⌒的度数为θ,∠A =α,∠C =β,请直接写出θ、α和β之间的数量关系.(第21题)C②CB ①25.(9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与AC 、BC 分别交于点M 、N ,与AB 的另一个交点为E .过点N 作NF ⊥AB ,垂足为F .(1)求证:NF 是⊙O 的切线;(2)若NF =2,DF =1,求弦ED 的长.26.(8分)如图,已知正方形ABCD 的边长为4 cm ,点E 从点A 出发,以1cm/s 的速度沿着折线A →B →C 运动,到达点C 时停止运动;点F 从点B 出发,也以1cm/s 的速度沿着折线B →C →D 运动,到达点D 时停止运动.点E 、F 分别从点A 、B 同时出发,设运动时间为t (s ).(1)当t 为何值时,E 、F 两点间的距离为23cm ; (2)连接DE 、AF 交于点M ,①在整个运动过程中,CM 的最小值为 ▲ cm ;②当CM =4cm 时,此时t 的值为 ▲ .AB (第25题)(第26题)(备用图)27.(9分)【已有经验】我们已经研究过作一个圆经过两个已知点,也研究过作一个圆与已知角的两条边都相切,尺规作图如图所示:【迁移经验】(1)如图①,已知点M 和直线l ,用两种不同的方法完成尺规作图:求作⊙O ,使⊙O 过M点,且与直线l 相切.(每种方法作出一个..圆即可,保留作图痕迹,不写作法)①【问题解决】如图②,在Rt △ABC 中,∠C =90°,AC =8,BC =6.(2)已知⊙O 经过点C ,且与直线AB 相切.若圆心O 在△ABC 的内部,则⊙O 半径r 的取值范围为 ▲ .(3)点D 是边AB 上一点,BD =m ,请直接写出边AC 上使得∠BED 为直角时点E 的个数及相应的m 的取值范围.MlMl② C BA(备用图)C A2019~2020学年第一学期九年级期中质量监测卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分) 7.x 1=0 ,x 2=2 8.5 9.6 10.20% 11.150 12.6 13.30 14. (30-2x ) (20-x )=532 15.36或144 16.3或2 三、解答题(本大题共11小题,共88分) 17.(本题11分)(1)解:x 2 +2x -1=0x 2+2x +1=1+1 ................................................. 1分(x +1)2=2 ................................................ 2分 x +1=± 2 .................................... 3分∴x 1=-1+2,x 2=-1-2. ................................. 4分 (2)解:(x -2)2-(x -2)=0 ................................ 2分(x -2) (x -3)=0 ............................... 3分 ∴x 1=2,x 2=3. ................................ 4分(3)x 1=0,x 2=-1,x 3=1. .................................. 3分18.(本题7分)(1)① 7和8 ②8 .................................. 3分(2) _x 甲=_x 乙=8S 2甲=1.2,S 2乙=0.4 ................................ 5分(3)解:∵_x 甲=_x 乙,S 2乙<S 2甲∴选乙参赛更好,因为两人的平均成绩相同,但乙的方差较小,说明乙的成绩更稳定,所以选择乙参赛. ................................ 7分19.(本题7分)(1)12. ................................ 3分(2)解:共有8种可能的结果:(A ,A ,A )、(A ,A ,B )、(A ,B ,A )、(A ,B ,B )、(B ,A ,A )、(B ,A ,B )、(B ,B ,A )、(B ,B ,B ).(画树状图也可,共有8种可能的结果), ......................... 5分 它们是等可能的,记“三位同学恰好在同一个公园游玩”为事件A ,事件A 发生的可能有2种 ...................... 6分∴P (A)=14. .......................... 7分20.(本题8分)解:(1)把x =0代入原方程,得2m -1=0 ,解得:m =12. ............................ 2分∴x 2-x =0,x 1=1,x 2=0. ........................... 3分 ∴另一个根是1. ........................... 4分(2)b 2-4ac =4m 2-4(2m -1)=4m 2-8m +4, .......................... 5分∵4m 2-8m +4=4 (m -1)2≥0........................... 7分∴对于任意的实数m ,方程总有实数根. .......................... 8分 21.(本题8分)解:(1)连接OB,交AD 于点E.∵BC 是⊙O 的切线,切点为B ,∴OB ⊥BC . ................................................ 1分∴∠OBC =90°∵ 四边形ABCD 是平行四边形 ∴AD // BC∴∠OED =∠OBC =90°∴ OE ⊥BC .............................................. 2分 又 ∵ OE 过圆心O ∴ ⌒AB = ⌒BD .............................................. 4分(2)∵ OE ⊥BC ,OE 过圆心O∴ AE=12AD=4 .............................................. 5分在Rt △ABE 中,∠AEB =90°,BE =AB 2-AE 2=3, ...................................... 6分 设⊙O 的半径为r ,则OE=r -3 在Rt △ABE 中,∠OEA =90°,OE 2+AE 2 = OA 2即(r -3)2+42= r 2 ....................................... 7分 ∴r=256∴⊙O 的半径为256....................................... 8分22.(本题6分)∴射线CA 即为所求. ∴射线CE 即为所求.......... 6分①② AB23.(本题7分)解:(1) 160 ................................... 2分 (2)解:设每台家电增加x 元,根据题意得:(52-40+x )(180-10x )=2000. ..................... 4分 解得:x 1=8,x 2=-2. ................................... 5分 ∵增加的钱数不能为负,∴x 2=-2(舍). ...................................... 6分 则x =8. 答:每台家电增加8元. ......................................... 7分24.(本题8分) (1)连接DF 、DG∵BD 是⊙O 的直径 ∴∠DFB =∠DGB =90°, .............................................. 1分∵EF ⌒=GH ⌒∴∠EDF =∠HDG , ............................................. 3分 ∵∠DFB =∠EDF+∠A∠DGB =∠HDG+∠C , .............................................. 5分 ∴∠A =∠C ............................................... 6分 (2)α+β+θ =180° ................................................. 8分25.(本题9分)(1)证明:连接ON .∵在Rt △ACB 中,CD 是边AB 的中线,∴CD =BD , ................................... 1分 ∴∠DCB =∠B , ∵OC =ON ,∴∠ONC =∠DCB , ∴∠ONC =∠B ,∴ON // AB ................................. 3分 ∵ NF ⊥AB ∴∠NFB =90°∴∠ONF =∠NFB=90°, ................................. 4分 ∴ON ⊥NF又∵NF 过半径ON 的外端∴NF 是⊙O 的切线 .................................. 5分 (2)过点O 作OH ⊥ED,垂足为H ,设⊙O 的半径为r∵OH ⊥ED, NF ⊥AB , ON ⊥NF , ∴∠OHD =∠NFH=∠ONF=90°. .................................. 6分 ∴四边形ONFH 为矩形. ∴HF= ON=r ,OH=NF=2 ∴HD=HF-DF=r -1在Rt △OHD 中,∠OHD =90°∴OH 2+HD 2=OD 2即22+(r -1)2=r 2 ................................. 7分∴r =52.∴HD=32................................ 8分∵OH ⊥ED ,且OH 过圆心O∴ED=2HD=3 .................................. 9分 26.(本题8分)(1)解:当E 、F 两点分别在AB 、BC 上时,则AE = t ,EB=4-t ,BF= t ∵EB 2+BF 2=EF 2∴t 2+(4-t )2=(23)2 ....................................... 2分∴ t 1=2+2,t 2=2- 2. ....................................... 3分 当E 、F 两点分别在BC 、CD 上时,则CE =8-t ,EB=t -4∵CE 2+CF 2=EF 2∴(8-t )2+(t -4)2=(23)2 .................................. 4分∴ t 1=6+2,t 2=6- 2. .................................. 5分(2)① 25-2;② 2或8. ......................... 8分27.(本题9分) (4)分(2)2.43r ≤< .................................. 6分 (3)m 的范围 E 点的个数07.5m << 0个 7.510m m ==或 1个7.510m << 2个 ......................................9分。
2019-2020年九年级数学期中考试题及答案一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题卡上)1.已知一元二次方程x2-5x+3=0的两根为x1,x2,则x1x2=()A.5 B.-5 C.3 D.-32.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( ) A.6 B.5 C.4 D.33.已知2是关于x的方程x2-3x+a=0的一个解,则a的值是()A.5 B.4 C.3 D.24.如图,在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10 B.7 C.6 D.55.如图,若要使平行四边形ABCD成为菱形,则可添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 6.关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k≠0 D.k>-1且k≠07.已知ab=cd=ef=4,且a+c+e=8,则b+d+f等于()A.4 B.8 C.32 D.28.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形9.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是()A.12 B.13 C.14 D.1810.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90第2题图第4题图第5题图11x 3.23 3.24 3.253.26ax2+bx+c -0.06 -0.02 0.03 0.09判断方程( ) A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.2612.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.94 B.214C.4 D.613.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A.13 B.14 C.15 D.1814.如图,点C是线段AB的黄金分割点,则下列各式正确的是()A.ACBC=ABAC B.BCAB=ACBC C.ACAB=ABBC D.BCAB=ACAB15.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°,则下列结论正确的个数为()①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD. A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.依次连接矩形各边中点所得到的四边形是。
山西省太原市2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2−3x=−2的解是()A. x1=1,x2=2B. x1=−1,x2=2C. x1=−1,x2=−2D. 方程无实数解2.如图,在△ABC中,点D在边AB上,BD=2AD,DE//BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5B. 10C. 15D. 203.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A. 14B. 15C. 16D. 174.如图,在菱形ABCD中,对角线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√35.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上.若BF=4.5cm,CE=2cm,则纸条GD的长为()A. 3cmB. 2√13cmC. 132cm D. 133cm6.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则()A. k=−4B. k=4C. k≥−4D. k≥47.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A. 5B. 10C. 12D. 138.温州某服装店十月份的营业额为8000元,第四季度的营业额共40000元.如果平均每月的增长率为x,则由题意可列方程为()A. 8000(1+x)2=40000B. 8000+8000(1+x)2=40000C. 8000+8000×2x=40000D. 8000[1+(1+x)+(1+x)2]=400009.从1、2、3、4中任取两个不同的数,其和大于6的概率是()A. 23B. 12C. 13D. 1610.如图,在菱形ABCD中,∠B=60∘,AB=4,则以AC为边的正方形的周长为()A. 14B. 15C. 16D. 17二、填空题(本大题共5小题,共10.0分)11.(1)已知a6=b5=c4,且a+b−2c=6,则a的值为;(2)如图,ADBD =AEEC,AD=10,AB=30,AC=24,则AE的长为.12.2018年5月12日是第107个国际护士节,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是______.13.用配方法解x2−4x+1=0时,配方后所得到的方程是.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为______.15.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.三、解答题(本大题共7小题,共50.0分)16.解方程:(1)2(x−2)=3x(2−x)(2)x2−x−1=017.有三张正面分别标有数字−1、1、2的卡片,它们除数字不同外其余均相同现将它们背面朝上洗匀后,从中抽出一张记下数字,放回后,再从中随机抽出一张记下数字.(1)将第一次抽到的数字记为x,第二次抽到的数字记为y,令M=x y,请借助画树状图或列表的方法,写出所有可能的M值;(2)求M是负数的概率.18.如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.求证:四边形AECF是矩形.19.如图,在所给的方格纸中,每个小正方形边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图中画格点△A1B1C1,使△A1B1C1与△ABC相似,相似比为2:1.(2)在图中画格点△A2B2C2,使△A2B2C2与△ABC相似,面积比为2:1.20.为丰富学生的学习生活,某校八年级某班组织学生参加素质拓展活动,所联系的旅行社收费标准如下:如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.如果人数不超过25人,人均活动费用为100元.活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次素质拓展活动?21.如图,已知△ABC.(1)按如下步骤尺规作图(保留作图痕迹):①作AD平分∠BAC,交BC于D;②作AD的垂直平分线MN分别交AB、AC于点E、F;(2)连接DE、DF.若BD=12,AF=8,CD=6,求BE的长.22.如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.-------- 答案与解析 --------1.答案:A解析:解:x2−3x=−2,x2−3x+2=0,∵(x−1)(x−2)=0,∴x−1=0,x−2=0,即:x1=1,x2=2.故选:A.先把方程化为一般式x2−3x+2=0,左边因式分解得到(x−1)(x−2)=0,这样一元二次方程转化为两个一元一方程x−1=0或x−2=0,然后解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把方程化为一般式,再把方程左边因式分解,然后把一元二次方程转化为两个一元一方程,再解一元一次方程即可得到原方程的解.2.答案:C解析:本题考查了平行线分线段成比例定理,理解定理内容是关键.根据平行线分线段成比例定理即可直接求解.解:∵DE//BC,∴ADAB =DEBC=AEAC,∵BD=2AD,DE=5,∴ADAD+2AD =5BC,解得BC=15.故选C.3.答案:C解析:解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率=636=16.故选C.画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.4.答案:C解析:解:∵四边形ABCD是菱形,∴AD=DC,OD⊥AC,OA=OC=1,∴AC=2OA=2,∵∠ABC=∠ADC=60°,∴△ADC是等边三角形,∴CD=AC=2,故选:C.首先求出AC的长,只要证明△ADC是等边三角形即可解决问题.本题主要考查了菱形的性质和等边三角形的判定以及性质等知识,解题的关键是熟练掌握菱形的性质和等边三角形的判定以及性质.5.答案:C解析:本题主要考查了相似三角形的应用和矩形的性质.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.根据题意推知△AGD∽△ABC,由该相似三角形的对应边成比例求得GD的长度即可.解:∵矩形EFGD,∴GD//BC,∴△AGD∽△ABC,∴GDBC =ADAC,即GD4.5+GD+2=12,解得GD=132(cm).故选C.6.答案:B解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据判别式的意义得到△=42−4k=0,然后解一次方程即可得到结果.解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42−4k=0,解得k=4.故选B.7.答案:B解析:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB是等边三角形是解题的关键.8.答案:D解析:【分析】本题主要考查从实际问题中抽象出一元二次方程,掌握公式:“a(1+x)n=b”,理解公式是解决本题的关键.本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果平均每月的增长率为x,根据题意即可列出方程.解:由题意得十一月份的营业额为8000(1+x)元,十二月份的营业额为8000(1+x)2元,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.9.答案:D解析:本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和大于6的情况,再利用概率公式即可求得答案.解:画树状图得:,∴所以机会均等的结果有12种,其中和大于6有2种,∴P(和大于6)=212=16,故选D.10.答案:C解析:本题主要考查菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.根据菱形的性质可得AB=BC,得出△ABC是等边三角形,求出AC的长,根据正方形的性质得出AF= EF=EC=AC=4,求出正方形ACEF的周长即可.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16.故选C.11.答案:(1)12;(2)8解析:(1)本题考查比例的性质,掌握比例的性质是解题关键.首先设a6=b5=c4=k,得出a=6k,b=5k,c=4k,然后代入a+b−2c=6求出k的值,再求a的值即可.解:设a6=b5=c4=k,∴a=6k,b=5k,c=4k,代入a+b−2c=6,可得6k+5k−8k=6,解得k=2,∴a=12.故答案为12;(2)本题考查了比例线段,根据已知线段的比,将已知数值代入到等式中即可求出AE的长.解:∵ADBD =AEEC,且AD=10,AB=30,AC=24,∴1030−10=AE24−AE,解得AE=8.故答案为8.12.答案:27解析:解:由题意可得,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是:27;故答案为:27.直接利用2的个数除以总数字的个数即可得出抽到数字2的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.答案:(x−2)2=3解析:【分析】本题考查解一元二次方程−配方法,先把常数项移到等号的右边,再在等式的两边同时加上一次项系数的一半,配成完全平方的形式,即可得出答案.【解答】解:∵x2−4x+1=0,∴x2−4x=−1,x2−4x+4=−1+4,∴(x−2)2=3.14.答案:√2解析:本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到AE=EP,再证明△ABE≌△EMP(AAS),推出BE=PM=1,EM=AB=3,即可解决问题;解:在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,EM=AB=3,∴CM=1,∴PC=√2,故答案为√215.答案:35°解析:【分析】本题考查了翻折变换,菱形的性质,熟练运用折叠的性质是本题的关键.由折叠的性质可得∠BCE=∠FCE,BC=CF,由菱形的性质可得BC//AD,BC=CD,可求∠BCF=∠CFD=70°,即可求解.【解答】解:∵将菱形纸片ABCD折叠,使点B落在AD边的点F处,∴∠BCE=∠ECF,BC=CF,∵四边形ABCD是菱形∴BC//AD,BC=CD∴CF=CD∴∠CFD=∠D=70°∵BC//AD∴∠BCF=∠CFD=70°∴∠ECF=12∠BCF=35°故答案为:35°16.答案:解:(1)∵2(x−2)=3x(2−x),∴2(x−2)+3x(x−2)=0,∴(x−2)(3x+2)=0,∴x=2或x=−23(2)∵x2−x−1=0,∴a=1,b=−1,c=−1,∴△=1+4=5,∴x=1±√52;解析:(1)根据因式分解法即可求出答案;(2)根据公式法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.答案:解:(1)画树状图为:共有9种等可能的结果数,所有可能的M的值为−1,1,12,2,4;(2)共有9种等可能的结果数,M是负数的结果数为2,所以M是负数的概率=29解析:(1)画树状图展示所有9种等可能的结果数,根据乘方的意义和负整数指数幂计算出所有可能的M的值;(2)根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.答案:证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD//BC且AD=BC,∴AF//EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形).解析:根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证.本题考查了矩形的判定,菱形的性质,平行四边形的判定的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.19.答案:解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:解析:本题主要考查了相似变换,根据题意得出对应边的长是解题关键.(1)根据相似比进而得出各边扩大2倍得出答案;(2)根据相似比进而得出各边扩大√2倍得出答案.20.答案:解:∵25人的费用为2500元<2800元,∴参加这次春游活动的人数超过25人,设该班参加这次春游活动的人数为x名,由题意得[100−2(x−25)]x=2800,整理,得x2−75x+1400=0,解得x1=40,x2=35,当x1=40时,100−2(x−25)=70<75,不合题意,舍去;当x2=35时,100−2(x−25)=80>75,答:该班共有35人参加这次春游活动.解析:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.判断得到这次春游活动的人数超过25人,设人数为x名,根据题意列出方程,求出方程的解即可得到结果.21.答案:解:(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)∵EA=ED,FA=FD,∴∠EAD=∠EDA,∠FAD=∠FDA,∵∠EAD=∠FAD,∴∠EDA=∠FAD,∠EAD=∠FDA,∴DE//AF,AE//DF,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF是菱形,∴EA=ED=AF=DF=4,∵DE//AC,∴BEEA =BDDC,∴BE4=123,∴BE=16.解析:本题考查复杂作图、线段的垂直平分线的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)首先证明四边形AEDF是菱形,推出AE=DE=AF=DF=4,由DE//AC,推出BEEA =BDDC,由此即可解决问题.22.答案:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF.在△BOE和△DOF中,{∠OBE=∠ODF OB=OD∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形.(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=8−x.在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(8−x)2,解得x=5,即BE=5.∵BD=√AD2+AB2=√82+42=4√5,∴OB=12BD=2√5.∵BD⊥EF,∴EO=√BE2−OB2=√52−(2√5)2=√5,∴EF=2EO=2√5.解析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.。
2019-2020学年江西省南昌市九年级(上)期中数学试卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项1.在数轴上,点A 所表示的实数为2,点B 所表示的实数为a ,A 的半径为3,若点B 在A 外,则a 的值可能是( )A .1-B .0C .5D .62.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )A .B .C .D .3.在ABC ∆中,90C ∠=︒,8AB =,则ABC ∆的最大面积为( )A .32B .24C .16D .124.如图,ABC ∆的顶点在网格中,现将ABC ∆绕格点O 顺时针旋转α角(0360)α︒<<︒,使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个5.如图,将线段AB 绕点(4,0)C 顺时针旋转90︒得到线段A B '',那么(2,5)A 的对应点A '的坐标是( )A.(9,2)B.(7,2)C.(9,4)D.(7,4)6.如图,ABC∠沿AD翻折,B点正好落在圆点E处,∆内接于圆,D是BC上一点,将B若50∠的度数是()C∠=︒,则BAEA.40︒B.50︒C.80︒D.90︒二、填空题(本大题共6小题,共18分)7.已知O的直径是4,直线l与O相切,则点O到直线l的距离为.8.在平面直角坐标系中,点(1,2)P--关于原点对称点的坐标是.9.如图,正五边形ABCDE内接于O,F是CD弧的中点,则CBF∠的度数为.10.将正方形ABCD绕点B顺时针旋转至EBGF,若点E落在如图所示的正方形ABCD的对称轴上,则旋转的角度为.11.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:)cm,请你帮小华算出圆盘的半径是cm.12.已知O 的半径为2,AB 是O 的弦,点P 在O 上,AB =若点P 到直线AB 的距离为1,则PAB ∠的度数为 .三、(本大题共6小题,每小题3分,共30分)13.如图,ABC ∆为O 的内接三角形,AB 为O 的直径,点D 在O 上,54D ∠=︒,求BAC ∠的度数.14.如图,在Rt ABC ∆中,90ACB ∠=︒,30B ∠=︒,将ABC ∆绕点C 按照顺时针方向旋转m 度后得到DEC ∆,点D 刚好落在AB 边上,求m 的值.15.如图,在O 中,弦//AC 半径OB ,50BOC ∠=︒,求OAB ∠的度数.16.在平面直角坐标系中,ABC ∆三个顶点的坐标分别为(2,3)A ,(1,1)B ,(5,1)C .(1)把ABC ∆平移后,其中点A 移到点1(4,5)A ,画出平移后得到的△111A B C ;(2)把△111A B C 绕点1A 按逆时针方向旋转90︒,画出旋转后的△2A 22B C .17.如图,ABC=,D是AC弧的中点,在下列图中使用无刻度的直∆内接于O,AB AC尺按要求画图.(1)在图1中,画出ABC∆中AC边上的中线;(2)在图2中,画出ABC∆中AB边上的中线.18.如图,在平面直角坐标系中,正方形ABCD的边长为2,正方形EFGH的边长为5,点A的坐标为(4,0)-,点E的坐标为(3,0),AB与EF均在x轴上.(1)C,G两点的坐标分别为,.'''',求点C'的坐标和FC'的(2)将正方形ABCD绕点E顺时针旋转90︒得到正方形A B C D长.四、(本大题共3小题,每小题8分,共24分)19.如图,AB是O的直径,4AB=,点M是OA的中点,过点M的直线与O交于C、D两点.若45∠=︒,求弦CD的长.CMA20.如图,已知AC BCAC=,BC=AC绕点A按逆时针方⊥,垂足为C,4向旋转60︒,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.21.如图1是荡秋千的图片,起始状态下秋千顶点O与座板A的距离为2m(此时OA垂直于地面)如图2,现一人荡秋千时,座板到达点(B OA不弯曲)π(1)当30∠=︒时,求AB弧线的长度(保留)BOA(2)当从点C荡至点B,且BC与地面平行,3BC m=时,若点A离地面0.4m,求点B到地面的距离(保留根号).五、(本大题共2小题,每小题9分,共18分)22.如图,AB是半圆O的直径,点C圆外一点,OC垂直于弦AD,垂足为点F,OC交O 于点E,连接AC,BED C∠=∠.(1)判断AC与O的位置关系,并证明你的结论;(2)是否存在BE平分OED∠的度数;如果不存在,说明∠的情況?如果存在,求此时C理由.23.(1)如图1,点P是正方形ABCD内的一点,把ABP∆绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若3∠的度数.PA=,PB=,5PC=,求BQC(2)点P是等边三角形ABC内的一点,若12PA=,5∠的度数.PB=,13PC=,求BPA六、(本大题共12分)24.如图,45AB=.MON∠=︒,线段AB在射线ON上运动,2(1)如图1,已知OA AB∠=︒,点C在MON∠内.=,90=,AC BCACB①求证:以点C为圆心,CA的半径的圆与射线OM相切(切点记为点)P;②APB∠的大小为.(2)如图2,若射线OM上存在点Q,使得30∠=度,试利用图2,求A,O两点之AQB间距离t的取值范围.2019-2020学年江西省南昌市九年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项1.在数轴上,点A所表示的实数为2,点B所表示的实数为a,A的半径为3,若点B在A外,则a的值可能是()A.1-B.0C.5D.6【解答】解:由题意,观察图形可知1a>,a<-,5故选:D.2.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为() A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:B.3.在ABCAB=,则ABC∠=︒,8∆的最大面积为()∆中,90CA.32B.24C.16D.12【解答】解:在ABC∠=︒,∆中,90C∴是O的直径,AB设AB边上的高为h,12ABC S AB h ∆∴=, ∴当h 最大时,ABC ∆的面积最大,∴当4h =时,三角形的面积最大,ABC ∴∆的最大面积为184162⨯⨯=, 故选:C .4.如图,ABC ∆的顶点在网格中,现将ABC ∆绕格点O 顺时针旋转α角(0360)α︒<<︒,使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个【解答】解:观察图象可知,满足条件的α的值为90︒或180︒或270︒,故选:B .5.如图,将线段AB 绕点(4,0)C 顺时针旋转90︒得到线段A B '',那么(2,5)A 的对应点A '的坐标是( )A .(9,2)B .(7,2)C .(9,4)D .(7,4)【解答】解:作AD x ⊥轴于点D ,作A D x ''⊥轴于点D ',则ADC ∆≅△()CD A AAS '',(2,5)A ,(4,0)C2OD ∴=,5AD =,5CD AD ∴'==,2A D CD ''==,∴点A '的坐标为(9,2),故选:A .6.如图,ABC ∆内接于圆,D 是BC 上一点,将B ∠沿AD 翻折,B 点正好落在圆点E 处,若50C ∠=︒,则BAE ∠的度数是( )A .40︒B .50︒C .80︒D .90︒【解答】解:连接BE ,如图所示:由折叠的性质可得:AB AE =,∴AB AE =,50ABE AEB C ∴∠=∠=∠=︒,180505080BAE ∴∠=︒-︒-︒=︒.故选:C .二、填空题(本大题共6小题,共18分)7.已知O 的直径是4,直线l 与O 相切,则点O 到直线l 的距离为 2 .【解答】解:O 的直径是4,O ∴的半径是2,经过O 上一点的直线L 与O 相切,∴点O 到直线L 的距离等于圆的半径,是2.故答案为:2.8.在平面直角坐标系中,点(1,2)P --关于原点对称点的坐标是 (1,2) .【解答】解:点(1,2)--关于原点对称的点的坐标是(1,2). 故答案为:(1,2).9.如图,正五边形ABCDE 内接于O ,F 是CD 弧的中点,则CBF ∠的度数为 18︒ .【解答】解:设圆心为O ,连接OC ,OD ,BD ,五边形ABCDE 为正五边形,360725O ︒∴∠==︒, 1362CBD O ∴∠=∠=︒, F 是CD 的中点,1182CBF DBF CBD ∴∠=∠=∠=︒, 故答案为:18︒.10.将正方形ABCD 绕点B 顺时针旋转至EBGF ,若点E 落在如图所示的正方形ABCD 的对称轴上,则旋转的角度为 30︒ .【解答】解:如图,由题意,在Rt EMB ∆中,2BE AB BM ==, 1cos 2BM EBM BE ∴∠==, 60EBM ∴∠=︒, 90ABC ∠=︒,906030ABE ∴∠=︒-︒=︒, ∴旋转的角度为30︒.故答案为30︒.11.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:)cm ,请你帮小华算出圆盘的半径是 10 cm .【解答】解:如图,记圆的圆心为O ,连接OB ,OC 交AB 于D , OC AB ∴⊥,12BD AB =, 由图知,16412AB cm =-=,2CD cm =,6BD ∴=,设圆的半径为r ,则2OD r =-,OB r =,在Rt BOD ∆中,根据勾股定理得,222OB AD OD =+,2236(2)r r ∴=+-,10r cm ∴=,故答案为10.12.已知O 的半径为2,AB 是O 的弦,点P 在O 上,AB =若点P 到直线AB 的距离为1,则PAB ∠的度数为 15︒或30︒或105︒ .【解答】解:如图作1OP AB ⊥交O 于1P 交AB 于H ,过点O 作直线23//P P AB 交O 于2P ,3P .OA OB =,OH AB ⊥,AB =,2OA =,AH BH ∴==,1OH ∴==11HP ∴=,∴直线AB 与直线23P P 之间的结论距离为1,1P ∴,2P ,3P 是满足条件的点, 2OA OH =,30OAH ∴∠=︒,可得160BOP ∠=︒,3230BOPAOP ∠=∠=︒,2275OAP OP A ∠=∠=︒, 111302P AB BOP ∴∠=∠=︒,331152P AB BOP ∠=∠=︒, 218075105P AB ∠=︒-︒=︒,故答案为:15︒或30︒或105︒.三、(本大题共6小题,每小题3分,共30分)13.如图,ABC ∆为O 的内接三角形,AB 为O 的直径,点D 在O 上,54D ∠=︒,求BAC ∠的度数.【解答】解:AB 为O 的直径,90ACB ∴∠=︒, 54D ABC ∠=∠=︒18036BAC ACB B ∴∠=︒-∠-∠=︒14.如图,在Rt ABC ∆中,90ACB ∠=︒,30B ∠=︒,将ABC ∆绕点C 按照顺时针方向旋转m 度后得到DEC ∆,点D 刚好落在AB 边上,求m 的值.【解答】解:90ACB ∠=︒,30B ∠=︒,2AB AC ∴=;60A ∠=︒;由题意得:AC DC =, DAC ∴∆为等边三角形, 60ACD ∴∠=︒, 60m ∴=︒.15.如图,在O 中,弦//AC 半径OB ,50BOC ∠=︒,求OAB ∠的度数.【解答】解:2BOC BAC ∠=∠,50BOC ∠=︒, 25BAC ∴∠=︒, //AC OB , 25BAC B ∴∠=∠=︒, OA OB =, 25OAB B ∴∠=∠=︒.16.在平面直角坐标系中,ABC ∆三个顶点的坐标分别为(2,3)A ,(1,1)B ,(5,1)C . (1)把ABC ∆平移后,其中点A 移到点1(4,5)A ,画出平移后得到的△111A B C ; (2)把△111A B C 绕点1A 按逆时针方向旋转90︒,画出旋转后的△2A 22B C .【解答】解:(1)如图,△111A B C 即为所求;(2)如图,△2A 22B C 即为所求.17.如图,ABC ∆内接于O ,AB AC =,D 是AC 弧的中点,在下列图中使用无刻度的直尺按要求画图.(1)在图1中,画出ABC ∆中AC 边上的中线; (2)在图2中,画出ABC ∆中AB 边上的中线.【解答】解:(1)如图1所示,BE 即为所求;(2)如图2所示,CF 即为所求.18.如图,在平面直角坐标系中,正方形ABCD 的边长为2,正方形EFGH 的边长为5,点A 的坐标为(4,0)-,点E 的坐标为(3,0),AB 与EF 均在x 轴上.(1)C ,G 两点的坐标分别为 (2,2)- , .(2)将正方形ABCD 绕点E 顺时针旋转90︒得到正方形A B C D '''',求点C '的坐标和FC '的长.【解答】解:(1)正方形ABCD 的边长为2,正方形EFGH 的边长为5,点A 的坐标为(4,0)-,点E 的坐标为(3,0),∴点(2,0)B -,2BC AB ==,点(8,0)F ,5EF GF ==, ∴点C 坐标(2,2)-,点(8,5)G故答案为:(2,2)-,(8,5);(2)如图,将正方形ABCD 绕点E 顺时针旋转90︒得到正方形A B C D '''',此时点H 与点B '重合,∴点(5,5)C ',3C G B G B C ''''=-=,5GF =,C F '∴===.四、(本大题共3小题,每小题8分,共24分)19.如图,AB 是O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与O 交于C 、D 两点.若45CMA ∠=︒,求弦CD 的长.【解答】解:连接OD,作OE CD⊥于E,如图所示:则CE DE=,AB=,点M是OA的中点,AB是O的直径,4∴==,1OM=,OD OA2∠=∠=︒,45OME CMA∴∆是等腰直角三角形,OEM∴==,OE在Rt ODE∆中,由勾股定理得:DE==,∴==.2CD DE20.如图,已知AC BCAC=,BC=AC绕点A按逆时针方⊥,垂足为C,4向旋转60︒,得到线段AD,连接DC,DB.(1)线段DC=4;(2)求线段DB的长度.【解答】解:(1)AC ADCAD∠=︒,=,60∴∆是等边三角形,ACD∴==.4DC AC故答案是:4;(2)作DE BC ⊥于点E . ACD ∆是等边三角形, 60ACD ∴∠=︒,又AC BC ⊥,906030DCE ACB ACD ∴∠=∠-∠=︒-︒=︒, Rt CDE ∴∆中,122DE DC ==,cos304CE DC =︒==,BE BC CE ∴=-==Rt BDE ∴∆中,BD ===.21.如图1是荡秋千的图片,起始状态下秋千顶点O 与座板A 的距离为2m (此时OA 垂直于地面)如图2,现一人荡秋千时,座板到达点(B OA 不弯曲) (1)当30BOA ∠=︒时,求AB 弧线的长度(保留)π(2)当从点C 荡至点B ,且BC 与地面平行,3BC m =时,若点A 离地面0.4m ,求点B 到地面的距离(保留根号).【解答】解:(1)AB 弧线的长度302()1803m ππ⨯==;(2)OB OC =,OD BC ⊥, 1322BD BC ∴==,在Rt OBD ∆中,222OD BD OB +=,OD ∴===∴点B 到地面的距离1220.45==,答:点B 到地面的距离为12(5m -.五、(本大题共2小题,每小题9分,共18分)22.如图,AB 是半圆O 的直径,点C 圆外一点,OC 垂直于弦AD ,垂足为点F ,OC 交O 于点E ,连接AC ,BED C ∠=∠.(1)判断AC 与O 的位置关系,并证明你的结论;(2)是否存在BE 平分OED ∠的情況?如果存在,求此时C ∠的度数;如果不存在,说明理由.【解答】解:(1)AC 与O 相切. 理由:OC AD ⊥, 90AOC BAD ∴∠+∠=︒.又C BED BAD ∠=∠=∠, 90AOC C ∴∠+∠=︒. AB AC ∴⊥, AC ∴与O 相切.(2)存在.OE OB =,OEB OBE ∴∠=∠,C BED BEO ∠=∠=∠,AOC OEB OBE ∠=∠+∠, 2AOC C ∴∠=∠, 90AOC C ∠+∠=︒, 290C C ∴∠+∠=︒, 30C ∴∠=︒.23.(1)如图1,点P 是正方形ABCD 内的一点,把ABP ∆绕点B 顺时针方向旋转,使点A与点C 重合,点P 的对应点是Q .若3PA =,PB =,5PC =,求BQC ∠的度数. (2)点P 是等边三角形ABC 内的一点,若12PA =,5PB =,13PC =,求BPA ∠的度数.【解答】解:(1)连接PQ .由旋转可知:BQ BP ==,3QC PA ==.又ABCD 是正方形,ABP ∴∆绕点B 顺时针方向旋转了90︒,才使点A 与C 重合,即90PBQ ∠=︒,45PQB ∴∠=︒,4PQ =.则在PQCQC=,5PQ=,3∆中,4PC=,222∴=+.PC PQ QC即90∠=︒.PQC故9045135BQC∠=︒+︒=︒.(2)将此时点P的对应点是点P'.由旋转知,APB∆≅△CP B',即BPA BP CP C PA'==.'==,12P B PB∠=∠',5又ABC∆是正三角形,ABP∴∆绕点B顺时针方向旋转60︒,才使点A与C重合,得60∠'=︒,PBP又5'==,P B PB∴∆'也是正三角形,即60PBP∠'=︒,5PP'=.PP B因此,在△PP C'中,13P C'=,PC=,5PP'=,12222PC PP P C∴='+'.即90∠'=︒.PP C故6090150∠=∠'=︒+︒=︒.BPA BP C六、(本大题共12分)24.如图,45AB=.MON∠=︒,线段AB在射线ON上运动,2(1)如图1,已知OA ABACB∠内.∠=︒,点C在MON=,90=,AC BC①求证:以点C为圆心,CA的半径的圆与射线OM相切(切点记为点)P;②APB∠的大小为45︒.(2)如图2,若射线OM上存在点Q,使得30∠=度,试利用图2,求A,O两点之AQB间距离t的取值范围.【解答】(1)①证明:如图1中,作CP OM⊥于H.⊥于P,AH OM∠=︒,ACBCA CB=,90∠=︒,O45CAB∴∠=︒,45∴∠=∠,CAB OPC AH,∴,//AC OP//∴四边形ACPH是平行四边形,90∠=︒,CPH∴四边形ACPH是矩形,O CAB∠=∠=︒,45∠=∠=︒,AHO BCAOA AB=,90∴∆≅∆,()AOH BAC AAS∴===,AC BC OH AH∴四边形ACPH是正方形,∴=,PC AC∴是C的切线.OM②解:如图2中,连接PA .由①可知四边形ACPH 是正方形,90ACP ∴∠=︒,90ACB ∠=︒,180PCB ∴∠=︒,P ∴,C ,B 共线,1452APB ACB ∴∠=∠=︒.(2)解:如图3中,以AB 为边向上作等边ABC ∆,以C 为圆心CA 为半径作C ,当C 与射线OM 有交点时,射线OM 上存在点Q ,使得1302AQB ACB ∠=∠=︒.当C 与射线OM 相切于点Q 时,作//CP OM 交OB 于P ,作PK OM ⊥于K ,则四边形CQKP 是矩形,2PK CQ CA AB ∴====, 45O ∠=︒,90OKP ∠=︒, 2OK PK ∴==,OP ∴==,ABC ∆是等边三角形,CH AB ⊥,1AH HB ∴==,CH === //PC OM ∴,45CPH O ∴∠=∠=︒,PH CH ∴==OH OP PH ∴=+=1OA OH AH ∴===-,观察图形可知,满足条件的t 的取值范围为:01t +剟.。
2019-2020学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列方程中,属于一元二次方程的是( ) A .2250x y -+=B .21470x x-+= C .2210x x -+= D .2221x x x +=-2.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .直角三角形C .平行四边形D .正方形3.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2y x =--4.下列说法中,不正确的个数是( )①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点. A .1个B .2个C .3个D .4个5.若三角形两边长分别为3和4,第三边的长是方程257(5)x x x -=-的根,则此三角形的周长为( ) A .12B .14C .12或14D .13或156.如图,在ABC ∆中,40B ∠=︒,将ABC ∆绕点A 逆时针旋转至在ADE ∆处,使点B 落在BC 的延长线上的D 点处,则(BDE ∠= )A .90︒B .85︒C .80︒D .40︒7.如图.O 的直径AB 垂直弦CD 于E 点,22.5A ∠=︒,4OC =,CD 的长为( )A.4B.8C.D.8.如图,等边ABCGDEDE=,60∠=︒,DG=,3∆边长为2,四边形DEFG是平行四边形,2→的方向以每秒1 BC和DE在同一条直线上,且点C与点D重合,现将ABC∆沿D E 个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,ABC∆与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.写出一个开口向上,且顶点为(1,2)-的抛物线解析式为.10.在平面直角坐标系中,点(2,1)P-关于原点的对称点P'的坐标是.11.设a、b是方程220200a a b++的值是.+-=的两个不等实根,则22x x12.如图,已知O为四边形ABCD的外接圆,若120∠=︒,则BOD∠度数为.BCD13.如图,在边长为12的正方形ABCD中,点E在边DC上,13AE=,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.14.如图,PA 、PB 分别与O 相切于点A 、B ,O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB 上,若PEF ∆的周长为8cm ,则PA 的长是 cm .15.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线1x =.给出下列结论:①0abc >;②20a b +=;③0a b c -+<;④方程21ax bx c ++=有两个不相等的实数根;⑤若点(,)A m n 在抛物线上,则2am bm a b ++…其中正确的有 .(只需填写序号即可)16.如图所示,在平面直角坐标系中,在x 轴正半轴上选取点1A ,2A ,3A ,⋯,n A ;以12A A ,23A A ,34A A ,⋯,1n n A A +为边作等边△121A A B ,△232A A B ,⋯,△1n n n A A B +;顶点1B ,2B ,3B ,⋯,n B 在直线l 上,且1130B OA ∠=︒,分别作△121A A B ,△232A A B ,⋯,△1n n n A A B +的内切圆1O ,2O ,3O ,⋯,n O ,若1O 的半径为1,则n O 的半径为 .(用含正整数n 的式子表示)三、解答题(每小题8分,共16分)17.用适当方法解方程:22(1)160x --=18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C . (1)将ABC ∆向下平移5个单位后得到△111A B C ,请画出△111A B C ; (2)将ABC ∆绕原点O 逆时针旋转90︒后得到△222A B C ,请画出△222A B C ; (3)判断以O ,1A ,B 为顶点的三角形的形状.(无须说明理由)四、解答题(每小题10分,共20分) 19.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根是32-,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2014年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房.若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2016年底共建设了多少万平方米的廉租房? 五、解答题(每小题10分,共20分)21.如图,BC 为O 的直径,AD BC ⊥于D ,P 是AC 上一动点,连接PB 分别交AD 、AC 于点E ,F .(1)当PA AB =时,求证:AE BE =;(2)当点P 在什么位置时,AF EF =?证明你的结论.22.如图,已知抛物线2(0)y ax bx a =+≠经过(3,0)A ,(4,4)B 两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标.六、解答题(每小题10分,共20分)23.如图,AB 是O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 延长线与OC 延长线于点E 、F ,连接BF .(1)求证:BF 是O 的切线; (2)已知圆的半径为1,求EF 的长.24.在汛期到来之际,某水泵厂接到生产一批小型抽水泵的紧急任务.要求必须在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了水泵20台,以后每天生产的水泵都比前一天多2台.由于机器损耗等原因,当日生产的水泵数量达到28台后,每多生产一台,当天生产的所有水泵,平均每台成本就增加20元 (1)设第x 天生产水泵y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台水泵的成本价(日生产量不超过28台时)为1000元,销售价格为每台1400元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求该厂哪一天获得的利润最大,最大利润是多少? 七、解答题25.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,D 为AC 延长线上一点,连接DB ,将DB 绕点D 逆时针旋转90︒,得到线段DE ,连接AE .(1)如图①,当CD AC =时,线段AB 、AE 、AD 三者之间的数量关系式是AB AE += AD .(2)如图②,当CD AC ≠时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D 在射线CA 上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB 、AE 、AD 三者之间的数量关系式.八、解答题26.如图,已知抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C . (1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m . ①用含m 的代数式表示线段PD 的长.②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标.(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.2019-2020学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列方程中,属于一元二次方程的是( ) A .2250x y -+=B .21470x x-+= C .2210x x -+= D .2221x x x +=-【解答】解:A 、是二元二次方程,故A 不合题意; B 、是分式方程,故B 不合题意; C 、是一元二次方程,故C 符合题意;D 、是一元一次方程,故D 不合题意.故选:C .2.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .直角三角形C .平行四边形D .正方形【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误; C 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D 、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D .3.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2y x =--【解答】解:抛物线23y x =的对称轴为直线0x =,顶点坐标为(0,0),∴抛物线23y x =向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线1x =,顶点坐标为(1,2),∴平移后抛物线的解析式为23(1)2y x =-+.故选:C .4.下列说法中,不正确的个数是( )①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点. A .1个B .2个C .3个D .4个【解答】解:①直径是特殊的弦.所以①正确,不符合题意; ②经过圆心可以作无数条直径.所以②不正确,符合题意; ③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意; ④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意; ⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意. 故选:C .5.若三角形两边长分别为3和4,第三边的长是方程257(5)x x x -=-的根,则此三角形的周长为( ) A .12 B .14C .12或14D .13或15【解答】解:257(5)x x x -=-,(5)7(5)0x x x ∴---=, (7)(5)0x x ∴--=, 7x ∴=或5x =,当7x =时, 347+=,3∴、4、7不能组成三角形,当5x =时, 345+>,3∴、4、5能组成三角形, ∴该三角形的周长为34512++=,故选:A .6.如图,在ABC ∆中,40B ∠=︒,将ABC ∆绕点A 逆时针旋转至在ADE ∆处,使点B 落在BC 的延长线上的D 点处,则(BDE ∠= )A .90︒B .85︒C .80︒D .40︒【解答】解:由旋转的性质可知,AB AD=,40∠=∠=︒,ADE B在ABD∆中,=,AB AD40∴∠=∠=︒,ADB B∴∠=∠+∠=︒.80BDE ADE ADB故选:C.7.如图.O的直径AB垂直弦CD于E点,22.5OC=,CD的长为()∠=︒,4AA.4B.8C.D.【解答】解:CO AO=,∴∠=∠=︒,OAC OCA22.5COE∴∠=︒,45⊥,CD ABCD CE∴∠=︒,2=,CEO90∴=,CE EO∴=︒==,sin454CE CO∴=,CD故选:D.8.如图,等边ABCDE=,60∠=︒,GDEDG=,3∆边长为2,四边形DEFG是平行四边形,2∆沿D E→的方向以每秒1 BC和DE在同一条直线上,且点C与点D重合,现将ABC个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,ABC∆与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是()A .B .C .D .【解答】解:①当02t 剟时,如图1,由题意知CD t =,60HDC HCD ∠=∠=︒, CDH ∴∆是等边三角形,则2S =; ②当23t <…时,如图2,22S ==; ③当35t <…时,如图3,根据题意可得3CE CD DE t =-=-,60C HEC ∠=∠=︒, CEH ∴∆为等边三角形,则22223)ABC HEC S S S t ∆∆=-=-=+-;综上,02t 剟时函数图象是开口向上的抛物线的一部分,23t <…时函数图象是平行于x 轴的一部分,当35t <…时函数图象是开口向下的抛物线的一部分; 故选:B .二、填空题(每小题3分,共24分)9.写出一个开口向上,且顶点为(1,2)-的抛物线解析式为 2(1)2y x =++ . 【解答】解:根据顶点坐标为(1,2)-,可设方程为2(1)2y a x =++, 又开口向上,不妨取1a =, 可得方程2(1)2y x =++, 故答案为:2(1)2y x =++.10.在平面直角坐标系中,点(2,1)P -关于原点的对称点P '的坐标是 (2,1)- . 【解答】解:点(2,1)P -关于原点的对称点P '的坐标是(2,1)-. 故答案为:(2,1)-.11.设a 、b 是方程220200x x +-=的两个不等实根,则22a a b ++的值是 2019 . 【解答】解:a 、b 是方程220200x x +-=的两个不等实根, 220200a a ∴+-=,1a b +=-, 22020a a ∴+=,222()()202012019a a b a a a b ∴++=+++=-=.故答案为:2019.12.如图,已知O 为四边形ABCD 的外接圆,若120BCD ∠=︒,则BOD ∠度数为 120︒ .【解答】解:四边形ABCD 内接于O , 18060A BCD ∴∠=︒-∠=︒,由圆周角定理得,2120BOD A ∠=∠=︒, 故答案为:120︒.13.如图,在边长为12的正方形ABCD中,点E在边DC上,13AE=,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为7或17.【解答】解:如图1,当点F在线段BC上时,四边形ABCD为正方形,==;AB BC∴∠=︒,1290B由题意得:13==;AF AE由勾股定理得:222=-,BF AF AB解得:5CF=;BF=,7如图2,当点F在CB的延长线上时,同理可求:5CF=.BF=,17故答案为7或17.14.如图,PA、PB分别与O相切于点A、B,O的切线EF分别交PA、PB于点E、∆的周长为8cm,则PA的长是4cm.F,切点C在AB上,若PEF【解答】解:EA、EC切O相切于点A、C,∴=,EA EC同理可知,FB FC =,PA PB =, PEF ∆的周长为8cm ,8PE PF EF PE EC PF FB PE EA PF FB PA PB ∴++=+++=+=+=+=,4PA PB ∴==,故答案为:4.15.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线1x =.给出下列结论:①0abc >;②20a b +=;③0a b c -+<;④方程21ax bx c ++=有两个不相等的实数根;⑤若点(,)A m n 在抛物线上,则2am bm a b ++…其中正确的有 ②④⑤ .(只需填写序号即可)【解答】解:由图可知0a <, ∴对称轴12bx a==-, 20b a ∴=->,函数与y 轴的交点0c >, ①0abc <;①错误; ②2b a =-,20b a ∴+=;②正确;③由函数的对称性,与x 轴的一个交点坐标为(4,0), ∴另一个交点为(2,0)-,∴当1x =-时,0y >,即0a b c -+>;③错误;④函数与y 轴交点3c >, 1x ∴=时,3y >∴直线1y =与抛物线有两个交点,∴方程21ax bx c ++=有两个不相等的实数根;④正确;⑤当1x =时,该函数取得最大值,此时y a b c =++,∴点(,)A m n 在该抛物线上,则2am bm c a b c ++++…,即2am bm a b ++…;故⑤正确;故答案为②④⑤.16.如图所示,在平面直角坐标系中,在x 轴正半轴上选取点1A ,2A ,3A ,⋯,n A ;以12A A ,23A A ,34A A ,⋯,1n n A A +为边作等边△121A A B ,△232A A B ,⋯,△1n n n A A B +;顶点1B ,2B ,3B ,⋯,n B 在直线l 上,且1130B OA ∠=︒,分别作△121A A B ,△232A A B ,⋯,△1n n n A A B +的内切圆1O ,2O ,3O ,⋯,n O ,若1O 的半径为1,则n O 的半径为 12n - .(用含正整数n 的式子表示)【解答】解:△121A A B 是等边三角形,内切圆半径为1,∴△121A A B1130A OB ∠=︒,112111160B A A A OB A B O ∠=∠+∠=︒, 1111A OB OB A ∴∠=∠11112OA A B A A ∴===,同法可证22223OA A B A A ===,33334OA A B A A ===,2O ∴的半径2==,3O 22=,⋯, 由此可知n O 的半径为12n -, 故答案为12n -三、解答题(每小题8分,共16分) 17.用适当方法解方程:22(1)160x --=【解答】解:22(1)160x --=,2(1)8x ∴-=,1x ∴=±;18.如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C . (1)将ABC ∆向下平移5个单位后得到△111A B C ,请画出△111A B C ; (2)将ABC ∆绕原点O 逆时针旋转90︒后得到△222A B C ,请画出△222A B C ; (3)判断以O ,1A ,B 为顶点的三角形的形状.(无须说明理由)【解答】解:(1)如图所示,△111A B C 即为所求:(2)如图所示,△222A B C 即为所求:(3)三角形的形状为等腰直角三角形,1OB OA ===1A B ==即22211OB OA A B +=,所以三角形的形状为等腰直角三角形. 四、解答题(每小题10分,共20分) 19.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根是32-,求a 的值及该方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根. 【解答】解:(1)将32x =-代入方程,得932042a a -+-=,12a ∴=, 设另外一个根为x ,由根与系数的关系可知:32x a -+=-,1x ∴=,(2)由题意可知:△224(2)(2)40a a a =--=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根20.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2014年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2016年底三年共累计投资9.5亿元人民币建设廉租房.若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2016年底共建设了多少万平方米的廉租房? 【解答】解:(1)设每年市政府投资的增长率为x , 根据题意,得:222(1)2(1)9.5x x ++++=, 解得: 3.5x =-(舍去)或0.550%x ==. 答:每年市政府投资的增长率为50%;(2)依题意,得3年的建筑面积共为:9.5(28)38÷÷=(万平方米), 答:到2016年底共建设了38万平方米的廉租房. 五、解答题(每小题10分,共20分)21.如图,BC 为O 的直径,AD BC ⊥于D ,P 是AC 上一动点,连接PB 分别交AD 、AC于点E,F.(1)当PA AB=;=时,求证:AE BE(2)当点P在什么位置时,AF EF=?证明你的结论.【解答】(1)证明:连接AB,BC为O的直径,∴⊥.AB AC又AD BC⊥,BAD DAC C DAC∴∠+∠=∠+∠=︒90∴∠=∠.BAD C=,PA AB∴∠=∠.ABE CABE BAD∴∠=∠.∴=.AE BE(2)当弧PC=弧AB时,AF EF=.证明:弧PC=弧AB,∴∠=∠.PBC C∴︒-∠=︒-∠.9090PBC C即BED DAC∠=∠,∠=∠,BED AEF∴∠=∠.DAC AEF∴=.AF EF22.如图,已知抛物线2(0)y ax bx a =+≠经过(3,0)A ,(4,4)B 两点. (1)求抛物线的解析式;(2)将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标.【解答】解:(1)抛物线2(0)y ax bx a =+≠经过(3,0)A 、(4,4)B ∴将A 与B 两点坐标代入得:9301644a b a b +=⎧⎨+=⎩, 解得:13a b =⎧⎨=-⎩,∴抛物线的解析式是23y x x =-.(2)设直线OB 的解析式为1y k x =,由点(4,4)B , 得:144k =,解得:11k = ∴直线OB 的解析式为y x =,∴直线OB 向下平移m 个单位长度后的解析式为:y x m =-,点D 在抛物线23y x x =-上, ∴可设2(,3)D x x x -,又点D 在直线y x m =-上, 23x x x m ∴-=-,即240x x m -+=,抛物线与直线只有一个公共点, ∴△1640m =-=,解得:4m =,此时122x x ==,232y x x =-=-, D ∴点的坐标为(2,2)-.六、解答题(每小题10分,共20分)23.如图,AB 是O 的直径,点C 、D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 延长线与OC 延长线于点E 、F ,连接BF .(1)求证:BF 是O 的切线; (2)已知圆的半径为1,求EF 的长.【解答】(1)证明:连结OD ,如图,四边形AOCD 是平行四边形, 而OA OC =,∴四边形AOCD 是菱形,OAD ∴∆和OCD ∆都是等边三角形, 60AOD COD ∴∠=∠=︒, 60FOB ∴∠=︒,EF 为切线, OD EF ∴⊥, 90FDO ∴∠=︒,在FDO ∆和FBO ∆中OD OB FOD FOB FO FO =⎧⎪∠=∠⎨⎪=⎩,FDO FBO ∴∆≅∆,90ODF OBF ∴∠=∠=︒,OB BF ∴⊥,BF ∴是O 的切线;(2)解:在Rt OBF ∆中,60FOB ∠=︒, 而tan BF FOB OB∠=,1tan 60BF ∴=⨯︒=30E ∠=︒,2EF BF ∴==.24.在汛期到来之际,某水泵厂接到生产一批小型抽水泵的紧急任务.要求必须在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了水泵20台,以后每天生产的水泵都比前一天多2台.由于机器损耗等原因,当日生产的水泵数量达到28台后,每多生产一台,当天生产的所有水泵,平均每台成本就增加20元(1)设第x 天生产水泵y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台水泵的成本价(日生产量不超过28台时)为1000元,销售价格为每台1400元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求该厂哪一天获得的利润最大,最大利润是多少?【解答】解:(1)根据题意,得y 与x 的解析式为:182(110)y x x =+剟.(2)根据题意,得当28y =时,18228x +=,解得5x =,当15x 剟时, (14001000)(182)8007200w x x =-+=+,8000>,w ∴随x 的增大而增大,∴当5x =时,8005720011200w =⨯+=最大值.当510x <…时,[1400100020(18228)](182)w x x =--+-⨯+22804801080080(3)11520x x x =-++=--+.此时图象开口向下,在对称轴右侧,w 随x 的增大而减小,天数x 为整数, ∴当6x =时,w 有最大值,为10800元,1120010800>,∴当5x =时,w 最大,且11200w =最大值元,答:该厂第5天获得的利润最大,最大利润是11200元.七、解答题25.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,D 为AC 延长线上一点,连接DB ,将DB 绕点D 逆时针旋转90︒,得到线段DE ,连接AE .(1)如图①,当CD AC =时,线段AB 、AE 、AD 三者之间的数量关系式是AB AE +=AD .(2)如图②,当CD AC ≠时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.(3)当点D 在射线CA 上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB 、AE 、AD 三者之间的数量关系式.【解答】解:(1)ABC ∆是等腰直角三角形,90ACB ∠=︒, CA BC ∴=,AC BC ⊥,45BAC ∠=︒AC CD =,BC AC ⊥,AB BD ∴=,45BAC BDC ∴∠=∠=︒,90ABD ∴∠=︒,将DB 绕点D 逆时针旋转90︒,得到线段DE , BD DE ∴=,90BDE ∠=︒,DE AB BD ∴==,//AB DE ,∴四边形ABDE 是平行四边形,且90ABD ∠=︒, ∴四边形ABDE 是矩形,且AB BD =,∴四边形ABDE 是正方形,AB AE ∴=,AD =,AB AE ∴+=,(2)结论仍然成立;如图②过点D 作//DF BC 交AB 的延长线于点F ,//BC DF ,90ADF ACB ∴∠=∠=︒,45F ABC ∠=∠=︒, 45F DAF ∴∠=∠=︒,AD DF ∴=,AF ∴,∠=∠=︒,ADF EDB90=,=,AD DF∴∠=∠,且DE DBADE BDF∴∆≅∆,ADE FDB SAS()∴=,AE BF∴+=+==;AB AE AB BF AF(3)不成立,当点D在线段AC上时,如图③,过点D作//DF BC,∠=∠=︒,ACB ADF∴∠=∠=︒,9045AFD ABC∴∠=∠=︒,45DAF AFD∴=,AF=,AD DF∠=︒=∠,EDB ADF90==,DE BD∴∠=∠,且AD DFADE BDF∴∆≅∆()ADE FDB SAS∴=,AE BF-=,AB BF AF∴-=;AB AE当点D在CA的延长线上时,如图④,过点D作//DF BC,交BA延长线于点F,45AFD ABC ∴∠=∠=︒,90ACB ADF ∠=∠=︒, 45DAF AFD ∴∠=∠=︒,AD DF ∴=,AF =,90EDB ADF ∠=︒=∠,FDB EDA ∴∠=∠,且AD DF =,DE BD = ()ADE FDB SAS ∴∆≅∆AE BF ∴=,AB AF BF +=,AB AE ∴=.八、解答题26.如图,已知抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m . ①用含m 的代数式表示线段PD 的长.②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标.(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【解答】解:(1)抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C , ∴309330a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩, ∴抛物线解析式为243y x x =-+;(2)如图:①设2(,43)P m m m -+,将点(3,0)B 、(0,3)C 代入得直线BC 解析式为3BC y x =-+. 过点P 作y 轴的平行线交直线BC 于点D , (,3)D m m ∴-+,22(3)(43)3PD m m m m m ∴=-+--+=-+. 答:用含m 的代数式表示线段PD 的长为23m m -+. ②PBC CPD BPD S S S ∆∆∆=+2139222OB PD m m ==-+ 23327()228m =--+.∴当32m =时,S 有最大值. 当32m =时,23434m m -+=-. 3(2P ∴,3)4-. 答:PBC ∆的面积最大时点P 的坐标为3(2,3)4-. (3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形. 根据题意,点(2,1)E , 2EF CF ∴==,EC ∴=,根据菱形的四条边相等,ME EC ∴==(2,1M ∴-或(2,1+ 当2EM EF ==时,(2,3)M答:点M 的坐标为1(2,3)M ,2(2,1M -,3(2,1M +.。
2019-2020学年重庆市九年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.−6的绝对值等于()A. −6B. 6C. −16D. 162.太阳半径约为696000km,将696000用科学记数法表示为()A. 696×103B. 69.6×104C. 6.96×105D. 0.696×1063.下列运算正确的是()A. a+2a=2a2 B. (−2ab2)2=4a2b4 C. (a−3)2=a2−9D. a6÷a3=a24.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.5.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间6.若x=−13,y=4,则代数式3x+y−3的值为()A. −6B. 0C. 2D. 67.要使分式4x−3有意义,x应满足的条件是()A. x>3B. x=3C. x<3D. x≠38.若△ABC∽△DEF,相似比为3:2,则对应边的中线比为()A. 3:2B. 3:5C. 9:4D. 4:99.如图,边长为4的正方形ABCD外切于圆O,则阴影部分面积为()A. 2π−4B. 2π+4C. 15D. 1410.下列图形是轴对称图形的是()A. B.C. D. D11.如图,下列四个图形中的菱形个数分别为3、7、13……,按此规律下去,第9个图形中的菱形个数为()A. 73B. 81C. 91D. 10912.若数a使关于x的分式方程2x−1+a1−x=4的解为正数,且使关于y的不等式组{y+23−y2>12(y−a)≤0的解集为y<−2,则符合条件的所有整数a的和为()A. 10B. 12C. 14D. 16二、填空题(本大题共6小题,共24.0分)13.单项式5mn2的次数______.14.如图,△ABC中,D是BC上一点,AC=AD=DB,∠DAC=80°,则∠B=______度.15.如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=______.16.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.17.如果关于x的一元二次方程x2−3x−k=0有两个实根,那么k的取值范围是______.18.已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有____.三、解答题(本大题共8小题,共78.0分)19.(1)化简:(2+a)(2−a)+(a+1)2;(2)化简:a2−4a ÷(1−2a).20.如图,已知Rt△ABC中,∠ACB=90°,∠B=30°,D是AB的中点,AE//CD,AC//ED,求证:四边形ACDE 是菱形.21.某校1200名学生参加了一场“安全知识”问答竞赛活动,为了解笔试情况,随机抽查了部分学生的得分情况,整理并制作了如图所示的图表(部分未完成),请根据图表提供的信息,解答下列问题:(Ⅰ)本次调查的样本容量为______.(Ⅱ)在表中,m=______,n=______.(Ⅲ)补全频数颁分布直方图;(Ⅳ)如果比赛成绩80分以上(含80分)为优秀,本次竞赛中笔试成绩为优秀的大约有多少名学生?22.如图,已知反比例函数y=k的图象与一次函数y=x+bx的图象交于点A(1,4),点B(−4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.(1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1520箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了40箱,其它装满,求甲、乙两种货车各有多少辆?24.在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌△AFE;(2)AD=AB+CD.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s),当F(s)+F(t)=18时,求k的最大值.F(t)x2−2x上一点A作x轴的平行线,交抛物线于另一点B,交26.如图,过抛物线y=14y轴于点C,已知点A的横坐标为−2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.答案和解析1.【答案】B【解析】解:|−6|=6,故选:B.根据一个负数的绝对值是它的相反数进行解答即可.本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】C【解析】【分析】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为:6.96×105.故选C.3.【答案】B【解析】【分析】本题考查了合并同类项、积的乘方、完全平方公式及同底数幂的除法,熟记法则并根据法则计算是解题关键.根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等于平方和减积的二倍,可得答案.【解答】解:A、a+2a=3a,故A错误;B、(−2ab2)2=4a2b4,故B正确;C、(a−3)2=a2−6a+9,故C错误;D、a6÷a3=a3,故D错误;故选:B.4.【答案】C【解析】解:根据图形可得主视图为:故选:C.根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.5.【答案】B【解析】解:∵3<√10<4,∴4<√10+1<5,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<√10<4是解题关键,又利用了不等式的性质.6.【答案】B【解析】解:∵x=−1,y=4,3)+4−3=0.∴代数式3x+y−3=3×(−13故选:B.直接将x,y的值代入求出答案.此题主要考查了代数式求值,正确计算是解题关键.7.【答案】D有意义,【解析】解:当x−3≠0时,分式4x−3有意义,即当x≠3时,分式4x−3故选:D.根据分式有意义的条件:分母≠0,列式解出即可.本题考查的知识点为:分式有意义,分母不为0.8.【答案】A【解析】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为3:2,∴△ABC与△DEF对应边上中线的比是3:2,故选:A.相似三角形对应边上中线的比等于相似比,根据以上性质得出即可.本题考查了相似三角形的性质的应用,能理解相似三角形的性质是解此题的关键,注意:相似三角形对应边上中线的比等于相似比.9.【答案】B【解析】解:如图,连接HO,延长HO交BC于点P,∵正方形ABCD外切于⊙O,∴∠A=∠B=∠AHP=90°,∴四边形AHPB为矩形,∴∠OPB=90°,又∠OFB=90°,∴点P与点F重合则HF为⊙O的直径,同理EG为⊙O的直径,由∠D=∠OGD=∠OHD=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFBE、四边形OEAH均为正方形,∴DH=DG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC2+CF2=√22+22=2√2,S⊙O+S△HGF则阴影部分面积=12=12⋅π⋅22+12×2√2×2√2=2π+4,故选:B.连接HO,延长HO交CB于点P,证四边形AHPB为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形DGOH、四边形OGCF、四边形OFBE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.10.【答案】C【解析】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意;故选:C.利用轴对称图形定义进行分析即可.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.11.【答案】C【解析】解:观察图形的变化可知:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,所以第n个图形中菱形的个数为:n2+n+1;所以第9个图形中菱形的个数92+9+1=91.故选:C.根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.12.【答案】A【解析】【分析】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<−2,得出−2≤a<6且a≠2是解题的关键.根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<−2,即可得出a≥−2,进而得出−2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程2x−1+a1−x=4的解为x=6−a4且x≠1,∵关于x的分式方程2x−1+a1−x=4的解为正数,∴6−a4>0且6−a4≠1,∴a<6且a≠2.{y+23−y2>1①2(y−a)≤0②,解不等式①得:y<−2;解不等式②得:y≤a.∵关于y的不等式组{y+23−y2>12(y−a)≤0的解集为y<−2,∴a≥−2.∴−2≤a<6且a≠2.∵a为整数,∴a=−2、−1、0、1、3、4、5,(−2)+(−1)+0+1+3+4+5=10.故选:A.13.【答案】3【解析】解:单项式5mn2的次数是:1+2=3.故答案是:3.根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.14.【答案】25【解析】解:如图,∵AC=AD,∠DAC=80°,∴∠ADC=∠C=50°,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=25°.故答案为:25.根据等腰三角形的性质得到∠ADC=50°,再根据三角形外角的性质和等腰三角形的性质可求∠B的度数.本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.【答案】34【解析】解:∵直角△ABC中,CD是斜边AB上的中线,∴AB=2CD=2×2=4,则cosA=ACAB =34.故答案是:34.首先根据直角三角形斜边上的中线等于斜边的一半,即可求得AB的长,然后利用余弦函数的定义求解.本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,以及三角函数的定义,求得AB的长是关键.16.【答案】9【解析】解:根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为:9.本题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数((或最中间两个数的平均数).先根据平均数的定义求出x的值,再根据中位数的定义进行解答即可.17.【答案】k≥−94【解析】解:由题意知△=(−3)2−4×1×(−k)≥0,,解得:k≥−94故答案为:k≥−9,4根据方程有实数根结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.18.【答案】①④【解析】【分析】本题考查了二次函数图象与系数的关系,二次函数的性质,二次函数的最值.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】=1>0,解:①由图象可知:a<0,c>0,∵−b2a∴b=−2a,b>0,∴abc<0,故此选项正确;②当x=−1时,y=a−b+c=0,故a+c=b,故此选项错误;③当x=3时,y=9a+3b+c=0,∴9a−6a+c=0,得3a+c=0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=m≠1时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b)(其中m≠1),故此选项正确.故①④正确.故答案为:①④.19.【答案】解:(1)原式=4−a2+a2+2a+1=2a+5;(2)原式=(a+2)(a−2)a ÷a−2a=(a+2)(a−2)a⋅aa−2=a+2.【解析】(1)先利用平方差公式和完全平方公式计算,再合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则、平方差公式、完全平方公式.20.【答案】证明:∵AE//CD,AC//ED,∴四边形ACDE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∴△ACD为等边三角形,∴AC=CD,∴平行四边形ACDE是菱形.【解析】根据直角三角形斜边上的中线的性质和等边三角形的判定定理推知△ACD为等边三角形,则平行四边形ACDE是菱形.本题考查了菱形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质,证明四边形ACDE是平行四边形是解决问题的关键.21.【答案】解:(Ⅰ)300;(Ⅱ)120,0.3;(Ⅲ)补全直方图如下:(Ⅳ)本次竞赛中笔试成绩为优秀的学生大约有1200×(0.4+0.2)=720人.【解析】解:(Ⅰ)本次调查的样本容量为30÷0.1=300,故答案为:300;(Ⅱ)m=300×0.4=120、n=90÷300=0.3,故答案为:120、0.3;(Ⅲ)见答案;(Ⅳ)见答案.【分析】(Ⅰ)用第一组的频数除以频率即可求出样本容量;(Ⅱ)用样本容量乘以第三组的频率,用第二组的频数除以样本容量即可求出答案;(Ⅲ)根据m的值即可把直方图补充完整;(Ⅳ)用总人数乘以后两组数的频率之和即可得出答案.此题考查了频率分布直方图、频率分布表,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】解:(1)把A点(1,4)分别代入反比例函数y=k,一次函数y=x+b,x得k=1×4,1+b=4,解得k=4,b=3,∵点B(−4,n)也在反比例函数y=4的图象上,x∴n=4=−1;−4(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(−4,−1),A(1,4),∴根据图象可知:当x>1或−4<x<0时,一次函数值大于反比例函数值.【解析】(1)把点A坐标分别代入反比例函数y=kx,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.23.【答案】解:(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,依题意,得:1000x+20=800x,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=100.答:甲种货车每辆车可装100箱生姜,乙种货车每辆车可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16−m)辆,依题意,得:100m+80(16−m−1)+40=1520,解得:m=14,∴16−m=2.答:甲种货车有14辆,乙种货车有2辆.【解析】(1)设乙种货车每辆车可装x箱生姜,则甲种货车每辆车可装(x+20)箱生姜,根据甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲种货车有m辆,则乙种货车有(16−m)辆,根据货物的总箱数=每辆车可装的箱数×车的辆数,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.【答案】(1)证明:∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,{AB=AF∠BAE=∠FAE AE=AE,∴△ABE≌△AFE(SAS);(2)证明:由(1)知,△ABE≌△AFE,∴EB=EF,∠AEB=∠AEF,∵∠BEC=180°,∠AED=90°,∴∠AEB+∠DEC=90°,∠AEF+∠DEF=90°,∴∠DEC=∠DEF,∵点E为BC的中点,∴EB=EC,∴EF=EC,在△ECD和△EFD中,{EC=EF∠DEC=∠DEF ED=ED,∴△ECD≌△EFD(SAS),∴DC=DF,∵AD=AF+DF,AB=AF,∴AD=AB+CD.【解析】(1)根据AE平分∠BAD,可以得到∠BAE=∠FAE.然后根据SAS即可得到△ABE≌AFE;(2)根据(1)中的结论,可以得到EB=EF,∠AEB=∠AEF,再根据∠AED=90°,可以得到∠DEC=∠DEF,然后根据点E为BC的中点,即可得到EC=EF,再根据SAS即可得到△ECD≌△EFD,从而可以得到DF=DC,然后即可证明结论成立.本题考查全等三角形的判定与性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.【答案】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5,F(t)=(510+y +100y +51+105+10y)÷111=y +6.∵F(t)+F(s)=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴{x =1y =6或{x =2y =5或{x =3y =4或{x =4y =3或{x =5y =2或{x =6y =1. ∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5.∴{x =1y =6或{x =4y =3或{x =5y =2, ∴{F (s )=6F (t )=12或{F (s )=9F (t )=9或{F (s )=10F (t )=8, ∴k =F(s)F(t)=12或k =F(s)F(t)=1或k =F(s)F(t)=54,∴k 的最大值为54.【解析】本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(243)、F(617)的值;(2)根据s =100x +32、t =150+y 结合F(s)+F(t)=18,找出关于x 、y 的二元一次方程.(1)根据F(n)的定义式,分别将n =243和n =617代入F(n)中,即可求出结论;(2)由s =100x +32、t =150+y 结合F(s)+F(t)=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k =F(s)F(t)中,找出最大值即可. 26.【答案】解:(1)由题意A(−2,5),对称轴x =−−22×14=4,∵A 、B 关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB−OD=√52+102−5=5√5−5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE=√OD2−OE2=√52−42=3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4−x)2+22,∴x=52,∴P(52,5),∴直线PD的解析式为y=−43x+253.【解析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB−OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE=√OD2−OE2=√52−42=3,求出P、D的坐标即可解决问题;本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.第21页,共21页。
2019-2020学年九年级(上)期中数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠23.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.94.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.66.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.328.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题满分24分,共有8道小题,每小题3分)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为m.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为cm3.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为.三.解答题(共72分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为.(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为.(直接写出答案)25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.参考答案与试题解析一.选择题(共8小题)1.方程x2=x的解是()A.x=1 B.x=0 C.x1=﹣1,x2=0 D.x1=1,x2=0 【分析】利用提公因式法解方程即可.【解答】解:x2=x,移项得x2﹣x=0,提公因式得x(x﹣1)=0,解得x1=1,x2=0.故选:D.2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.3.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.4.在数字1,2,3,4中任选两个组成一个两位数,这个两位数能被3整除的概率为()A.B.C.D.【分析】先列举出所有满足条件的两位数,然后找出能被3整除的两位数,即可得到能被3整除的概率.【解答】解:可以得到的所有两位数为:12,13,14,23,24,34,43,42,41,32,31,21,共有12个.其中能被3整除的有4个,所以两位数能被3整除的概率是=,故选:A.5.如图,在△ABC中,DE∥BC,BD=3AD,BC=12,则DE的长是()A.3 B.4 C.5 D.6【分析】由DE∥BC,可以判断△ADE∽△ABC,根据AD:BD=1:3即可得出结论.【解答】解:∵BD=3AD,∴AD:BD=1:3,∴AD:AB=1:4,∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=3,故选:A.6.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.32【分析】由菱形的性质可知AC⊥BD,2OD•AO=28①,进而可利用勾股定理得到OD2+OA2=36②,结合①②两式化简即可得到OD+OA的值.【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28 ①∵菱形的边长为6,∴OD2+OA2=36 ②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.如图,点O为正方形ABCD的中心,AD=1,BE平分∠DBC交DC于点E,延长BC到点F,使BD=BF,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HE•HB.正确结论的个数为()A.1 B.2 C.3 D.4【分析】①只要证明OH是△DBF的中位线即可得出结论;②③根据OH是△BFD的中位线,得出OH=BF=BD可得出结论;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论;⑤证明△HEC∽△HCB,则HC:HB=HE:HC,即HC2=HE•HB,由HC=HF,即可得到⑤正确.【解答】解:①∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF(SAS),∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF(ASA),∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;②③∵点O为正方形ABCD的中心,AD=1,BD=BF,∴BD=BF=.由三角形中位线定理知,OG=BC=,GH=CF=(﹣1),∴OG:GH=1:(﹣1),故②错误,③正确;④∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF=90°,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,∴∠CHF=2∠EBC.故④正确;⑤∵∠ECH=∠CBH,∠CHE=CHB,∴△HEC∽△HCB,∴HC:HB=HE:HC,即HC2=HE•HB,而HC=HF,∴HF2=HC•HB,故⑤正确.故选:D.二.填空题(共8小题)9.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=2019 .【分析】直接把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0中即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2019=0得a+b﹣2019,所以a+b=2019.故答案为2019.10.若是一个直角三角形两条直角边的长a,b,满足(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.【分析】根据勾股定理c2=a2+b2代入方程求解即可.【解答】解:∵a,b是一个直角三角形两条直角边的长设斜边为c,∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)﹣12=0即(c2﹣3)(c2+4)=0,∵c2+4≠0,∴c2﹣3=0,解得c=或c=﹣(舍去).则直角三角形的斜边长为.故答案为:11.若点C是线段AB的黄金分割点(AC>BC),AB=8cm,则AC=4(﹣1)cm.【分析】根据黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.列出方程即可求解.【解答】解:设AC的长为xcm,根据黄金分割定义可知:=即AC2=AB•BC,x2=8(8﹣x)x2+8x﹣64=0,解得x1=4(﹣1),x2=﹣4(+1)(不符合题意,舍去).所以AC的长为4(﹣1)cm.故答案为4(﹣1)cm.12.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为估计口袋中红球的个数,采用了如下的方法:先把口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为40 .【分析】由条件共摸了1000次,其中200次摸到白球,则有800次摸到红球;所以摸到白球与摸到红球的次数之比可求出,由此可估计口袋中白球和红球个数之比,进而可计算出红球数.【解答】解:∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球,∴白球与红球的数量之比为1:4,∵白球有10个,∴红球有4×10=40(个).故答案为:40.13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.14.如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为 4.6 m.【分析】作EH⊥CD于H,交AB于G,如图,易得EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,则AG=0.9,再证明△EAG∽△EHC,利用相似比计算出CH=3,然后利用CD =CH+DH进行计算.【解答】解:作EH⊥CD于H,交AB于G,如图,则EG=BF=3m,GH=BD=7m,GB=HD=EF=1.6m,所以AG=AB﹣GB=2.5﹣1.6=0.9(m),∵AG∥CH,∴△EAG∽△EHC,∴=,即=,解得:CH=3,∴CD=CH+DH=4.6(m).故答案为:4.6.15.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为1500 cm3.【分析】设剪掉的小正方形的边长为xcm,根据题意列出方程,求出方程的解得到x的值,求出所求即可.【解答】解:设剪掉的小正方形的边长为xcm,根据题意,得:2x2+20x×2=30×40﹣950,x2+20x﹣125=0,解这个方程得:x1=5,x2=﹣25(不合题意,应舍去),当x=5时,长方体盒子的体积为:x(30﹣2x)(20﹣x)=5×(30﹣2×5)×(20﹣5)=1500(cm2),答:此时长方体盒子的体积1500cm3故答案为:1500.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n O∁n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n O∁n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三.解答题(共9小题)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a和∠α.求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于∠α.【分析】①作∠MAB=∠α.②在∠MAN的两边截取AD=AB=a,③分别以D、B为圆心a为半径画弧,两弧交于点C.菱形ABCD即为所求.【解答】解:如图菱形ABCD即为所求.18.用指定方法解方程:(1)2x2+4x﹣3=0(配方法解)(2)5x2﹣8x=﹣2(公式法解)【分析】(1)根据配方法即可求出答案;(2)根据公式法即可求出答案;【解答】解:(1)∵2x2+4x﹣3=0,∴x2+2x=,∴(x+1)2=,∴x+1=,∴x=﹣1±(2)∵5x2﹣8x=﹣2,∴a=5,b=﹣8,c=2,∴△=64﹣4×5×2=24,∴x==;19.第一盒中有2个白球、1个红球,第二盒中有1个白球、2个红球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个红球的概率.请通过列表格或画树状图,说明理由.【分析】列表得出所有等可能的情况数,找出取出的2个球中有1个白球、1个红球的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有9种,其中取出的2个球中有1个白球、1个红球的情况有5种,所以P(取出的2个球中有1个白球、1个红球)=.20.如图梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.【分析】(1)先证明四边形BCDE为平行四边形,从而得到ED∥BC,于是得到∠EDB=∠FBM,又因为∠DME=∠BMF,从而可证明△EDM∽△FBM;(2)由F为BC的中点,得到BC=2FB,又由(1)得到的四边形BCDE为平行四边形,可得对边BC=ED,等量代换可得DE=2FB,由(1)得到的三角形EDM与三角形FMB相似,可得相似比为2:1,即得到DM:MB=2:1,设出DM=2k与MB=k,根据BD的长列出关于k的方程,求出方程的解即可得到k的值,从而得到BM的长.【解答】(1)证明:∵AB=2CD,点E是AB的中点,∴DC=EB.又∵AB∥CD,∴四边形BCDE为平行四边形.∴ED∥BC.∴∠EDB=∠FBM.又∵∠DME=∠BMF,∴△EDM∽△FBM.(2)解:由F为BC的中点,得到BC=2FB,又四边形DCBE为平行四边形,得到DE=BC,则DE=2FB,即FB:DE=1:2,∴△FMB与△EMD的相似比为1:2,即DM:MB=2:1,又BD=9,设DM=2k,MB=k,所以BD=BM+MD=k+2k=9,解得k=3,则BM=3.21.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.【解答】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.22.如图,四边形ABCD是正方形,点E是边AB上一点,延长AD至F使DF=BE,连接CF.(1)求证:∠BCE=∠DCF;(2)过点E作EG∥CF,过点F作FG∥CE,问四边形CEGF是什么特殊的四边形,并证明.【分析】(1)由正方形的性质得到∠B=∠ADC=∠BCD=90°,BC=CD,根据全等三角形的判定和性质即可得到结论;(2)根据已知条件得到四边形CEGF是平行四边形,根据全等三角形的性质得到CE=CF,证得四边形CEGF是菱形,求得∠ECF=∠BCD=90°,于是得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠B=∠ADC=∠BCD=90°,BC=CD,∴∠B=∠CDF=90°,在△BCE与△DCF中,∴△BCE≌△DCF(SAS),∴∠BCE=∠DCF;(2)解:四边形CEGF是正方形,理由:∵EG∥CF,FG∥CE,∴四边形CEGF是平行四边形,∵△BCE≌△DCF,∴CE=CF,∴四边形CEGF是菱形,∵∠BCE=∠DCF,∴∠ECF=∠BCD=90°,∴四边形CEGF是正方形.23.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出50kg,销售单价每涨2元,月销售量就减少20kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克56元时,计算销售量和月销售利润;(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?【分析】(1)根据“销售单价每涨2元,月销售量就减少20千克”,可知:月销售量=500﹣(销售单价﹣50)×.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)销售成本不超过10000元,即进货不超过10000÷40=250kg.根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【解答】解:(1)当销售单价定为每千克56时,月销售量为:500﹣(56﹣50)×10=44(千克),所以月销售利润为:(56﹣40)×4407040;(2)由于水产品不超过10000÷40=250kg,定价为x元,则(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.当x1=80时,进货500﹣10(80﹣50)=200kg<250kg,符合题意,当x2=60时,进货500﹣10(60﹣50)=400kg>250kg,舍去.答:商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为80元.24.【阅读资料】同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.(1)求4x2+16x+19的最小值.解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2(2)求﹣m2﹣m+2的最大值解:﹣m2﹣m+2=﹣(m2+m)+2=﹣因大于等于0,所以﹣小于等于0,所以﹣+小于等于,即﹣m2﹣m+2的最大值是,此时,m=﹣.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,AB=8,BC=6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.解:在AC上任取点E,作ED⊥BC,EF⊥AB,得到矩形BDEF.设EF=x易证△AEF∽△ACB,则,,,…请你写出剩余部分【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为720 .(直接写出答案)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,该矩形的面积为1458cm2.(直接写出答案)【分析】【探索发现】利用配方法解决问题即可.【拓展应用】利用相似三角形构建二次三项式,再利用配方法解决问题即可.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,转化为图②中模型解决问题即可.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,转化为图②中模型解决问题即可.【解答】解:【探索发现】=﹣(x﹣3)2+12,∵﹣(x﹣3)2≤0,∴=﹣(x﹣3)2+12=﹣(x﹣3)2+12≤12,∴矩形BDEF的面积的最大值为12.【拓展应用】设PN=b,∵PN∥BC,∴△APN∽△ABC,∴=,∵BC=a,BC边上的高AD=h,∴=,PQ=,∴S=b•PQ==﹣b2+bh=﹣(x﹣)2+≥∴S的最大值为:;则矩形PQMN面积的最大值为;故答案为:.【灵活应用】如图③,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,故答案为720.【实际应用】如图④,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵∠B=∠C=60°,∴EB=EC,∵EH⊥BC,∴BH=HC,∵=tan60°=设CH=BH=x,Z则EH=x,∵BC=BH+CH=108=2x,x=54,∴BH=CH=54,EH=54,∴EBEC=2BH=108,∵AB=70,∴AE=38,∴BE的中点Q在线段AB上,∵CD=76,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=×108×54=1458cm2,故答案为1458cm2.25.如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.【分析】(1)利用平行线的性质构建方程即可解决问题.(2)如图1中,作OE⊥AB于E,OF⊥BC于F.利用平行线的性质构建方程求出QE,QF 即可解决问题.(3)根据S四边形BPQC:S矩形ABCD=9:20,构建方程解决问题即可.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,由此构建方程即可解决问题.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=BC=3,∴BD===5,由题意BP=t,DQ=t,∵PQ∥AD,∴=,∴=,∴t=,∴满足条件的t的值为.(2)作OE⊥AB于E,OF⊥BC于F.∵QE∥AD,∴=,∴=,∴QE=(5﹣t),∵QF∥CD,∴=,∴=,∴QF=(5﹣t),∴S=S△PBQ+S△BCQ=•PB•QE+•BC•QF=•t•(5﹣t)+×3×(5﹣t)=﹣t2+t+6.(3)由题意:(﹣t2+t+6):12=9:20,整理得:t2﹣t﹣2=0,解得t=2或﹣1(舍弃),∴满足条件的t的值为2.(4)如图1中,作OE⊥AB于E,OF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则=,∴=,解得t=,∴满足条件的t的值为.。
第 1 页 共 15 页2019-2020学年九年级数学期中试卷2019.11一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( )A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( )AD F CBOE(第7题)CP FEQ(第10题)ACD(第8题)。
2019-2020年九年级数学期中测试卷及答案(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
1、若将函数y=2x 2的图象向右平移1个单位,再向上平移5个单位,可得到的抛物线解析式是( )(A)y=2(x-1)2-5 (B)y=2(x-1)2+5 (C)y=2(x+1)2-5 (D)y=2(x+1)2+52、已知圆心角∠BOC=100°,则圆周角∠BAC 的大小是( ) (A)50° (B)100° (C)130° (D)200°(第2题 3、边长为3cm 、4cm 、5cm 的三角形的外接圆半径等于( )cm(A )1.5 (B )2 (C )2.5 (D )2.4 4、下列各点中,在函数y=x2-上的是( )(A )(1,2) (B ) (0,-2) (C )(2,2-) (D )( -4, -21 ) 5、已知扇形OBC 、OAD 的半径之间的关系是OB =21OA ,则BC ︵的长是AD ︵长的( ) (A )21倍 (B )2倍 (C )41倍 (D )4倍 第5题6、下列命题是真命题的有( )个。
①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆; (A) 1个 (B )2个 (C )0个 (D )3个 7、已知函数2y ax ax =+与函数(0)ay a x=<,则它们在同一坐标系中的大致图象是( )第7题A BC DOC8、人民广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数关系式是( )A.2132y x ⎛⎫=--+ ⎪⎝⎭B.21312y x ⎛⎫=-+ ⎪⎝⎭C.21832y x ⎛⎫=--+ ⎪⎝⎭D.21832y x ⎛⎫=-++ ⎪⎝⎭9、如图,P (x,y )是以坐标原点为圆心、5为半径的圆周上的点,若x,y 都是整数,则这样的点P 共有( )个(A ) 8 (B ) 10 (C ) 12 (D )16第9题10、如图,在Rt △ABC 中∠ACB =90º,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) (A )点P 在⊙O 内 (B )点P 在⊙O 上 (C )点P 在⊙O 外 (D )无法确定第10题二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、已知电灯电路两端的电压U 是220伏,设电灯内钨丝的电阻为R 欧,通过的电流强度为I 安,则I 关于R 的函数解析式为 ,自变量R 的取值范围是 。
12、函数y=-x 2+2x+3化成y=a(x+m)2+k 的形式是 。
13、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题: “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”。
根据题意可得CD 的长为 。
14、用半径为12厘米,圆心角为150度的扇形做一个圆锥模型的侧面,则此圆锥的底面半径是 。
15、设关于x 一次函数y=a 1x+b 1与y=a 2x+b 2,称函数y=m(a 1x+b 1)+n(a 2x+b 2)(其中m+n=1)为这两个函数的生成函数。
则当x=1时,函数y=x+2与y=3x 的生成函数的值为 。
第8题16、△ABC 的三个顶点在半径为2的圆上,BC=23,则∠A 的度数是 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)已知反比例函数xky =的图象与一次函数m x y +=3的图象相交于点(1,5)。
(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
18、(本小题满分6分)已知∠ABC ,用直尺和圆规作⊙O ,使其经过A 、B 两点,且点O 到∠BAC两边的距离相等。
(写出作法,并保留作图痕迹)第18题19、(本小题满分6分)已知二次函数经过(0,6),(-1,-8),(1,0)三点,求此二次函数的解析式并求当x 取何值时,y 随着x 的增大而增大?20、(本小题满分8分)NBA 的一场篮球比赛中,一队员正在投篮,设篮球的运动的路线为抛物线(如图),其解析式为y=-51x 2+x+49。
(1)这次投篮中球在空中飞行的水平距离是多少米时高度达到最大,最大高度是多少米?(2)若投篮时出手地点与篮圈中心的水平距离为4米,篮圈距地面3.05米,问此球能否准确投中?(不考虑其它因素)第20题21、(本小题满分6分)已知:如图,等边△ABC 的三个顶点在圆上,D 是弧BC 上任意一点,在AD 上截取AE=BD ,连结CE 。
求证:(1)△ACE ≌△BCD ;(2)AD=BD+CD第21题22、(本小题满分8分)用长为8米的铝合金制成如图窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?第22题23、(本小题满分12分)如图,在平面直角坐标系中,以点M (0,2)为圆心,以4为半径作⊙M 交x 轴于A 、B 两点,交y 轴与C 、D 两点,连结AM 并延长交⊙M 于点P ,连结PC 交x 轴于E 。
(1)求直线CP 的解析式;(2)求弓形ACB 和△ACP 的面积。
第23题24、(本小题满分12分)如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交 抛物线与E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是 平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由.第24题2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、、;12、; 13、;14、; 15、; 16、。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)18、(本小题满分6分) B.A C19、(本小题满分6分)20、(本小题满分6分)21、(本小题满分8分)22、(本小题满分8分)23、(本小题满分12分)24、(本小题满分12分)2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、RI 220=、 R ﹥0 ;12、 y=-(x-1)2+4 ; 13、 26 ;14、 5cm ; 15、 3 ; 16、 60°或120° 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(2分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (2分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(2分) 18、(本小题满分6分)解:作法:(1)作线段AB 的中垂线l 1;(2)作∠ABC 的角平分线l 2,交于点O ; (3)以O 为圆心,OA 为半径作⊙O 。
∴如图 ⊙O 是所求的图形。
(图形基本准确得3分,作法2分,结论1分) 19、(本小题满分6分)解、设二次函数的解析式为y=ax 2+bx+c 把(0,6)(-1,-8)(1,0)分别代人得 C=6姓名 班级 试场号 座位号a-b+c=-8 (2分) a+b+c=0解得 a=-10b=4 (2分) c=6∴所求的解析式为y= -10x 2+4x+6 (1分) 当x ≦51时,y 随着x 的增大而增大. (1分) 20、(本小题满分6分) 解:(1)配方得y= -51(x-51)2+27 ∴这次投篮,球在空中飞行的水平距离为2.5米时,达到最大高度为3.5米。
(4分)(2)把x=4代入解析式得y=3.05 (1分)答:此球能准确投中。
(1分) 21、(本小题满分8分)证明:(1)∵⊿ABC 是等边三角形∴AC=BC∵∠DBC=∠DAC ,AE=BD∴⊿ACE ≌⊿BCD (3分) (2)∵⊿ACE ≌⊿BCD∴ EC=CD ,AE=BD ,∠DCB=∠ACE (1分) ∵∠ACB=60° ∴∠ECD=60°∴⊿DCE 是等边三角形 (2分) ∴DC=DE∴AD=AE+DE=BD+CD (2分)22、(本小题满分8分)解:设窗框的宽为x 米,面积为y 平方米 则由题意得窗框的高为238x- 米 (1分) ∴y=x ×238x -=-23x 2+4x (2分) =-23 (x-34)2+38(2分) ∵x=34在x 的允许值范围内∴当x=34时,y 最大值为38 (2分)答:当窗框的宽为34米,高2米时,窗户的透光面积最大,最大面积是38平方米。
(1分)23、(本小题满分12分)解:(1)连结BP先证OM 是⊿APB 的中位线所以PB=2OM=4 (2分) 由勾股定理求得AO=23 (2分)∴P (23,4)而C (0,-2)用代定系数法求得直线PC 的解析式为y=23 x-2(2分)(2)连结BM先求∠AMB=120°再求扇形MAB 的面积=316∏ (1分) ⊿ABM 的面积=43 (1分) ∴弓形ACB 的面积=316∏-43 (1分) 由AP 是直径得⊿ACP 是直角三角形 AC=2,PC=43 (2分)∴⊿ACP 的面积=83 (1分)24、(本小题满分12分)解:(1)令y=0,解得11x =-或23x =(1分) ∴A (-1,0)B (3,0);(1分)将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x-1 (1分)(2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x-1),(1分) E (2(,23)x x x --(1分)∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++(1分) ∴当12x =时,PE 的最大值=94(1分)(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F -(4分)解:(1)令y=0,解得11x =-或23x =(1分) ∴A (-1,0)B (3,0);(1分)将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x-1 (1分)(2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x-1),(1分) E (2(,23)x x x --(1分)∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++(1分) ∴当12x =时,PE 的最大值=94(1分) (3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F -17、解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(3分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (6分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(8分)1723、解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000. ……………………3′⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ………………………6′⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. ………………………8′根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元. …………………10′2、如图,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O 于E ,则图中与12∠BOC 相等的角共有( )A 、2个B 、3个C 、4个D 、5个 3、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”。