2016-2017学年山东省济南市高一上学期期末数学试卷和解析
- 格式:doc
- 大小:642.04 KB
- 文档页数:18
2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。
2023-2024学年山东省济南市历城区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.)1.(4分)《国家宝藏》节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观众走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A.B.C.D.2.(4分)如果x<y,那么下列不等式正确的是()A.﹣x﹣1<﹣y﹣1B.x+1>y+1C.﹣2x<﹣2y D.2x<2y3.(4分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.54.(4分)如图,在直角坐标系中,菱形OABC的顶点A的坐标为(﹣2,0),∠AOC=60°.将菱形OABC 沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,其中点B′的坐标为()A.(﹣2,﹣1)B.(﹣2,1)C.(﹣,1)D.(﹣,﹣1)5.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E.若CD =1,则AB的长为()A.B.C.D.6.(4分)关于x的一元二次方程ax2﹣4x+1=0有实数根,则a的取值范围是()A.a≤4且a≠0B.a≤4C.a<4且a≠0D.a<47.(4分)如图,AC是平行四边形ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC 的大小是()A.24°B.26°C.28°D.30°8.(4分)如图,在平面直角坐标系中,函数y=ax+b和y=kx的图象交于点P,甲乙两位同学给出的下列结论:甲说:关于x的不等式ax+b>﹣4的解集为x>0;乙说:当x>4时,ax+b<kx;其中正确的结论有()A.甲乙都正确B.甲正确,乙错误C.乙正确,甲错误D.甲乙都错误9.(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6.将△ABC绕点B旋转得△A′BC′,分别取AA′,BC′的中点E,F,则EF的取值范围是()A.1≤EF≤9B.C.D.1<EF<910.(4分)如图,正方形ABCD边长为,E从B出发沿对角线BD向D运动,连接CE,将线段CE 绕C点顺时针旋转90°得到CF,连接DF,EF,设BE=m,下列说法:①△DEF是直角三角形;②=12.5;④取EF中点G,连接BG,CG,当m=4时,;③有且只有一个实数m,使得S△DEF△BCG的面积随着m的增大而增大.正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.(4分)因式分解:a2﹣9=.12.(4分)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m=.13.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线交AB和AC于点D,E.若CE=3,则线段AE的长度等于.14.(4分)近来房地产市场进入寒冬期,某楼盘原价为每平方米10000元,连续两次降价后售价为8100元,则平均每次降价的百分率是.15.(4分)如图,在平行四边形ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F 为圆心,大于的长度为半径作弧,交于点G,连接AG并延长交BC于点E,若AE=12,BF=8,则AB的长为.16.(4分)如图,矩形ABCD中,点E是AB上一点,AE=1,BE=3,AD=6,点H是AD边上的动点,以EH为边作菱形EFGH,使顶点F落在BC上,连接CG,则△FCG面积的最小值为.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并写出它的所有整数解.18.(6分)先化简:,再从﹣1,0,1,2中选取一个适当的数代入求值.19.(10分)解分式方程:(1);(2).20.(8分)解下列方程.(1)x2﹣6x+5=0;(2)x2+4x﹣1=0.21.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:DE=BF.22.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,旋转中心的坐标为;(4)以A,B,C,D为顶点的四边形是平行四边形且点D是y轴上一点,则点D的坐标是.23.(8分)已知四边形ABCD是边长为8cm的正方形,P,Q是正方形边上的两个动点,点P从点A出发,以2cm/s的速度沿A→B→C方向运动,点Q同时从点D出发以1cm/s速度沿D→C方向运动.设点P 运动的时间为t(0<t<8).(1)如图1,点P在AB边上,PQ,AC相交于点O,当PQ,AC互相平分时,求t的值;(2)如图2,点P在BC边上,AP,BQ相交于点H,当AP⊥BQ时,求t的值.24.(10分)根据如表所示素材,探索完成任务.如何确定图书销售单价及怎样进货以获取最大利润素材1某书店为了迎接“读书节”决定购进A,B两种新书,两种图书的进价分别是每本18元、每本12元.素材2已知A种图书的标价是B种图书标价的1.5倍,若顾客用540元按标价购买图书,能单独购买A种图书的数量恰好比单独购买B种图书的数量少10本.素材3书店准备用不超过28200元购进A,B两种图书共2000本,且A种图书不少于600本,经市场调查后调整销售方案为:A种图书按照标价的8折销售,B种图书按标价销售.问题解决任务1探求图书的标价请运用适当方法,求出A,B两种图书的标价.任务2确定如何获得最大利润书店应怎样进货才能获得最大利润?25.(12分)求代数式x2﹣4x+3的最小值时,我们通常运用“a2≥0”这个结论对代数式进行配方来解决.比如x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,∵(x﹣2)2≥0,∴(x﹣2)2﹣1≥﹣1,∴x2﹣4x+3的最小值是﹣1,试利用“配方法”解决下列问题:(1)填空:x2+6x+13=(x+)2+;(2)如图1所示的是一组邻边长分别为5,2a+9的长方形,其面积为S1;如图2所示的是边长为a+7的正方形,其面积为S2,a>0,请比较S1与S2的大小,并说明理由.(3)如图3,一个地块一边靠墙(墙足够长),另外三边用59m长的篱笆围成一个矩形场地,并且与墙平行的边AB加建1m宽的门(用其他材料).设BC=x m,矩形ABCD的面积为y m2.当x为何值时,矩形场地的面积最大?最大值为多少平方米?26.(12分)【探索发现】(1)如图1,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等,边A1O与边AB相交于点E,边C1O与边CB相交于点F,连接EF.在实验与探究中,小新发现无论正方形A1B1C1O绕点O怎样转动,AE,CF,EF之间一直存在某种数量关系,小新发现通过证明△AOE≌△BOF即可推导出来.①请你猜想AE,CF,EF之间的数量关系是.②小新对图1的进一步研究中发现,延长EO与DC交于一点G,通过证明△AOE≌△COG也可推导出AE,CF,EF之间的数量关系,请你证明△AOE≌△COG.【类比迁移】(2)如图2,矩形ABCD的中心O是矩形A1B1C1O的一个顶点,A1O与边AB相交于点E,C1O与边CB相交于点F,连接EF,矩形A1B1C1O可绕着点O旋转,判断AE,CF,EF之间的数量关系并进行证明;【拓展应用】(3)如图3,在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,点D是边AB的中点,∠EDF=90°,它的两条边DE和DF分别与直线AC,BC相交于点E,F,∠EDF可绕着点D旋转,当AE=4cm时,请直接写出线段CF的长度.2023-2024学年山东省济南市历城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.)1.【分析】根据中心对称图形的定义和图案特点即可解答.【解答】解:A、不是中心对称图形,故选项错误,不符合题意;B、是中心对称图形,故选项正确,符合题意;C、不是中心对称图形,故本选项错误,不符合题意;D、不是中心对称图形,故本选项错误,不符合题意.故选:B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式x<y的两边同时乘﹣1,不等号的方向改变,即﹣x>﹣y,两边再同时减去1,即﹣x﹣1>﹣y﹣1,不符合题意;B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.故选:D.【点评】本题主要考查了不等式的性质.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.据此逐一判断即可.3.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.4.【分析】过点B作BE⊥x轴于点E,根据菱形的性质得出AB=2,∠EAB=∠AOC=60°,于是求出AE 的长,在Rt△ABE中根据勾股定理求出BE的长,从而得出点B的坐标,再根据平移规律即可得出点B′的坐标.【解答】解:过点B作BE⊥x轴于点E,∴∠BEA=90°,∵点A的坐标为(﹣2,0),∴OA=2,∵四边形OABC是菱形,∴AB=OA=2,AB∥OC,∴∠EAB=∠AOC=60°,∴∠ABE=30°,∴,由勾股定理得,∴OE=AE+OA=1+2=3,∴点B的坐标是,将菱形OABC沿x轴向右平移1个单位长度,再沿y轴向下平移1个单位长度,得到菱形O′A′B′C′,∴点B′的坐标为,故选:A.【点评】本题考查了菱形的性质,平面直角坐标系中点的平移规律,求出点B的坐标,根据平移规律得出点B′的坐标是解题的关键.5.【分析】由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,即可得AB.【解答】解:由AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,CD=1,得DE=CD=1,∠B=45°=∠EDB,得BE=DE=1,BD==,得CB=1+,得AB=CB=2+.故选:C.【点评】本题主要考查了勾股定理,角平分线的性质,等腰直角三角形,解题关键是找准直角三角形.6.【分析】根据一元二次方程根的判别式,即可求解.【解答】解:∵关于x的一元二次方程ax2﹣4x+1=0有实数根,∴Δ=(﹣4)2﹣4a≥0且a≠0,解得:a≤4且a≠0.故选:A.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程ax2+bx+c=0(a≠0),当Δ=b2﹣4ac>0时,方程有两个不相等的实数根;当Δ=b2﹣4ac=0时,方程有两个相等的实数根;当Δ=b2﹣4ac<0时,方程没有实数根是解题的关键.7.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB =∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故选:B.【点评】本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.8.【分析】根据所给函数图象,利用数形结合的数学思想对甲,乙两人的说法作出判断即可.【解答】解:由函数图象可知,当x>0时,一次函数y=ax+b的图象在直线y=﹣4的上方,即ax+b>﹣4,所以关于x的不等式ax+b>﹣4的解集为x>0.故甲的结论正确.由函数图象可知,当x<4时,一次函数的图象在正比例函数图象的下方,即ax+b<kx,所以x<4时,ax+b<kx.故乙的结论错误.故选:B.【点评】本题主要考查了一次函数与一元一次不等式及两条直线相交或平行问题,巧用数形结合的数学思想是解题的关键.9.【分析】利用勾股定理求出AB的长,在根据旋转的性质可得A'C'=AC=8,A'B=AB=10,BC'=BC=6,利用中位线的性质可求EG=5,FG=4,再根据三角形的三边关系即可求出结果.【解答】解:取A'B的中点G,连接EG、FG,∵∠C=90°,AC=8,BC=6,∴AB===10,由旋转的性质可知:A'C'=AC=8,A'B=AB=10,BC'=BC=6,∵点E、F、G分别是AA'、BC'、A'B的中点,∴EG是△A'AB的中位线,FG是Rt△BCA′的中位线,∴EG=5,FG=4,当点E、F、G不共线时,EG﹣FG<EF<EG+FG,即1<EF<9,当点G在线段EF上时,EF=EG+FG=5+4=9,当点F在线段EG上时,EF=EG﹣FG=5﹣4=1,综上所述,1≤EF≤9,故选:A.【点评】本题考查了旋转的性质、三角形中线的性质、三角形三边关系及勾股定理,熟练掌握旋转的性质和三角形中线的性质求出EG、FG的值是解题的关键.10.【分析】根据正方形的性质得到BC=DC=5,∠BCD=90°,求得∠CBE=∠CDE=45°,根据旋转的性质得到CE=CF,∠ECF=90°,求得∠BCE=∠DCF=90°﹣∠DCE,根据全等三角形的性质得到EDF=∠CDE+∠CDF=45°+45°=90°,求得△DEF是直角三角形,故①正确;根据勾股定理得到BD==BC=×5=10,BE=DF=m=4,求得DE=BD﹣BE=10﹣4=6,得到EF===2,故②正确;根据三角形的面积公式列方程得到m=5,推=12.5,故③正确;连接DG,作GH⊥CD于点H,则∠GHD=∠出有且只有一个实数m,使得S△DEFBCD=90°,得到CH与△BCG的边BC上的高相等,根据三角形的面积公式得到S△BCG=BC•CH=×5×=,推出△BCG的面积不随着m的增大而增大,故④错误.【解答】解:∵四边形ABCD是边长为5的正方形,∴BC =DC =5,∠BCD =90°,∴∠CBE =∠CDE =45°,∵将线段CE 绕C 点顺时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,∴∠BCE =∠DCF =90°﹣∠DCE ,在△BCE 和△DCF 中,,∴△BCE ≌△DCF (SAS ),∴∠CBE =∠CDF =45°,BE =DF =m ,∴∠EDF =∠CDE +∠CDF =45°+45°=90°,∴△DEF 是直角三角形,故①正确;∵BD ==BC =×5=10,BE =DF =m =4,∴DE =BD ﹣BE =10﹣4=6,∴EF ===2,故②正确;∵DF •DE =S △DEF ,且DF =m ,DE =10﹣m ,S △DEF =12.5,∴m (10﹣m )=12.5,解得m =5,∴有且只有一个实数m ,使得S △DEF =12.5,故③正确;连接DG ,作GH ⊥CD 于点H ,则∠GHD =∠BCD =90°,∴GH ∥BC ,∴CH 与△BCG 的边BC 上的高相等,∵∠EDF =∠ECF =90°,点G 为EF 的中点,∴DG =CG =EF ,∴CH=DH=DC=×5=,=BC•CH=×5×=,∴S△BCG∴△BCG的面积不随着m的增大而增大,故④错误,故选:C.【点评】此题重点考查旋转的性质,正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,证明△BCE≌△DCF是解题的关键.二、填空题(本大题共6个小题.每小题4分,共24分,把答案填在答题卡的横线上.)11.【分析】a2﹣9可以写成a2﹣32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a2﹣9=(a+3)(a﹣3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.12.【分析】把x=1代入一元二次方程得到1+m=3=0,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故答案为:﹣4.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.【分析】连接BE,先求出∠ABC=60°,根据线段垂直平分线性质得AE=BE,则∠A=∠ABE=30°,进而得∠CBE=30°,由此得BE=2CE=6,据此可求出AE的长.【解答】解:连接BE,如图所示:在△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∴DE是线段AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△CBE中,CE=3,∠CBE=30°,∴BE=2CE=6,∴AE=BE=6.【点评】此题主要考查了线段垂直平分线的性质,含有30°角的直角三角形的性质,熟练掌握线段垂直平分线的性质,含有30°角的直角三角形的性质是解决问题的关键.14.【分析】设平均每次降价的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:设平均每次降价的百分率为x,依题意得:10000(1﹣x)2=8100,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【分析】设AE与BF相交于点O,由作图过程可知,AB=AF,AO⊥BF,可得OB=OF==4,AO平分∠BAF,结合平行四边形的性质可得AB=BE,由等腰三角形的性质可得OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,进而可得答案.【解答】解:设AE与BF相交于点O,由作图过程可知,AB=AF,AE⊥BF,∴OB=OF==4,AO平分∠BAF,∴∠FAE=∠BAE.∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴△ABE为等腰三角形,∵BO⊥AE,∴OA=OE==6.在Rt△BOE中,由勾股定理得,BE==,∴AB=.故答案为:.【点评】本题考查作图—基本作图、平行四边形的性质、等腰三角形的性质、勾股定理,熟练掌握平行四边形的性质、等腰三角形的性质、勾股定理是解答本题的关键.16.【分析】通过辅助线构造Rt△IFG,由△AHE≌△IFG推出△FCG的底边FC上的高IG=AE=1,然后根据动点H的位置,以及直角三角形三边的关系,计算出线段FC的最小值,即可求出答案.【解答】解:如图,过点G作BC的垂线,交BC延长线于点I.∵四边形EFGH为菱形,∴FG=EH=EF,FG∥EH.四边形ABCD为矩形,则AD∥BC,连接FH,∴∠AHF=∠HFI,∠EHF=∠HFG,∴∠AHF﹣∠EHF=∠HFI﹣∠HFG,即∠AHE=∠IFG,在△AHE和△IFG中,∠A=∠FIG,∠AHE=∠IFG,EH=FG,∴△AHE≌△IFG.∴GI=AE=1.=FC•GI=FC.∵S△FCG的最小值即FC的最小值.∴S△FCG在Rt△AHE和Rt△EBF中,AE和BE为定值,AH的最大值为AD,则EH的最大值为ED.∵ED===.∴EH和EF的最大值为.∵BF2+BE2=EF2,∴BF的最大值:==.又∵FC=BC﹣BF=AD﹣BF,∴FC的最小值为:6﹣.的最小值为:FC=×(6﹣)=3﹣.∴S△FCG故△FCG面积的最小值为3﹣.【点评】本题考查了矩形、菱形的性质,以及全等三角形的判定和性质.构造△∠IFG与△AHE全等,得出IG为定值,将△FCG面积的最小值转化为线段FC的最小值是解题的关键.三、解答题(本大题共10个小题,共86分,解答应写出文字说明,证明过程或演算步骤.)17.【分析】分别求出各不等式的解集,再求出其公共解集,写出它的所有整数解即可.【解答】解:,由①得,x<1;由②得,x≥﹣,故不等式组的解集为:﹣≤x<1,它的所有整数解为:﹣1,0.【点评】本题考查的是解一元一次不等式组,熟知解一元一次不等式组的一般步骤是解题的关键.18.【分析】先因式分解,通分,去括号化简,再选值计算即可.【解答】解:===,∵x﹣1≠0,x﹣2≠0∴x≠1,x≠2∴当x=﹣1时,原式=;当x=0时,原式=.【点评】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.19.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2(x+2)=3(x﹣2),去括号得:2x+4=3x﹣6,移项合并得:﹣x=﹣10,解得:x=10,检验:把x=10代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=10;(2)去分母得:2(x﹣4)+1=x﹣3,去括号得:2x﹣8+1=x﹣3,移项得:2x﹣x=﹣3+8﹣1,合并同类项得:x=4,检验:把x=4代入得:x﹣4=0,∴x=4是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【分析】利用因式分解法及配方法对所给方程进行求解即可.【解答】解:(1)x2﹣6x+5=0,(x﹣1)(x﹣5)=0,则x﹣1=0或x﹣5=0,所以x1=1,x2=5.(2)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,(x+2)2=5,则x+2=,所以.【点评】本题主要考查了解一元二次方程﹣因式分解法及解一元二次方程﹣配方法,熟知因式分解法及配方法解一元二次方程的步骤是解题的关键.21.【分析】首先利用平行四边形的性质,证出AD=CB,AD∥CB,进而证出∠DAE=∠BCF,再结合已知证得△ADE≌△CBF,最后利用全等三角形的性质证出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题考查的是平行四边形的性质,全等三角形的性质与判定,找到图中的全等三角形是解本题的关键.22.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用中心对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)作出旋转中心M,可得结论;(4)根据题目要求以及平行四边形的判定作出点D即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)旋转中心M的坐标为(﹣3,0);故答案为:(﹣3,0);(4)点D的坐标是(0,6).故答案为:(0,6).【点评】本题考查作图﹣旋转变换,平移变换,平行四边形的判定等知识,解题的关键是掌握旋转变换,平移变换的性质.23.【分析】(1)根据题意用t表示CQ与AP,证明四边形APCQ为平行四边形,得AP=CQ,由此列出t 的方程即可;(2)根据题意用t表示CQ与BP,证明△ABP≌△BCQ得BP=CQ,由此列出t的方程即可.【解答】解:(1)由题意得DQ=t cm,AP=2t cm,∵四边形ABCD是边长为8cm的正方形,∴CQ=(8﹣t)cm,当PQ,AC互相平分时,四边形APCQ为平行四边形,∴AP=CQ,∴2t=8﹣t,解得t=,即t的值为s;(2)∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠BCQ=90°,∵AP⊥BQ,∴∠BAP+∠ABH=∠ABH+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP≌△BCQ(ASA),∴BP=CQ,∵BP=2t﹣AB=2t﹣8,CQ=8﹣t,∴2t﹣8=8﹣t,解得t=,即t的值为s.【点评】本题主要考查了正方形的性质,全等三角形的性质与判定,行程问题,平行四边形的性质与判定,关键是正确列出t的方程.24.【分析】任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元,根据“购买数量=金额÷标价”列方程并求解即可;任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本,根据“A种图书进价×购进A种图书数量+B种图书进价×购进B种图书数量≤28200”和“A种图书不少于600本”列关于m的一元一次不等式组并求解;设获得的利润是w元,根据“获得的利润=(A种图书售价﹣A种图书进价)×购进A种图书数量+(B种图书售价﹣B种图书进价)×购进B种图书数量”写出w关于m的函数关系式,根据该函数的增减性和m的取值范围,确定当m取何值时w的值最大,并求出此时2000﹣m的值即可.【解答】解:任务1:设B种图书的标价是x元,则A种图书的标价是1.5x元.根据题意,得﹣=10,解得x=18,经检验,x=18是所列分式方程的解,1.5×18=27(元),∴A种图书的标价是27元,B种图书的标价是18元.任务2:设购进A种图书m本,则购进B种图书(2000﹣m)本.根据题意,得,解得600≤m≤700.由题意可得,A种图书的售价是0.8×27=21.6(元),B种图书的售价是18元,设获得的利润是w元,则w=(21.6﹣18)m+(18﹣12)(2000﹣m)=﹣2.4m+12000,∵﹣2.4<0,∴w随m的减小而增大,∵600≤m≤700,∴当m=600时,w值最大,2000﹣600=1400(本),∴购进A种图书600本、B种图书1400本可获得最大利润.【点评】本题考查一次函数和分式方程的应用,掌握分式方程和一元一次不等式组的解法及一次函数的增减性是解题的关键.25.【分析】(1)根据完全平方公式求解;(2)先根据矩形的面积公式表示S1,S2,再根据作差法求解;(3)根据矩形的面积公式列出函数关系式,再配方求解.【解答】解:(1)x2+6x+13=x2+6x+9+4=(x+3)2+4,故答案为:3,4;(2)S2>S1;理由:∵S1=5(2a+9)=10a+45,S2=(a+7)2=a2+14a+49,∴S2﹣S1=a2+14a+49﹣10a﹣45=a2+4a+4=(a+2)2>0,∴S2>S1;(3)由题意得:y=x(59﹣2x+1)=﹣2x2+60x=﹣2(x﹣15)2+450,∴当x=15时,y有最大值,为450平方米.【点评】本题考查了配方法的应用,掌握完全平方公式和非负数的性质是解题的关键.26.【分析】(1)①先证明△AOE≌△BOF(ASA),可得AE=BF,推出BE=CF,再运用勾股定理即可证得结论;②延长EO交DC于点G,由正方形性质可得OA=OC,∠OAE=∠OCG=45°,再利用ASA可证得△AOE≌△COG;(2)延长EO交CD于点G,连接FG,可证得△AEO≌△CGO(AAS),得出AE=CG,OE=OG,再由线段垂直平分线的性质可得EF=FG,再运用勾股定理即可求得答案;(3)设CF=x cm,分两种情况讨论:①当点E在线段AC上时,②当点E在CA延长线上时,结合勾股定理,即可求解.【解答】(1)①解:猜想:AE2+CF2=EF2,理由如下:如图1,∵四边形ABCD和四边形A1B1C1O均为正方形,∴OA=OB,AB=BC,∠OAE=∠OBF=45°,∠AOB=∠A1OC1=90°,∴∠AOB﹣∠BOE=∠A1OC1﹣∠BOE,即∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在Rt△BEF中,BF2+BE2=EF2,∴AE2+CF2=EF2,故答案为:AE2+CF2=EF2.②证明:如图1′,延长EO交DC于点G,∵四边形ABCD为正方形,∴OA=OC,∠OAE=∠OCG=45°,在△AOE和△COG中,,∴△AOE≌△COG(ASA).(2)解:结论:AE2+CF2=EF2,证明:如图2,延长EO交CD于点G,连接FG,∵O是矩形ABCD的中心,∴点O是AC的中点.∴AO=CO,∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CGO,∴△AEO≌△CGO(AAS),∴AE=CG,OE=OG,∵四边形A1B1C1O是矩形,∴∠A1OC1=90°,即OF⊥EG,∴OF垂直平分EG,∴EF=FG,在Rt△FCG中,CG2+CF2=GF2,∴AE2+CF2=EF2;(3)解:设CF=x cm,①当E在线段AC上时,如图3,连接EF,∵AE=4cm,AC=5cm,BC=12cm,∴CE=1cm,在Rt△FCE中,∠C=90°,∴CE2+CF2=EF2,∴12+x2=EF2,又由(2)易知EF2=AE2十BF2,∴EF2=42+BF2,∴12+x2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;②当点E在CA延长线上时,如图4,过点B作BG⊥BC,交ED的延长线于G,连接EF,GF,同理可证EF2=AE2十BF2,∴EF2=42+(12﹣x)2,在Rt△FCE中,EF2=x2+(5+4)2,∴x2+(5+4)2=42+(12﹣x)2,解得:x=,∴此时线段CF的长度为cm;综上所述,线段CF的长度为cm或cm.【点评】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形根据勾股定理列方程解决问题。
2024-2025学年山东省济南市部分学校高一(上)质检数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={−1,1,2,3},N ={−1,1},则M ∪N =( )A. {−1,1,2,3}B. {−1,1}C. {2,3}D. {1,2,3}2.“∀x ∈(2,+∞),x 2−2x >0”的否定是( )A. ∃x 0∈(−∞,2],x 20−2x 0≤0B. ∀x ∈(2,+∞),x 2−2x ≤0C. ∃x 0∈(2,+∞),x 20−2x 0≤0D. ∀x ∈(−∞,2],x 2−2x >03.不等式1−x 4+x ≥0的解集为( )A. {x|−4≤x ≤1}B. {x|x <−4或x ≥1}C. {x|−4<x ≤1}D. {x|x ≤−4或x ≥1}4.已知a ,b 均为正实数,且a +b =1,则下列选项错误的是( )A. a + b 的最大值为 2 B. 3a +4+a b 的最小值为7+2 14C. (a +1)(b +1)的最大值为94D. a 2a +3+b 2b +2的最小值为165.已知函数f(x +2)的定义域为(−3,4),则函数g(x)=f(x +1)3x−1的定义域为( )A. (−4,3) B. (−2,5) C. (13,3) D. (13,5)6.函数f(x)={x 2−(a +4)x +5,x <2(2a−3)x +1,x ≥2满足对∀x 1,x 2∈R 且x 1≠x 2,都有[f(x 1)−f(x 2)](x 1−x 2)<0,则实数a 的取值范围是( )A. (0,32)B. [0,32)C. (0,1)D. [0,1]7.已知函数f(x)的定义域为R ,f(x)−1为奇函数,f(x +2)为偶函数,则f(1)+f(2)+⋯+f(16)=( )A. 0B. 16C. 22D. 328.如果函数f(x)的定义域为[a,b],且值域为[f(a),f(b)],则称f(x)为“Ω函数.已知函数f(x)={5x,0≤x ≤2x 2−4x +m,2<x ≤4是“Ω函数,则m 的取值范围是( )A. [4,10] B. [4,14] C. [10,14] D. [14,+∞)二、多选题:本题共3小题,共18分。
河海大学2016—2017学年第一学期 《高等数学》 期末试卷(A )一、选择题(每小题3分,共15分) 1.设函数xxx f g x x f -+=-=-11))((,1)2(,则)3(g 等于( A )。
A .3- B .2- C .0 D .1 2.设x x x x y ++-=,则y 是x 的( A )阶无穷小。
A .81B .41C .21D .13.点0=x 是函数xe xf 111)(+=的( C )。
A .振荡间断点 B .可去间断点 C .跳跃间断点 D .无穷间断点 4.下列条件中,( C )是函数)(x f 在0x 处有导数的充分必要条件。
A .hh x f h x f h 2)()(lim000--+→存在 B .)(lim 0x f x x '→存在C .)(x f 在0x 处可微D .)(x f 在0x 处连续 5.设)(u f 可微,则)(sin x f y =的微分=dy ( B )。
A .dx x f )(sin 'B .xdx x f cos )(sin 'C .()x d x f sin )(sin 'D .xdx x f sin )(sin '二、填空题(每小题3分,共15分): 1. 函数[]x x y -=的最小正周期是1。
2.设)0(003cos )(>⎪⎪⎩⎪⎪⎨⎧>-+≤+=a x x a x a x x xx f ,当=a 49时, 0=x 是)(x f的连续点。
3.⎪⎭⎫⎝⎛+=∞→1lim )(2nx nx x f n 的间断点是=x ,且是第二类间断点。
4.设12)(-=x e x f ,则()=)0(2008f 120082-e 。
5.设方程0arctan =+-y y x 确定的函数)(x y y =,求=dxdy221y y +。
三、(6分)叙述∞=→)(lim 0x f x 的定义,并用定义证明定义∞=+→xx x 12lim0。
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
2022-2023学年山东省济南市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z =11+2i对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客( ) A .1000人B .300人C .200人D .100人3.设α,β为两个平面,则α⊥β的充要条件是( ) A .α过β的一条垂线B .α,β垂直于同一平面C .α内有一条直线垂直于α与β的交线D .α内有两条相交直线分别与β内两条直线垂直 4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .355.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( )A .π3B .2π3C .π3或2π3D .无解6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心B .重心C .内心D .外心7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=010.先后抛掷质地均匀的硬币两次,则下列说法正确的是( ) A .事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B .事件“至少一次正面向上”与事件“至少一次反面向上”互斥C .事件“两次正面向上”与事件“两次反面向上”互为对立事件D .事件“第一次正面向上”与事件“第二次反面向上”相互独立11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是( )A .平均数的估计值为30B .众数的估计值为35C .第60百分位数估计值是32D .随机选取这100名学生中有25名学生体育活动时间不低于40分钟12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 .14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 . 15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 .16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i ,y i 分别为甲,乙小区抽取的第i 户家庭近7天用于垃圾分类的总时间,s x 2,s y 2分别为甲,乙小区所抽取样本的方差,已知x =18∑ 8i=1x i =200,s x 2=18∑ 8i=1(x i −x)2=200,y =195,s y 2=210,其中i =1,2,⋯,8.(1)若a ≤b ,求a 和b 的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z 和方差s z 2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x 1,s 12;n ,x 2,s 22,总的样本平均数为ω,样本方差为s 2,则s 2=m m+n [s 12+(x 1−ω)2]+n m+n[s 22+(x 2−ω)2].21.(12分)如图1,在等腰△ABC 中,AC =4,A =π2,O ,D 分别为BC 、AB 的中点,过D 作DE ⊥BC 于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH)=32,点B为线段AD的中点,AC=√3OB=3,sin∠ACOsin∠AOB=32,求cos A.2022-2023学年山东省济南市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数z=11+2i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z=11+2i=1−2i(1+2i)(1−2i)=15−25i,它在复平面内对应点为(15,−25),在第四象限.故选:D.2.《2023年五一出游数据报告》显示,济南凭借超强周边吸引力,荣登“五一”最强周边游“吸金力”前十名榜单.其中,济南天下第一泉风景区接待游客100万人次,济南动物园接待游客30万人次,千佛山景区接待游客20万人次.现采用按比例分层抽样的方法对三个景区的游客共抽取1500人进行济南旅游满意度的调研,则济南天下第一泉风景区抽取游客()A.1000人B.300人C.200人D.100人解:依题意济南天下第一泉风景区应抽取游客1500×100100+30+20=1000(人).故选:A.3.设α,β为两个平面,则α⊥β的充要条件是()A.α过β的一条垂线B.α,β垂直于同一平面C.α内有一条直线垂直于α与β的交线D.α内有两条相交直线分别与β内两条直线垂直解:由α⊥β可得α经过β的一条垂线,反之若α经过β的一条垂线,由面面垂直的判定定理可得α⊥β,故A正确;α,β垂直于同一个平面,可得α,β平行或相交,故B错误;α内有一条直线垂直于α与β的交线,可得α,β不一定垂直,故C 错误; α内有两条相交直线分别与β内两条直线垂直,可得α,β平行或相交,故D 错误. 故选:A .4.袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球,从中不放回地依次随机摸出2个球,则第二次摸到红球的概率为( ) A .110B .15C .25D .35解:袋子中有5个大小质地完全相同的球,其中3个红球,2个黄球, 从中不放回地依次随机摸出2个球, 第二次摸到红球的情况有两种:①第一次摸到红球,第二次摸到红球,概率为:P 1=35×24=310, ②第一次摸到黄球,第二次摸到红球,概率为:P 2=25×34=310, 则第二次摸到红球的概率为P =P 1+P 2=310+310=35. 故选:D .5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π4,b =1,c =√62,则角C 的值为( ) A .π3B .2π3C .π3或2π3D .无解解:∵B =π4,b =1,c =√62,由正弦定理有:bsinB=c sinC,∴sinC =csinB b =√62×√221=√32,∵c >b ,∴C >B ,∴C ∈(π4,π),∴C =π3或2π3.故选:C .6.如果三棱锥S ﹣ABC 底面不是等边三角形,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等,SO ⊥平面ABC ,垂足为O ,则O 是△ABC 的( ) A .垂心 B .重心C .内心D .外心解:如图所示:因为SO ⊥平面ABC ,侧棱SA ,SB ,SC 与底面ABC 所成的角都相等, 则∠SAO =∠SBO =∠SCO ,AO =SO tan∠SAO ,BO =SO tan∠SBO ,CO =SOtan∠SCO,故AO =BO =CO ,故O 是△ABC 的外心. 故选:D .7.已知锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,B =π3,c =2,则△ABC 的周长的取值范围为( )A .(3+√3,2+2√3)B .(3+√3,4+2√3)C .(3+√3,6+2√3)D .(3+√3,+∞)解:∵B =π3,c =2, ∴由正弦定理得asinA=b sinπ3=2sinC,∴b =√3sinC ,a =2sinA sinC =2sin(π3+C)sinC =√3cosC+sinCsinC, ∴a +b =√3sinC+√3cosC+sinCsinC=√3(cosC+1)sinC+1=2√3cos 2C 22sin C 2cos C 2+1=√3tan C 2+1,在锐角△ABC 中,{0<C <π20<2π3−C <π2,解得π6<C <π2, ∴π12<C 2<π4,即tanπ12<tan C2<1,又tan π6=2tanπ121−tan 2π12=√33,解得tan π12=2−√3或tan π12=−2−√3(不合题意,舍去), ∴2−√3<tan C2<1,∴1<1tan C 212−3=2+√3,∴√3+1<√3tan C 2+1<4+2√3,即√3+1<a +b <4+2√3,∴√3+3<a +b +c <6+2√3,故△ABC 的周长的取值范围为(√3+3,6+2√3). 故选:C .8.在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =1.点E ,F ,G 分别为平面P AB ,平面P AD 和平面ABCD 内的动点,点Q 为棱PC 上的动点,则QE 2+QF 2+QG 2的最小值为( ) A .12B .23C .34D .1解:由题意得QE ,QF ,QG 均最小时,平方和最小,过点Q 分别作平面P AB ,平面P AD ,平面ABCD 的垂线,垂足分别为E ,F ,G , 连接AQ ,因为P A ⊥面ABCD ,BC ⊂平面ABCD ,所以P A ⊥BC ,因为底面ABCD 为正方形,所以AB ⊥BC ,又因为P A ∩AB =A ,P A ,AB ⊂平面P AB ,所以BC ⊥面P AB ,因为QE ⊥平面P AB ,则QE ∥BC ,又因为点Q 在PC 上,则点E 应在PB 上, 同理可证F ,G 分别位于PD ,AC 上, 从而补出长方体EQFJ ﹣HGIA ,则AQ 是以QE ,QF ,QG 为共点的长方体的对角线,则AQ ²=QE ²+QF ²+QG ², 则题目转化为求AQ 的最小值,显然当AQ ⊥PC 时,AQ 的最小值, 因为四边形ABCD 为正方形,且P A =AB =1,则AC =√2, 因为P A ⊥面ABCD ,AC ⊂面ABCD ,所以P A ⊥AC , 所以PC =√PA 2+AC 2=√3, 则直角三角形P AC 斜边AC 的高AQ =1×√2√3=√63,此时AQ 2=23, 则QE ²+QF ²+QG ²的最小值为23,故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数ω=−12+√32i ,则下列说法中正确的是( )A .|ω|=1B .ω3=﹣1C .ω2=ωD .ω2+ω+1=0解:ω=−12+√32i ,则ω2=(−12+√32i)=−12−√32i ,ω2≠ω,故C 错误; |ω|=√(−12)2+(√32)2=1,故A 正确;ω3=ω2•ω=(−12−√32i)(−12+√32i)=1,故B 错误; ω2+ω+1=−12−√32i −12+√32i +1=0,故D 正确.故选:AD.10.先后抛掷质地均匀的硬币两次,则下列说法正确的是()A.事件“恰有一次正面向上”与事件“恰有一次反面向上”相等B.事件“至少一次正面向上”与事件“至少一次反面向上”互斥C.事件“两次正面向上”与事件“两次反面向上”互为对立事件D.事件“第一次正面向上”与事件“第二次反面向上”相互独立解:根据题意,依次分析选项:对于A,事件“恰有一次正面向上”即“一次正面向上、一次反面向上”,同样,事件“恰有一次反面向上”也是“一次正面向上、一次反面向上”,两个事件相等,A正确;对于B,事件“至少一次正面向上”,即“一次正面向上、一次反面向上”和“两次都是正面向上”,事件“至少一次反面向上”,即“一次正面向上、一次反面向上”和“两次都是反面向上”,两个事件不互斥,B错误;对于C,事件“两次正面向上”与事件“两次反面向上”不是对立事件,还有一种情况“一次正面向上、一次反面向上”,C错误;对于D,由相互独立事件的定义,事件“第一次正面向上”与事件“第二次反面向上”相互独立,D正确.故选:AD.11.某学校为了调查高一年级学生每天体育活动时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则下列说法正确的是()A.平均数的估计值为30B.众数的估计值为35C.第60百分位数估计值是32D.随机选取这100名学生中有25名学生体育活动时间不低于40分钟解:对于A,由频率分布直方图可知平均数的估计值为:5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2,故A 错误;对于B ,由频率分布直方图可知[30,40)的频率最大,因此众数的估计值为35,故B 正确; 对于C ,由频率分布直方图得从第一组到第六组的频率依次是0.1,0.18,0.22,0.25,0.2,0.05, 所以第60百分位数估计值m 在[30,40)内,所以0.1+0.18+0.22+(m ﹣30)×0.025=0.6,解得m =34,故C 错误;对于D ,随机选取这100名学生中体育活动时间不低于40分钟的人数为100×(0.2+0.05)=25,故D 正确. 故选:BD .12.如图,已知三棱锥D ﹣ABC 可绕AB 在空间中任意旋转,△ABC 为等边三角形,AB 在平面α内,AB ⊥CD ,AB =2,CD =√6,cos∠CBD =14,则下列说法正确的是( )A .二面角D ﹣AB ﹣C 为π2B .三棱锥D ﹣ABC 的外接球表面积为20π3C .点C 与点D 到平面α的距离之和的最大值为2 D .点C 在平面α内的射影为点M ,线段DM 的最大值为√15+√32解:对于A 选项,在△BCD 中,BC =AB =2,CD =√6,cos∠CBD =14, 由余弦定理可得CD 2=BC 2+BD 2﹣2BC •BD cos ∠CBD , 即4+BD 2−4BD ×14=6,即BD 2﹣BD ﹣2=0,因为BD >0,解得BD =2, 取AB 的中点E ,连接CE 、DE ,如下图所示:因为△ABC 为等边三角形,E 为AB 的中点,所以,CE ⊥AB ,又因为CD ⊥AB ,CD ∩CE =C ,CD ,CE ⊂平面CDE ,所以,AB ⊥平面CDE , 因为DE ⊂平面CDE ,所以,DE ⊥AB , 所以,二面角D ﹣AB ﹣C 的平面角为∠CED ,因为E 为AB 的中点,所以,AD =BD =2,故△ABD 也是边长为2的等边三角形, 所以DE =√AD 2−AE 2=√4−1=√3,CE =√AC 2−AE 2=√4−1=√3, 又因为CD =√6,所以,CE 2+DE 2=CD 2,则CE ⊥DE , 故二面角D ﹣AB ﹣C 为π2,A 对;对于B 选项,设△ABC 、△ABD 的中心分别为点G 、H ,分别过点G 、H 作GO ∥DE 、HO ∥CE ,设GO ∩HO =O , 因为CE ⊥DE ,CE ⊥AB ,AB ∩DE =E ,AB 、DE ⊂平面ABD ,所以,CE ⊥平面ABD ,因为HO ∥CE ,则OH ⊥平面ABD ,同理,OG ⊥平面ABC , 所以,O 为三棱锥D ﹣ABC 的外接球球心, 由等边三角形的几何性质可知,HE =13DE =√33,同理,GE =13CE =√33,因为OH ∥GE ,OG ∥EH ,HE =GE =√33,GE ⊥HE , 所以,四边形OHEG 为正方形,且OH =GE =√33, 又因为DH =DE −HE =√3−√33=2√33, 因为CE ⊥DE ,OH ∥CE ,则OH ⊥DE ,则OD =√OH 2+DH 2=√(33)2+(233)2=√153, 所以,三棱锥D ﹣ABC 的外接球半径为√153,因此,三棱锥D ﹣ABC 的外接球的表面积为4π⋅OD 2=4π×(√153)2=20π3,B 对; 对于C 选项,设点D 在平面α内的射影点为N ,连接MN ,因为CM ⊥a ,DN ⊥a ,则CM ∥DN ,故点C 、D 、N 、M 四点共面, 因为AB ⊂α,则AB ⊥CM ,又因为CD ⊥AB ,CD ∩CM =C ,CD 、CM ⊂平面CDNM ,则AB ⊥平面CDNM , 又因为AB ⊥平面CDE ,故平面CDE 与平面CDNM 重合, 又因为E ∈α,M ,N ∈α,故E ∈MN , 设∠CEM =θ,其中0≤θ≤π2,又因为∠CED =π2,则∠DEN =π−∠CED −∠CEM =π−π2−θ=π2−θ, 所以,CM =CEsin ∠CEM =√3sinθ,DN =DEsin ∠DEN =√3sin(π2−θ)=√3cosθ,所以,点C 与点D 到平面α的距离之和CM +DN =√3sinθ+√3cosθ=√6sin(θ+π4), 因为0≤θ≤π2,则π4≤θ+π4≤3π4,故当θ+π4=π2时,即当θ=π4时,CM +DN 取最大值√6,C 错; 对于D 选项,ME =CEcosθ=√3cosθ,∠DEM =∠CED +∠CEM =π2+θ, 由余弦定理可得DM =√DE 2+EM 2−2DE ⋅EMcos(π2+θ) =√3+3cos 2θ+2√3⋅√3cosθsinθ=√3+3×1+cos2θ2+3sin2θ =√3sin2θ+3cos2θ2+92=√352sin(2θ+φ)+92, 其中φ为锐角,且tanφ=12,因为0≤θ≤π2,则φ≤2θ+φ≤π+φ,故当2θ+φ=π2时,DM 取得最大值, 且(DM)max =√9+352=√18+654=√15+√32,D 对. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.一组数据1,2,4,5,8的第75百分位数为 5 .解:5×75%=3.75,故一组数据1,2,4,5,8的第75百分位数为5. 故答案为:5.14.在正方体ABCD ﹣A 1B 1C 1D 1中,直线BC 1与直线CD 1夹角的余弦值为 12.解:如图,连接A 1C 1,A 1B ,在正方体ABCD ﹣A 1B 1C 1D 1中,有A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC , 所以四边形A 1D 1CB 为平行四边形,所以A 1B ∥CD 1, 所以∠A 1BC 1为直线BC 1与直线CD 1夹角或其补角, 设正方体ABCD ﹣A 1B 1C 1D 1棱长为a , 则A 1B =BC 1=A 1C 1=√2a , 所以△A 1BC 1为等边三角形, 所以∠A 1BC 1=π3,故直线BC 1与直线CD 1夹角的余弦值为cos ∠A 1BC 1=cos π3=12. 故答案为:12.15.在圆C 中,已知弦AB =2,则AB →⋅AC →的值为 2 . 解:∵在圆C 中,已知一条弦AB =2,∴根据圆的几何性质得出:|AC |cos ∠CAB =12|AB |=12×2=1, ∵AB →•AC →=|AB →•|AC →|cos ∠CAB =2×1=2. 故答案为:2.16.已知△ABC 的重心为G ,面积为1,且AB =2AC ,则3AG 2+BC 2的最小值为4√213.解:由题意c =2b ,S △ABC =12bc sin A =1,即b 2sin A =1;连接AG 并延长交BC 于D ,则D 为BC 的中点,可得AD →=12(AB →+AC →),又因为G 为三角形的重心,则AG →=23AD →,可得AG →=13(AB →+AC →),BC →=AC →−AB →,所以AG 2=AG →2=19(AB →2+AC →2+2AB →•AC →)=19(c 2+b 2+2bc cos A )=19(5b 2+4b 2cos A ), BC 2=BC →2=AC →2+AB →2﹣2AB →•AC →=b 2+c 2﹣2bc cos A =5b 2﹣4b 2cos A ,所以3AG 2+BC 2=53b 2+4b 23cos A +5b 2﹣4b 2cos A =203b 2−83b 2cos A =203sinA −8cosA 3sinA,令t =203sinA −8cosA 3sinA>0,则3t sin A +8cos A =20, 即sin (A +φ)=20√9t +64≤1,当且仅当A +φ=π2时取等号,tan φ=82t ,可得9t 2+64≥400,解得t ≥4√213或t ≤−4√213(舍), 即t 的最小值为:4√213.故答案为:4√213. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知e →1,e →2是两个单位向量,夹角为π3,设a→=e →1+2e →2,b→=te →1−3e →2.(1)求|a →|;(2)若a →⊥b →,求t 的值.解:(1)∵|e 1→|=|e 2→|=1,<e 1→,e 2→>=π3, ∴e 1→⋅e 2→=12,∴|a →|=√e 1→2+4e 2→2+4e 1→⋅e 2→=√1+4+2=√7; (2)∵a →⊥b →,∴a →⋅b →=(e 1→+2e 2→)⋅(te 1→−3e 2→)=te 1→2−6e 2→2+(2t −3)e 1→⋅e 2→=t −6+12(2t −3)=0,解得t =154. 18.(12分)已知正三棱柱ABC ﹣A 1B 1C 1的棱长均为2,M 为A 1C 1的中点. (1)求证:BC 1∥平面AB 1M ; (2)求点B 到平面AB 1M 的距离d .证明:(1)连接A 1B 交AB 1于点N ,连接MN ,则正三棱柱中A 1B 1BA 是平行四边形, 所以N 为A 1B 的中点,又M 为A 1C 1的中点,所以MN ∥BC 1,BC 1⊄平面AB 1M ,MN ⊂平面AB 1M ,所以BC 1∥平面AB 1M . 解:(2)过M 作MH ⊥A 1B 1,垂足为H ,由题意可得B 1M =√3,AM =√5,AB 1=2√2,所以B 1M 2+AM 2=AB 12,所以B 1M ⊥AM ,所以△AB 1M 的面积S △AB 1M =12×√3×√5=√152, 因为正三棱柱中平面A 1B 1C 1⊥平面A 1B 1BA ,又平面A 1B 1C 1∩平面A 1B 1BA =A 1B 1,MH ⊂平面A 1B 1C 1,且MH ⊥A 1B 1, 所以MH ⊥平面A 1B 1BA ,即M 到平面A 1B 1BA 的距离为MH =MA 1sin π3=√32,又△ABB 1的面积S △ABB 1=12AB ⋅BB 1=2, 所以V M−ABB 1=13MH ⋅S △ABB 1=13×√32×2=√33,又V M−ABB 1=V B−MAB 1, 所以13S △AB 1M ⋅d =√33,解得d =2√55, 所以点B 到平面AB 1M 的距离为2√55. 19.(12分)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追溯到17世纪的布莱兹•帕斯卡和皮埃尔•德•费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔•西蒙•拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P (AB )=P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A 与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.解:(1)证明:事件A 与事件B 相互独立,则P (AB )=P (A )P (B ), 又由B =A B +AB ,事件A B 和AB 互斥,则有P (B )=P (A B +AB )=P (AB )+P (A B )=P (A )P (B )+P (A B ),变形可得:P (A B )=P (B )﹣P (A )P (B )=[1﹣P (A )]P (B )=P (A )P (B ), 故事件A 与B 相互独立;(2)根据题意,设事件A 1、A 2分别表示甲答对1道、2道题目,事件B 1、B 2分别表示乙答对1道、2道题目,则P (A 1)=2×35×(1−35)=1225,P (A 2)=35×35=925, P (B 1)=2×23×(1−23)=49,P (B 2)=23×23=49, 若甲乙两人在两轮活动中答对3道题,即A 2B 1+A 1B 2,则甲乙两人在两轮活动中答对3道题的概率P =P (A 2B 1+A 1B 2)=P (A 2B 1)+P (A 1B 2)=925×49+1225×49=2875. 20.(12分)某社区工作人员采用分层抽样的方法分别在甲乙两个小区各抽取了8户家庭,统计了每户家庭近7天用于垃圾分类的总时间(单位:分钟),其中甲小区的统计表如下,设x i,y i分别为甲,乙小区抽取的第i户家庭近7天用于垃圾分类的总时间,s x2,s y2分别为甲,乙小区所抽取样本的方差,已知x=18∑8i=1x i=200,s x2=18∑8i=1(x i−x)2=200,y=195,s y2=210,其中i=1,2,⋯,8.(1)若a≤b,求a和b的值;(2)甲小区物业为提高垃圾分类效率,优先试行新措施,每天由部分物业员工协助垃圾分类工作,经统计,甲小区住户每户每天用于垃圾分类的时间减少了5分钟.利用样本估计总体,计算甲小区试行新措施之后,甲乙两个小区的所有住户近7天用于垃圾分类的总时间的平均值z和方差s z2.参考公式:若总体划为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m,x1,s12;n,x2,s22,总的样本平均数为ω,样本方差为s2,则s2=mm+n [s12+(x1−ω)2]+nm+n[s22+(x2−ω)2].解:(1)已知x=18∑8i=1x i=18(200+220+200+180+200+a+b+220)=200,整理得a+b=380,①又s x2=18∑8i=1(x i−x)2=8[3×(200﹣200)2+2×(220﹣200)2+(180﹣200)2+(a﹣200)2+(b﹣200)2]=200,整理得(a﹣200)2+(b﹣200)2=400,②联立①②,解得a=180,b=200或a=200,b=180,因为a≤b,所以a=180,b=200;(2)设甲小区试行新措施之后,甲小区抽取的第i户家庭近7天用于垃圾分类的总时间为m i,此时m i=x i﹣35,则m i=x−35=165,s m2=s x2=200,所以z=116(8m+8y)=12(165+195)=180,s z2=88+8[s m2+(m−z)2]+88+8[s y2+(y−z)]=12[200+(165﹣180)2]+12[210+(195﹣180)2]=430.21.(12分)如图1,在等腰△ABC中,AC=4,A=π2,O,D分别为BC、AB的中点,过D作DE⊥BC于E .如图2,沿DE 将△BDE 翻折,连接BA ,BC 得到四棱锥B ﹣ACED ,F 为AB 中点.(1)证明:DF ⊥平面AOB ;(2)当OB =√2时,求直线BF 与平面BCD 所成的角的正弦值.(1)证明:因为DE ⊥BE ,DE ⊥OE ,且BE ∩OE =E ,BE 、OE ⊂平面BCE , 所以DE ⊥平面BCE ,又OA ∥DE ,所以OA ⊥平面BCE ,设点P 是翻折前点B 所在的位置,则D 为AP 的中点, 因为F 为AB 的中点,所以DF ∥PB ,因为PB ⊂平面BCE ,所以OA ⊥PB ,所以OA ⊥DF , 由题意知,DA =DB ,因为F 为AB 的中点,所以DF ⊥AB , 又OA ∩AB =A ,OA 、AB ⊂平面AOB , 所以DF ⊥平面AOB .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,2√2),P (2√2,0,0),C (﹣2√2,0,0),D (√2,0,√2), 由(1)知,DF ⊥平面AOB ,因为DF ∥PB ,所以PB ⊥平面AOB ,所以PB ⊥OB , 又OB =√2=12OP ,所以∠POB =60°,所以B (√22,√62,0),F (√24,√64,√2), 所以BF →=(−√24,−√64,√2),CD →=(3√2,0,√2),CB →=(5√22,√62,0),设平面BCD 的法向量为n →=(x ,y ,z ),则{n →⋅CD →=0n →⋅CB →=0,即{3√2x +√2z =05√22x +√62y =0, 令x =1,则y =53,z =﹣3,所以n →=(1,53,﹣3), 设直线BF 与平面BCD 所成的角为θ,则sin θ=|cos <BF →,n →>|=|BF →⋅n →||BF →|⋅|n →|=|−√24+√64×5√3−3√2|(24)+(64)√1+(5√3)=4√3355,故直线BF 与平面BCD 所成的角的正弦值为4√3355. 22.(12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,D .对于四个有序点A ,B ,C ,D ,定义比值x =CACBDA DB叫做这四个有序点的交比,记作(ABCD ). (1)证明:(EFGH )=(ABCD );(2)已知(EFGH )=32,点B 为线段AD 的中点,AC =√3OB =3,sin∠ACOsin∠AOB =32,求cos A .解:(1)证明:在△AOC 、△AOD 、△BOC 、△BOD 中,CA CB =S △AOC S △BOC =12OA⋅OCsin∠AOC 12OB⋅OCsin∠BOC =OAsin∠AOC OBsin∠BOC,DA DB=S △AOD S △BOD=12OA⋅ODsin∠AOD 12OB⋅ODsin∠BOD =OAsin∠AOD OBsin∠BOD,所以(ABCD)=CA CB DA DB=OAsin∠AOC OBsin∠BOC OAsin∠AOD OBsin∠BOD=sin∠AOC⋅sin∠BODsin∠BOC⋅sin∠AOD,又在△EOG 、△EOH 、△FOG 、△FOH 中,GE GF =S △EOG S △FOG =12OE⋅OGsin∠EOG 12OF⋅OGsin∠FOG =OEsin∠EOG OFsin∠FOG,HE HF=S △EOH S △FOH=12OE⋅OHsin∠EOH 12OF⋅OHsin∠FOH =OEsin∠EOH OFsin∠FOH,所以(EFGH)=GE GF HE HF=OEsin∠EOG OFsin∠FOG OEsin∠EOH OFsin∠FOH=sin∠EOG⋅sin∠FOHsin∠FOG⋅sin∠EOH ,又∠EOG =∠AOC ,∠FOH =∠BOD ,∠FOG =∠BOC ,∠EOH =∠AOD , 所以sin∠AOC⋅sin∠BOD sin∠BOC⋅sin∠AOD=sin∠EOG⋅sin∠FOH sin∠FOG⋅sin∠EOH,所以(EFGH )=(ABCD ).(2)由题意可得(EFGH)=32,所以(ABCD)=32,即CACB DA DB=32,所以CA CB ⋅DBDA=32,又点B 为线段AD 的中点,即DB DA=12,所以CACB=3,又AC =3,则AB =2,BC =1, 设OA =x ,OC =y 且OB =√3, 由∠ABO =π﹣∠CBO , 所以cos ∠ABO +cos ∠CBO =0, 即2√3)222×2×√3+2√3)222×1×√3=0,解得x 2+2y 2=15,①在△AOB 中,由正弦定理可得AB sin∠AOB =x sin∠ABO,②在△COB 中,由正弦定理可得OB sin∠BCO=y sin∠CBO,③且sin ∠ABO =sin ∠CBO ,②③得,x y=AB sin∠AOB⋅sin∠BCO OB=32×√3=√3,即x =√3y ,④由①④解得x =3,y =√3(负值舍去), 即AO =3,OC =√3所以cosA =AO 2+AB 2−OB 22AO⋅AB =32+22−(√3)22×3×2=56.。
山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。
山东济南市锦泽技工学校2016-2017学年高一下学期期末考试语文试题及答案人教版高一必修四山东深泉高级技工学校2016-2017学年度第二学期期末质量检测高一语文试题姓名_________学号_______班级第Ⅰ卷(选择题)一、单项选择题1.下列各组加点字的读音,完全正确的一组是()A.攻讦(jié)迷惘(wǎng)一暴十寒(pù)缄默不语(ji ān)B.炽热(zhì)缱绻(quǎn)玲珑剔透(tī)明修栈道(zh àn)C.联袂(mèi)逮捕(dǎi)俊秀婀娜(ē)毁家纾难(shū)D.鞭笞(chī)自诩(xǔ)亘古不变(gèn)冠冕堂皇(guàn)【答案】A【解析】试题分析:本题考查识记现代汉语普通话常用字的字音的能力。
题干问“下列词语中的注音,读音全都正确的一组”选项中A项没有错误。
其他选项改正后为:B项中,炽热(chì);C项中,逮捕(dài);D项,冠冕堂皇(guān)。
点睛:字音题考核的内容有多音字、形似字、音近字、形声字、统读字、生僻字、方言误读七类,命题形式主要有,找出注音全部正确的一项、找出读音全部相同(或不同)的一项,找出读音全部相同(或不同)的一组三类。
复习时分类整理记忆,以记忆为主,训练、记忆相结合。
如本题“逮”属于多音字,多音字记忆要找规律,结合词义、词性、运用场合等记忆。
2.下列各组词语的字形,完全正确的一组是()A.雾霭捉迷藏委曲求全一夫挡关,万夫莫开B.暇想度假村趋之若鹜失之东隅,收之桑榆C.取缔威慑力层峦迭嶂项庄舞剑,意在沛公D.摒弃元宵节残羹冷炙百尺竿头,更进一步【答案】D【解析】试题分析:题干问的是“下列各组词语的字形,完全正确的一组”关键词“完全正确的一组”,选项中D中没有错别字;其他选项中错误修改为:一夫当关、遐想、层峦叠嶂。
点睛:汉字的字形考查内容主要包括正确把握字形、不写错别字和工整书写两个方面。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
2016-2017学年山东省济南市高一(上)期末数学试卷一、选择题(共10小题,每小题5分,满分50分)1.(5.00分)直线4x+2y=1的斜率为()A.﹣3 B.3 C.﹣2 D.22.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}3.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=24.(5.00分)某三棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.45.(5.00分)已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线6.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a﹣1,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣37.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.168.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣49.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]10.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)二、填空题(共5小题,每小题5分,满分25分)11.(5.00分)已知函数f(x)=,则f[f(0)+2]=.12.(5.00分)已知底面半径为r,高为4r的圆柱的侧面积等于半径为R的球的表面积,则=.13.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=.14.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.15.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则点E到平面ABCD的距离为.三、解答题(共6小题,满分75分)16.(12.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.17.(12.00分)已知直线l过点(0,5),且在两坐标轴上的截距之和为2.(1)求直线l的方程;(2)若直线l1过点(,﹣1)且与直线l垂直,直线l2与直线l1关于x轴对称,求直线l2的方程.18.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.(1)判断函数g(x)=1﹣的奇偶性;(2)解不等式log(x﹣1)>log(a﹣x).19.(12.00分)已知点P(2,0),及⊙C:x2+y2﹣6x+4y+4=0.(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;(2)设过点P的直线与⊙C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.20.(13.00分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(1)求证:PC⊥AE;(2)求证:CE∥平面PAB;(3)求三棱锥P﹣ACE的体积V.21.(14.00分)已知函数f(x)=.(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.2016-2017学年山东省济南市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5.00分)直线4x+2y=1的斜率为()A.﹣3 B.3 C.﹣2 D.2【解答】解:根据题意,直线方程为4x+2y=1,变形可得:y=﹣2x+;则其斜率k=﹣2;故选:C.2.(5.00分)若集合A={x|y=lg(2x﹣1)},B={﹣2,﹣1,0,1,3},则A∩B 等于()A.{3}B.{1,3}C.{0,1,3}D.{﹣1,0,1,3}【解答】解:由A中y=lg(2x﹣1),得到2x﹣1>0,解得:x>,即A={x|x>},∵B={﹣2,﹣1,0,1,3},∴A∩B={1,3},故选:B.3.(5.00分)以(2,1)为圆心且与直线y+1=0相切的圆的方程为()A.(x﹣2)2+(y﹣1)2=4 B.(x﹣2)2+(y﹣1)2=2 C.(x+2)2+(y+1)2=4 D.(x+2)2+(y+1)2=2【解答】解:∵圆心到切线的距离d=r,即r=d=1+1=2,圆心C(2,1),∴圆C方程为(x﹣2)2+(y﹣1)2=4.故选:A.4.(5.00分)某三棱锥的三视图如图所示,则俯视图的面积为()A.2 B.C.3 D.4【解答】解:由题意,俯视图的上、下底、高分别为1,2,2,其面积为=3,故选:C.5.(5.00分)已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线【解答】解:B点与a确定唯一的一个平面γ与β相交,设交线为b,由面面平行的性质定理知a∥b.故选:D.6.(5.00分)已知f(x)是奇函数,当x>0时,f(x)=2x﹣a﹣1,若f(﹣1)=,则a等于()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵f(x)是奇函数,f(﹣1)=,∴f(1)=﹣,∵当x>0时,f(x)=2x﹣a﹣1,∴f(1)=21﹣a﹣1=,则21﹣a==2﹣2,即1﹣a=﹣2,解得a=3,故选:C.7.(5.00分)已知直线x+ylog4a=0与直线2x﹣y﹣3=0平行,则a的值为()A.B.2 C.4 D.16【解答】解:∵x+ylog4a=0与直线2x﹣y﹣3=0平行,∴2log4a=﹣1,解得a=故选:A.8.(5.00分)已知幂函数f(x)=x a的图象过点(2,),则函数g(x)=(x﹣1)f(x)在区间[,2]上的最小值是()A.0 B.﹣1 C.﹣2 D.﹣4【解答】解:由幂函数f(x)=x a的图象过点(2,),可得2α=,解得α=﹣1,即有f(x)=,函数g(x)=(x﹣1)f(x)==1﹣在区间[,2]上单调递增,则g(x)的最小值为g()=1﹣2=﹣1.故选:B.9.(5.00分)已知函数f(x)=a x﹣1(a>0,且a≠1)满足f(1)>1,若函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是()A.(2,+∞)B.(2,5]C.(1,2) D.(1,5]【解答】解:∵f(1)>1,∴a﹣1>1,即a>2∵函数g(x)=f(x+1)﹣4的图象不过第二象限,∴g(0)=a1﹣1﹣4≤0,∴a≤5,∴a的取值范围是(2,5].故选:B.10.(5.00分)设函数f(x)=x2﹣log2(2x+2).若0<b<1,则f(b)的值满足()A.f(b)>f(﹣)B.f(b)>0 C.f(b)>f(2)D.f(b)<f(2)【解答】解:作出y=x2与y=log2(2x+2)的图象如图:由图象可知当0<x<1时,x2<log2(2x+2).∵0<b<1,∴f(b)=b2﹣log2(2b+2)<0,排除B;∵f(﹣)=+1=>0,排除A;f(2)=4﹣log26>0,排除C.故选:D.二、填空题(共5小题,每小题5分,满分25分)11.(5.00分)已知函数f(x)=,则f[f(0)+2]=1.【解答】解:函数f(x)=,可得f(0)=2×0﹣1=﹣1,f(0)+2=﹣1+2=1,f[f(0)+2]=f(1)=1+log21=1+0=1.故答案为:1.12.(5.00分)已知底面半径为r,高为4r的圆柱的侧面积等于半径为R的球的表面积,则=.【解答】解:设球的半径为R,则球的表面积S=4πR2球因为底面半径为r,高为4r的圆柱的侧面积等于半径为R的球的表面积,所以8πr2=4πR2;所以=.故答案为.13.(5.00分)已知圆C:x2+y2+6y﹣a=0的圆心到直线x﹣y﹣1=0的距离等于圆C半径的,则a=﹣1.【解答】解:把圆的方程化为标准方程得:x2+(y+3)2=a+9,∴圆心坐标为(0,﹣3),则圆心到直线x﹣y﹣1=0的距离d==,∴a=﹣1故答案为﹣1.14.(5.00分)某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.现已知该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,则该品牌汽车7月的产能为万辆.【解答】解:∵某品牌汽车的月产能y(万辆)与月份x(3<x≤12且x∈N)满足关系式.该品牌汽车今年4月、5月的产能分别为1万辆和1.5万辆,∴,解得a=﹣2,b=2,∴,∴该品牌汽车7月的产能为y=﹣2×=万辆.故答案为:.15.(5.00分)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD ∥BC,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则点E到平面ABCD的距离为.【解答】解:过点C作CF⊥AD于F,过F作EF⊥AD交PD于E,则EF⊥平面ABCD,∵PA⊥底面ABCD,∴EF∥PA,∵BA⊥AD,CF⊥AD,∴AB∥FC,∵PA∩AB=A,EF∩FC=F,PA,AB⊂平面PAB,EF,FC⊂平面EFC,∴平面PAB∥平面EFC,∵CE⊂平面EFC,∴CE∥平面PAB,∴EF=PA=.故答案为:.三、解答题(共6小题,满分75分)16.(12.00分)已知全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8}.(1)求A∩(∁U B)和(∁U A)∩(∁U B);(2)若集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},求a+b的值.【解答】解:(1)全集U=R,集合A={x|﹣1<x<5},B={x|2<x<8},∴∁U B={x|x≤2或x≥8},∴A∩(∁U B)={x|﹣1<x≤2};又A∪B={x|﹣1<x<8},∴(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤﹣1或x≥8};(2)∵∁U A={x|x≤﹣1或x≥5},集合C={x|a+1≤x≤2a﹣2},且(∁U A)∩C={x|6≤x≤b},∴a+1=6,且b=2a﹣2;解得a=5,b=8;∴a+b=13.17.(12.00分)已知直线l过点(0,5),且在两坐标轴上的截距之和为2.(1)求直线l的方程;(2)若直线l1过点(,﹣1)且与直线l垂直,直线l2与直线l1关于x轴对称,求直线l2的方程.【解答】解:(1)∵直线l过点(0,5),且在两坐标轴上的截距之和为2,∴直线在x,y轴上的截距分别为﹣3,5,∴直线l的方程为=1,即5x﹣3y+15=0;(2)直线l1过点(,﹣1)且与直线l垂直,方程为3x+5y﹣3=0,∵直线l2与直线l1关于x轴对称,∴直线l2的斜率为,且过点(1,0),∴直线l2的方程为y=(x﹣1),即3x﹣5y﹣3=0.18.(12.00分)已知a>0,a≠1且log a3>log a2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.(1)判断函数g(x)=1﹣的奇偶性;(2)解不等式log(x﹣1)>log(a﹣x).【解答】解:(1)∵a>0,a≠1且log a3>log a2,∴a>1,又∵函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1,∴log a2a﹣log a a=1,即log a2=1,解得a=2;∵函数g(x)的定义域为R,且g(x)=1﹣=1﹣=,∴g(﹣x)===﹣=﹣g(x),∴g(x)是定义域R上的奇函数;(2)不等式log(x﹣1)>log(a﹣x),∴,解得1<x<,故所求不等式的解集为(1,).19.(12.00分)已知点P(2,0),及⊙C:x2+y2﹣6x+4y+4=0.(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;(2)设过点P的直线与⊙C交于A、B两点,当|AB|=4,求以线段AB为直径的圆的方程.【解答】解:(1)由题意知,圆的标准方程为:(x﹣3)2+(y+2)2=9,①设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2)即kx﹣y﹣2k=0又⊙C的圆心为(3,﹣2),r=3,由所以直线方程为即3x+4y﹣6=0;②当k不存在时,直线l的方程为x=2.综上,直线l的方程为3x+4y﹣6=0或x=2;(2)由弦心距,即|CP|=,设直线l的方程为y﹣0=k(x﹣2)即kx﹣y﹣2k=0则圆心(3,﹣2)到直线l的距离d==,解得k=,所以直线l的方程为x﹣2y﹣2=0联立直线l与圆的方程得,消去x得5y2﹣4=0,则P的纵坐标为0,把y=0代入到直线l中得到x=2,则线段AB的中点P坐标为(2,0),所求圆的半径为:|AB|=2,故以线段AB为直径的圆的方程为:(x﹣2)2+y2=4.20.(13.00分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(1)求证:PC⊥AE;(2)求证:CE∥平面PAB;(3)求三棱锥P﹣ACE的体积V.【解答】解:(1)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.取PC中点F,连AF,EF,∵PA=AC=2,∴PC⊥AF.∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,又∠ACD=90°,即CD⊥AC,∴CD⊥平面PAC,∴CD⊥PC,∴EF⊥PC,∴PC⊥平面AEF,∴PC⊥AE.(2)证明:取AD中点M,连EM,CM.则EM∥PA.∵EM⊄平面PAB,PA⊂平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,AC=AM=2,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC⊂平面EMC,∴EC∥平面PAB.(3)由(1)知AC=2,EF=CD,且EF⊥平面PAC.在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.则V=V E=•S△PAC•EF=•(•2•2)•=.﹣PAC21.(14.00分)已知函数f(x)=.(1)求函数f(x)的零点;(2)若实数t满足f(log2t)+f(log2)<2f(2),求f(t)的取值范围.【解答】解:(1)当x<0时,解得:x=ln=﹣ln3,当x≥0时,解得:x=ln3,故函数f(x)的零点为±ln3;(2)当x>0时,﹣x<0,此时f(﹣x)﹣f(x)===0,故函数f(x)为偶函数,又∵x≥0时,f(x)=为增函数,∴f(log2t)+f(log2)<2f(2)时,2f(log2t)<2f(2),即|log2t|<2,﹣2<log2t<2,∴t∈(,4)故f(t)∈(,)。