伍胜健《数学分析》笔记和考研真题详解(广义积分)【圣才出品】
- 格式:pdf
- 大小:1.60 MB
- 文档页数:12
伍胜健《数学分析》配套模拟试题及详解1.(15分)把x作为函数,u=xz、v=yz作为自变量,变换公式解:由于du=xdz+zdx,dv=ydz+zdy,所以于是故有代入原式,即得2.(15分)应用Stokes公式,计算曲线积分,式中C为圆周若从Ox轴正向看去,该圆周是沿逆时针方向进行的.解:平而x+y+z=0的法线的余弦为,于是3.(15分)证明:在x=0处三阶导数不存在.证明:当x≠0时,易知有从而根据导数的定义再由左、右导数的定义可得可见所以在x=0处的三阶导数不存在.4.(15分)设f(x)在[a,b]上连续,在(a,b)内有二阶导数,试证明:存在c∈(a,b)使证明:由于做辅助函数则由Lagrange中值定理知,存在使得令即有5.(15分)函数f(x)在闭区间[0,1]上有连续的一阶导数,证明:证明:若结论显然成立.若则f(x)在[0,1]上变号,由f(x)的连续性知,存在使于是取积分可得原不等式得证.6.(15分)计算,其中图一解:如图一:把D分成D1,D2两部分,其中7.(20分)设L为球面和平面x+y+z=0的交线,若从x轴正向看去,L是沿逆时针方向的,试计算下列第二型曲线积分:解:把Y=-x-z代人,得令x=u+v,z=-v,可得所以可取由此知道L的参量方程为(1)因为并由对称性得所以(2)因为并由对称性得所以8.(20分)求函数在条件约束下的极值.解:作拉格朗日函数并令由前三式消去μ,得再消去λ,又得于是求得x=y或x=z或y=z.当x=y时,代入条件函数后又解得由此得出同样,当x=z或y=z时,也可得上述结果.由于函数,在有界闭集上必有最大值和最小值,所以有9.(20分)设悬链方程为,它在[0,t]上的一段弧长和曲边梯形的面积分别记为:s(t)、A(t).该曲边梯形绕x轴一周所得旋转体体积、侧面积和x=t处的截面面积分别记为V(t)、S(t)、F(t).证明:(1)s(t)=A(t),t>0;(2)S(t)=2V (t);(3)证明:(1)由弧长公式得由定积分的几何意义可得(2)旋转体体积为侧面积为。
第9章数项级数1.试证明下列命题:(1)设a>0,b>a+1,则(2)设a>0,b>a+2,则证明:(1)记,则令从n=0到n=N的各项相加,故得因此.(2)由(1)可知以a+1代a,则(*)式又成为将两式相减,可得.1.求下列级数的和:解:(1)由,有(2)当n=3m时,时,,而且级数都是收敛的,根据顺项可括性,有(3)由于[x]是数x的整数部分,有1.求的和,其中解:记,则考察函数.若,则有f(S)=S,且为此方程的惟一解.由于在上是递减函数,故知因为f(x)在(0,1)上递减,所以.从而得即有下界,且此外又有这说明.1.判别下列级数的敛散性:解:(1)当p≤0时,,该级数显然发散.当p>0时,是递减正数列,从而考察级数.易知它是等比级数,且可得公比时,收敛;时,发散.因此,I在p≤1时发散,p>1时收敛.(2)易知通项是递减正数列.根据凝聚判别法,有由此知,I在p>1时收敛,p≤1时发散.(3)易知通项是递减正数列,用凝聚判别法,考察由此即知I发散.1.试证明下列命题:(1)设级数收敛,则(2)设.若收敛,则(3)设.若收敛,则(4)设,则证明:(1)不妨假定,且记,以及,则用归纳法可推等式(*)当n=1时,显然,故式(*)为真.假定n=m时式(*)为真,则对m+1,有从而式(*)对m+1成立.令m→∞,即可得证.(2)应用Cauchy-Schwarz不等式,可知注意到,即可得证.(2)依题设可知,对任给ε>0,存在,使得“.取,并对和式作分解又放大,可知([r]表示数r的整数部分)从而可得.由此即可得证.(4)注意到等式(,C是Euler常数)故只需指出.实际上,对任给ε>0,依题设知,存在,使得.由此又知从而导致.最后有.证毕.1.试证明下列不等式:,其中是递增正数列,(3)(Hardy-Landau不等式)设同(2),则(4)(Carleman不等式)设是正项收敛级数,则证明:(1)改写通项为再应用在上的微分中值公式,有从而知(2)由(不等式:)可知。
伍胜健《数学分析》笔记和考研真题详解第1章函数1.1复习笔记一、实数1.数集(1)集合的概念集合是将具有某种特性的、确定的、互不相同的对象的全体作为一个整体,这些对象称为集合中的元素,若a是集合A中的元素,则记为a∈A,如果a不是集合A中的元素,则记为.(2)集合的表示方法①列举法:是将集合中的元素全部列出.②描述法:是将集合的特性精确给出.(3)子集的相关概念①子集的定义:若集合A中的每一个元素X都属于集合B,则称B包含A,记为,此时也称A是B的子集.②集合相等:如果和同时成立,则认为A,B是同一个集合,此时也记为A=B.③真子集的定义:若且A≠B,则称A是B的真子集,记为A B⊂.≠注:空集即中不含有任何元素,因此是任何集合的子集.(4)集合的运算给定集合A,B,集合有以下常用运算:①称为A与B的并;②称为A与B的交;③称为A与B的差.2.实数系的连续性(1)分划的定义设S是一个有大小顺序的非空数集,A和B是它的两个子集,如果它们满足以下条件①②③都有④A中无最大数,则将A,B称为S的一个分划,记为.(2)戴德金分割定理对实数系R的任一分划(A|B),B中必有最小数.3.有界集与确界(1)有界集①设集合并且,a.如果存在使得对有x≤M,则称E是有上界的,并且说M是E的一个上界;b.如果存在使得对有x≥m,则称E是有下界的,并且说m是E的一十万种考研考证电子书、题库视频学习平台圣才电子书个下界;c.如果E 既有上界又有下界,则称E 是有界的.②E 是有界的充分必要条件是:存在M>0,使得对任意的有(2)确界的定义①上确界设为一个非空数集,若有满足a.M 是E 的一个上界,即有b .对存在使得则称M 为E 的上确界,记为.②下确界设为一个非空数集,若有满足:a.m 是E 的一个下界,即有b .对存在使得,则称m 为E 的下确界,记为显然,E 的上确界就是它的最小上界,而下确界就是它的最大下界.(3)确界定理非空有上界的实数集必有上确界;非空有下界的实数集必有下确界.(4)常用不等式①实数的绝对值由此可知,对任何有②三角不等式,③伯努利(Bernoulli)不等式:对任意的和任意正整数n,有④算术—几何平均不等式:对任意n个非负实数有:(5)常用记号①N:全体正整数组成的集合;②Z:全体整数组成的集合;③Q:全体有理数组成的集合;④R:全体实数组成的集合.显然有⑤闭区间:⑥开区间:⑦左开右闭区间:⑧左闭右开区间:且;⑨无穷区间:.二、函数的概念1.函数的定义(1)对于给定的集合,如果存在某种对应法则f,使得对X中的每一个数x,在R中存在唯一的数y与之对应,则称对应法则f为从X到R的一个函数,记做其中y称为f在点x的值,X称为函数f的定义域,数集称为函数f的值域,记为f(x),x称做自变量,y称做因变量.(2)构成一个函数必须具备三个基本要素:定义域、值域和对应法则.2.常见函数类型(1)基本初等函数①常值函数:②幂函数:③指数函数:④对数函数:⑤三角函数:⑥反三角函数:.(2)特殊函数①符号函数②狄利克雷(Dirich1et)函数.③高斯(Gauss)取整函数其中[x]即不超过x的最大整数,即n≤x<n+1.④黎曼(Riemann)函数⑤特征函数:设,称为集E的特征函数.3.函数的构造(1)函数的四则运算设为两个已知函数,且则可以利用实数的四则运算构造新函数如下:(2)函数的限制与延拓设函数和满足:且则称f(x)是g(x)在X1上的限制,而g(x)是f(x)在X2上的延拓.(3)函数的复合设为两个函数,若则定义在X1上的函数称为f1和f2的复合函数,记作,通常称f1为该复合函数的内函数,f2为外函数.注:函数的复合运算可以进行的前提条件是,外函数的定义域必须包含内函数的值域.(4)映射和反函数的定义①单射:设是一个函数,若对任意的只要x1≠x2,就有。
第10章函数序列与函数项级数1.设(x)在[0,1]上连续,f(1)=0.证明:(1){x n}在[0,1]上不一致收敛;(2){f(x)⋅x n}在[0,1]上一致收敛.[华东师范大学研]证明:(1)显然是的极限函数,x n在[0,1]上连续(n∈N),而g(x)在[0,1]上不连续,所以{x n}在[0,1]上不一致收敛.(2)f(x)在x=1处连续,所以对当时,有即易证{f(x)⋅x n)在[0,1-δ]上一致收敛于零,即对,当x>N时,对一切x∈[0,1-δ]有所以对当n>N时,对一切x∈[0,1],有所以{f(x)⋅x n}在[0,1]上一致收敛于零.2.试证:无穷级数在0<x<1时收敛,但不一致收敛.[中国科学院研] 证明:有收敛,所以收敛.取,则对及使得所以在(0,1)上不是一致收敛的.3.设0≤x<1,证明:[华中科技大学研] 证明:令,则0≤f(x)<1.故4.可微函数列在[a,b]上收敛,在[a,b]上一致有界,证明:在[a,b]上一致收敛.[上海交通大学研]证明:由题设,有①,取使则②在[a,b]上收敛,所以,当n>N,p是任意自然数,有③由②,③,当n>N时,对任意自然数p,有即在[a,b]上一致收敛.5.求函数项级数的收敛域,并证明该级数在收敛域是一致收敛的.[中山大学研]解:由于,又收敛,故由Weierstrass判别法知在(-∞,+∞)上是一致收敛的.6.研究在(1)[-l,l](l>0)上的一致收敛性;(2)(-∞,+∞)上的一致收敛性.[南京师范大学研]解:(1)当时,存在N,当n>N时有下式成立又收敛,故由Weierstrass判别法知在[-l,l]上一致收敛.(2)取,则不收敛,所以在(-∞,+∞)上不一致收敛.7.函数,g(1)=0,且(g’(1)可理解为左导数),证明:在[0,1]上一致收敛.[北京师范大学2006研]证明:由于,所以对任意的,存在使得当时,有.从而对任意的,m、n>0,有由于,所以存在M>0使得当时,.从而当时,,又收敛,故由Weierstrass判别法知在上一致收敛.于是对上述的ε>0,存在.N>0,使得当,m、n>N时,有结合两部分,当,m、n>N时,有,故在[0,1]上一致收敛.8.设函数列满足:(1)是[-1,1]上的可积函数列,且在[-1,1]上一致有界;(2)任意的在[-1,-c]和[c,1]上一致收敛于0.证明:对任意的[-1,1]上的连续函数f(x),有[中山大学2006研]证明:由于在[-1,1]上一致有界,f(x)在[-1,1]上连续,所以存在M>0,使得因为f(x)在x=0处连续,所以对任意的ε>0,存在δ>0,使得又在[-1,-δ]和[δ,1]上一致收敛于0,所以存在N>0,使得从而对任意的n>N有即9.设的收敛半径为∞,令,证明:在任意有限区间[a,b]上都一致收敛于f(f(x)).[厦门大学研]证明:因为的收敛半径为∞,所以在[a,b]上一致收敛于f(x).由于在[a,b]上连续,则f(x)在[a,b]上连续,所以f(x)在[a,b]上有界,即存在,使得当时有.又因为在[a,b]上一致收敛于f(x),所以存在,使得当时有由于在[a,b]上连续,所以存在使得当时有.取,则有下式成立同样由于在[-M,M]上一致收敛于f(x),所以f(x)在[a,b]上连续,从而一致连续.所以对任意的,存在使得当时有.因为在[a,b]上一致收敛于f(x),所以存在N>0,使得当,n>N时有.于是当,n>N时,,结论得证.10.研究函数在[0,+∞)上的连续性、一致连续性、可微性、单调性.[华南理工大学2006研]解:因为,而收敛,所以由Weierstrass判别法得知f(x)在[0,+∞)上一致收敛.因为在[0,+∞)上连续,所以f(x)在[0,+∞)上连续.又因为,故在[0,+∞)上一致连续,所以f(x)在[0,+∞)上一致连续.因为,而收敛,由Weierstrass判别法得知,所以可微,且单调递减.。
伍胜健《数学分析》笔记和考研真题详解第17章含参变量积分17.1复习笔记一、含参变量定积分1.基本概念设函数在平面区域上有定义.(1)若对于定积分存在,则由此定义了区间[a,b]上的函数I(x)称为含参变量定积分(简称含参变量积分),其中x为参变量.(2)若对于存在,则也称J(y)为含参变量定积分,其中y为参变量.2.基本性质(1)连续性定理①设函数在区域上连续,则对于含参变量定积分存在,并且I(x)在区间[a,b]上连续.注:f(x,y)在D上连续只是I(x)连续的充分条件.②设函数在区域上连续,则有③设函数在区域上连续,则对变上限含参变量积分存在,并且二元函数I(x,u)在D上连续.对于变下限含参变量积分,也有类似的结论.(2)可积性定理①设函数f(x,y)在区域上连续,则函数和分别在区间[a,b]和[c,d]上可积,并且②设函数f(x,y)在区域上连续,则(3)可导性定理①设函数f(x,y)及其偏导数在区域上连续,则函数在区间[a,b]上可导,并且有②设函数f(x,y)及其偏导数在区域上连续,则求导数运算与积分运算是可交换顺序的.③设函数及其偏导数在区域上连续,且是满足的可微函数,则函数在区间上可导,并且二、含参变量广义积分1.含参变量无穷积分(1)含参变量无穷积分的定义设函数在上有定义,其中为一个集合.若对于广义积分收敛,则可得到E上的函数称该函数为含参变量无穷积分.(2)含参变量无穷积分的一致收敛①含参变量无穷积分的一致收敛的定义设函数在上有定义,其中是一个区间.若对于当时,对于有则称含参变量无穷积分在E上一致收敛.②含参变量无穷积分的绝对一致收敛的定义设函数在上有定义,其中是一个区间.若对于收敛,则称在E上绝对收敛.若在E上绝对收敛,则在E 上收敛.另外,若在E上一致收敛,则在E上绝对一致收敛.(3)一致收敛的判别法则①柯西准则设函数在上有定义,其中是一个区间,则含参变量无穷积分在E上一致收敛的充分必要条件是:对当时,对,有②魏尔斯特拉斯定理设函数在上有定义,其中是一个区间.若存在函数使得对于及有并且收敛,则在E上绝对一致收敛.③狄利克雷判别法设函数在上有定义(其中是一个区间),并且满足:a.存在对于及有b.对任意固定的是y的单调函数,且对于当时,对一切有即当时,q(x,y)关于x一致趋于0,则含参变量无穷积分在E上一致收敛.④阿贝尔判别法设函数在上有定义(其中是一个区间,并且满足:a.在上一致收敛;b.对任意固定的是y的单调函数,并且存在常数对于及有则含参变量无穷积分在E上一致收敛.(4)基本性质①定理1设函数在上有定义,其中则含参变量无穷积分在上一致收敛的充分必要条件是:对任意的满足条件且的序列函数序列在E 上一致收敛.②定理2设函数在上连续,其中是一个区间,并且含参变量无穷积分在E 上一致收敛到函数I(x),则I(x)在E 上连续.③定理3设函数在上连续,且含参变量无穷积分在[a,b]上一致收敛,则有④定理4设函数f(x,y)及其偏导数在上连续,其中是一个区间,再设存在x 0∈E,使得收敛,并且在E 上一致收敛,则a.在E 上一致收敛;b.⑤狄尼定理设函数在上连续且不变号,设对于收敛,且I(x)在[a,b]上连续,则I(x)在[a,b]上一致收敛.2.含参变量瑕积分(1)定义设函数在上连续,当时,以c为瑕点.若对任意瑕积分(17-1)收敛,则I(x)在[a,b]上有定义.称I(x)为含参变量瑕积分.(2)基本性质利用变换可以将(17-1)式化成含参变量无穷积分从而得到含参变量瑕积分也有相应的一致收敛性以及其它的性质.三、函数与 函数1.函数(1)定义函数是指由如下含参变量积分定义的函数:(2)定义域。
第12章傅里叶级数1.求下列函数在指定区间上的Fourier级数:解:1.解答下列问题:(1)设f(x)的Fourier系数为,试求的Fourier系数.(2)试求函数的Fourier系数.解:(1)由类似地可得(2)记f(x)的Fourier系数为,并写出,则由(1)可知,即从可得从可推1.试证明下列命题:(2)设是f(x)的Fourier系数,则证明:(1)写出cos(λx)的Fourier级数(i)在上式中令x=0,再以x代λπ即得所证.(ii)在上式中令x=π,再以x代λπ即得所证.(2)用Fourier展式,可知不妨假定,易得故可取,使得注意到在上一致收敛于,因此对任给.当m充分大时有从而有最后可得1.求下列函数在指定区间上的正弦级数展式:解:(1)由等式得到(2)λ不是整数:有(整数):若n=m是偶数,则;若n=m是奇数,则(3)由等式并取,所以(4)由等式得到1.设且以2π为周期,令又设以2π为周期且二次可导,且在上满足试求的Fourier级数.解:假定,从而由题设可知(逐项求导)由此即得1.在所指定的区间内把下列函数展开为傅里叶级数:在区间中展开其中a及b为常数.解:由于故按展开定理,可展开为1.在区间中展开解:因为为奇函数,从而,且故按展开定理,可展开为1.在区间中展开解:因为为偶函数,从而,且故按展开定理,可展开为1.设是以为周期的连续函数并且为其傅里叶系数,求卷积函数的傅里叶系数利用所得的结果,推出李雅甫诺夫等式.解:由于故仍为以为周期的函数,于是,有。
第7章定积分1.试证明下列命题:(1)设.若则(2)(3)设a,d>0,且令则证明:(1)因为所以得到(2)对.写出此时有(3)记b=a/d,有易知上式分母当n→∞时趋于1/2,对分子有分子对上式乘积中第一和第三项有估计:从而得到1.试证明下列不等式:(1)设f(x)是[a,b]上的非负上凸函数,则(2)设,则(3)设则(4)设在(a,b)上可导,则证明:(1)不妨设且,则由题设知类似地可得两式相加即得所证.(2)对,作f(x)在x=0,2处的T aylor公式:由此知,以及.故得但据题设,不能有.从而得(3)因为所以(4)不妨设,则对有由此知1.试证明证明:引用公式(约定,x=0时,左端=2n+1),可知注意到的原函数是,有1.试证明下列问题:(1)设,且,则存在极限(2)设,且是以T>0为周期的函数,则(3)设正数列(a n)满足,则证明:(1)由可知{f(n)}是递增数列.又因所以{f(n)}是有界列.由此即得所证.(2)不妨假定(否则以代替f(x),其中M是f(x)的上确界).对任给x>0,存在n,使得.由题设知从而可得令结论得证(3)..此时有,以及因此得1.试证明下列极限等式:证明:(1)注意到在上可积,有(2)乍看有点像函数sinx:在[0,π]上的积分和:但实际上不是,其不同之处就在乘积因子.因此,要把它化去,为此,需要运用放大缩小的方法:由此令可得(3)(i)首先(ii)其次(n>k)因为且有,所以(4)根据不等式。
第一部分名校考研真题说明:本部分从指定伍胜健主编的《数学分析》为考研参考书目的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第7章定积分1.设f(x)和g(x)在[a,b]上连续,证明:其中[哈尔滨工业大学研]证明:不妨令.当M=0时,f(x)≡0,结论显然成立,所以不妨设M>0.∵g(x)在[a,b]上连续,从而一致连续,所以,当时,由ε的任意性,可知2.设f(x)及g(x)在[a,b]上连续,f(x)≤g(x),且证明:在[a,b]上,f(x)≡g(x).[湖南大学研]证明:设F(x)=f(x)-g(x),从而在[a,b]上,F(x)≤0,且下证F(x)≡0,反证法:若不然,,则存在,使在[x1,x2]上F(x)<0.从而其中,得出矛盾.故在[a,b]上,F(x)=0,即f(x)≡g(x).3.计算.[上海交通大学研]解:作变换,则,当时,,当时,,所以4.设f(x)连续,且有,求x≥0时f(x)的值.[北京航空航天大学研]解:由得,方程两边对x求导,得而x>0时,f(x)>0,所以,从而(c为常数).又因为,且f(x)连续,故因此5.给出有界函数f(x)在闭区间[a,b]上Riemann可积的定义.试举出一个在[a,b]上有界但不可积的例子,并给出证明.[上海大学研]证明:Riemann可积的定义:设f(x)是定义在[a,b]上的一个函数,J是一个确定的实数.若对任意给定的正数ε,总存在某一正数δ,使得对[a,b]的任何分割T,以及在其上任意选取的点集,只要,就有则称函数f(x)存区间[a,b]上Riemann可积.在[a,b]上有界但不可积的例子:在区间[a,b]的任何部分区间上均有,所以,它不趋于0.因此f(x)在[a,b]上不可积.6.求定积分.[上海大学2006研]解:由于是奇函数,故,从而7.求.[南京理工大学2006研]解:做变量替换,则8.设f(x)为[a,b]上的有界单调函数,证明:(1)函数至多只有可数个间断点;(2)讨论函数在[a,b]上的可积性.[江苏大学2006研]证明:(1)设D是f(x)的第一类间断点集,令,,则,故只需证明A、B为可数集即可.以A为例,对任意的,选取有理数,使得.再选取有理数和,,使当时,;而当时,(此由f(x)在X有单侧极限可知).因此,对应法则是从A到的一个映射,而且是单射,这是因为若有,,使,,,则.注意到,不妨设,于是可取,那么由前面的不等式,就得出的矛盾.这说明A与的一个子集对等,由可数,则A可数.(2)设f(x)为增函数,且f(a)<f(b)(若f(a)=f(b),则f(x)为常量函数,显然可积).对[a,b]的任一分割T,f(x)为增函数,f(x)在T所属的每个小区间上的振幅为于是有由此可见,任给ε>0,只要,就有所以f(x)在[a,b]上可积.9.设f(x)在[0,+∞)上连续有界,证明:[华东师范大学2006研]证明:记.显然有,又,故对任意的ε>0,存在,使得由上确界的定义知,对上述的ε>0,存在,.因为f(x)在处连续,由连续函数的局部保号性知存在δ>0,使得,.于是由于,所以存在,使得取,则有即.10.设函数f(x)在[a,b]上非负、连续、严格递增,g(x)在[a,b]上处处大于零、连续且.由积分中值定理,对任意自然数n,存在,使得求极限.[北京师范大学研]解:因为g(x)在[a,b]上处处大于零、连续,所以存在c>0使得当时,有g(x)≥c.从而对任意的ε>0,有由于,又f(x)在[a,b]严格递增,故由极限的保号性知,存在N>0,使得当n>N时,有,于是.又由f(x)在[a,b]上严格递增知,当n>N时,有成立,故.11.设函数f(x)是[-1,1]上的连续函数,且有,,证明:至少存在两个不同元素,使得.[北京师范大学2006研]证明:反证法.假设f(x)在(-1,1)内至多只有一个零点.若f(x)在(-1,1)内没有零点,不妨设f(x)在(-1,1)内恒正.由于f(x)在处连续,故由连续函数的局部保号性知,存在充分小的δ>0使得当时.有.于是矛盾.若f(x)在(-1,1)内只有一个零点c,则f(x)在内恒不为零.若f(x)在内恒正或恒负,可以类似前面的证明推出矛盾.若f(x)在(-1,c)内恒正,在(c,1)内恒负(f(x)在(-1,c)内恒负,在(c,1)内恒正的情况完全类似).由于,,所以.令,则,且g(x)在内恒正,往后类似前面的证明即可推出矛盾.12.设f(x)在[0,1]上Riemann可积,且,求.[浙江大学研]解:因为f(x)在[0,1]上Riemann可积,所以存在M,使得,则.则.13.利用可积函数条件证明:在[0,1]上可积.[南京师范大学2006研]证明:对[0,1]做任意分割T,注意到f(x)在[0,1]上有界,其不连续点为且f(x)在[0,1]的任意区间上的振幅w≤1.对任意的ε>0,由于f(x)在上只有有限个间断点,故可积.因此,存在η>0,对的任意分法,只要,就有.显然,,则对于[α,β]的任意分法,只要,就有.令,设是在[0,1]上满足的任意分法.设,由上述证明,有,显然又有,所以.于是,则f(x)在[0,1]上可积.。
伍胜健《数学分析》笔记和考研真题详解
第8章广义积分
8.1复习笔记
一、无穷积分的基本概念与性质1.无穷积分的概念
(1)设函数上有定义,并且对于上可积.①如果极限
存在,则称无穷积分收敛,此时称函数f(x)在上可积,并记
②如果极限
不存在,则称无穷积分
发散.
(2)设函数f (x)在上有定义,并且对于在区间[X,b]上可积.①如果极限
存在,则称无穷积分收敛,此时称函数f(x)在上可积,并记
②如果极限
不存在,则称无穷积分发散.
(3)设函数上有定义,且在任何的闭区间[a,b]上可积.任取
①若无穷积分与都收敛,则称无穷积分收敛,并
记
②若无穷积分中至少有一个发散,则称无穷积分
发散.
2.无穷积分的基本性质
(1)若函数f(x)在[a,+∞)上有原函数F(x),并形式地记
则有
(2)若f(x)在(-∞,b]上有原函数G(x),记,则
(3)若上有原函数H(x),则
(4)无穷积分换元公式设函数上有定义,且对于在区间
上可积,再设函数
在区间上连续可微,严格单调上升,并且满足
则有以下的换元公式:
(5)无穷积分分部积分公式设函数上连续可微,且极限
存在,则有以下分部积分公式
二、无穷积分敛散性的判别法
1.柯西准则
设函数上有定义,对于在区间上可积,则无穷积分
收敛的充分必要条件是:对于时,有
2.绝对收敛的无穷积分
(1)定义
设函数上有定义,对(x)
f在区间[a,X]上可积.
①若无穷积分收敛,则称无穷积分绝对收敛;
②若无穷积分收敛,但无穷积分发散,则称无穷积分
条件收敛.
(2)定理
设函数f(x)在上有定义,对于在区间[a,X]上可积.若无穷积分
绝对收敛,则无穷积分必收敛.
3.非负函数的无穷积分的敛散性问题
(1)定理
设非负函数f(x)在[a,+∞)上有定义,对于在[a,X]上可积,则无穷积分
收敛的充分必要条件是:存在0
A ,使得对一切X≥a,有
(2)比较定理
设非负函数上有定义,且对于在[a,X]上可积.若存在常数
使得当时,成立不等式
则可得出下述结论:
①若收敛,则也收敛;
②若发散,则也发散.
(3)推论
设非负函数上有定义,且对于在区间[a,X]上可
积.若则
①当时,同时收敛或同时发散;
②当时,若收敛,则收敛;
③当时,若发散,则发散.
4.条件收敛的无穷积分
(1)狄利克雷判别法
设函数f(x),g(x)在[a,+∞)上有定义,且满足下面两个条件:
①对于在区间上可积,并且使得对有
②单调,并且则无穷积分收敛.
(2)阿贝尔判别法
设函数在上有定义,并且满足下面两个条件:
①对于在上可积,并且收敛;
②在[a,+∞)单调有界,
则无穷积分收敛.
三、瑕积分
1.瑕积分的概念
(1)x0是f(x)的一个瑕点即是指f(x)在x0的某个去心(左或右)邻域内有定义,
但在该去心(左或右)邻域内无界.
(2)设函数f(x)在区间(a,b]上有定义,a是f(x)的一个瑕点.
①若对于在区间上可积,且极限
(8-1)
存在,则称瑕积分收敛,并记
②若极限(8-1)不存在,则称瑕积分发散.
(3)设函数f(x)在区间[a,b)上有定义,如果b为函数f(x)的瑕点,定义
.
(4)当为f(x)在[a,b]上的唯一瑕点时,称收敛是指瑕积分
同时收敛.
2.瑕积分敛散性的判别法
(1)柯西准则
瑕积分(b是瑕点)收敛的充分必要条件是:对于
时,有
(2)比较定理
设非负函数在区间上满足:存在正常数使得当。