同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(1-2章)【圣才出品】
- 格式:pdf
- 大小:1.98 MB
- 文档页数:159
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。
高等数学(同济大学第七版)第一章函数与极限课后答案高等数学(同济大学第七版)第一章函数与极限课后答案1. 函数的概念1.1 什么是函数在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数可以用各种形式表示,例如数学公式、图表或者一种操作规则。
1.2 函数的分类根据函数的性质和表达方式,函数可以分为代数函数、三角函数、指数函数、对数函数等等。
每种类型的函数都有其独特的性质和特点。
2. 极限的概念与性质2.1 极限的定义在数学中,当自变量趋近于某个特定值时,函数的值可能会趋近于一个常数或无限大。
这种趋近的过程被称为极限。
极限可以用数学符号进行表示。
2.2 极限的性质极限具有一些重要的性质,例如唯一性、局部性以及四则运算法则。
这些性质对于研究函数的性质和行为至关重要。
3. 函数的连续性与间断点3.1 函数的连续性连续性是函数的重要性质之一,它表示函数在某个区间内没有突变或间断。
一个函数可以是连续的,也可以是不连续的。
3.2 间断点的分类根据函数在某个点处的性质,间断点可以分为可去间断点、跳跃间断点和无穷间断点。
每种类型的间断点都有其特定的定义和判断条件。
4. 导数与微分4.1 导数的定义在数学中,导数表示函数在某一点处的变化率或斜率。
导数可以通过极限的概念来定义,并且具有一些重要的性质。
4.2 微分的概念与计算微分是导数的一个重要应用,它可以用于计算函数在某一点处的近似值。
微分也可以用于解决最优化问题和求解方程的近似解。
5. 函数的凸性与极值5.1 函数的凸性凸性是函数曲线的重要性质之一,它表示函数曲线在某个区间内的凸凹形态。
凸性可以通过函数的二阶导数来判断。
5.2 极值的概念与求解极值是函数在某个区间内取得的最大值或最小值。
求解极值可以通过函数的导数和二阶导数来进行,常用的方法包括 Fermat 定理和 Euler 判别法。
6. 函数的图形与曲线的绘制6.1 函数的图形与性质函数的图形是函数曲线在平面直角坐标系上的表示。