制动供能控制传动装置
- 格式:ppt
- 大小:5.66 MB
- 文档页数:30
从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。
近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。
汽车制动系统种类很多,形式多样。
传统的制动系统结构型式主要有机械式、气动式、液压式、气—液混合式。
它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。
伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。
新型动力系统的出现也要求制动系统结构型式和功能形式发生相应的改变。
例如电动汽车没有内燃机,无法为真空助力器提供真空源,一种解决方案是利用电动真空泵为真空助力器提供真空。
汽车制动系统的发展是和汽车性能的提高及汽车结构型式的变化密切相关的,制动系统的每个组成部分都发生了很大变化。
1 汽车制动系统的组成制动系统主要由下面的4个部分组成:(1)供能装置:也就是制动能源,包括供给、调节制动所需能量以及各个部件,产生制动能量的部分称为制动能源;(2)控制装置:包括产生制动动作和控制制动效果的部件;(3)传动装置:包括把制动能量传递到制动器的各个部件;(4)制动器:产生阻碍车辆运动或者运动趋势的力的部件,也包括辅助制动系统中的部件。
现代的制动系统还包括制动力调节装置和报警装置,压力保护装置等辅助装置。
1.1 供能装置的发展供能装置主要是指制动能源,制动能源有人力制动、伺服制动、动力制动或者上述任两者的结合使用。
人力制动是开始有制动系统时的制动能源,它有机械式制动、液压式制动两种形式。
机械式制动主要用于驻车制动系统中,驻车制动系统中要求用机械锁止方法保证汽车在原地停止不动,在任何情况下不至于滑动。
液压式制动是通过制动踏板推动制动主缸,进而使制动器进入工作状态。
伺服制动兼用人力和发动机作为制动能源,正常情况下制动能量由动力伺服系统供给,动力伺服系统失效时可由人力供给制动能量,这时伺服制动就变为人力制动。
目录1、汽车制动系统概述及设计要求 (4)1.1 概述 (4)1.1.1制动系统的组成 (4)1.1.2 制动系统的类型 (4)1.2 设计制动系统时应满足的要求 (5)2、整车性能参数: (6)3、制动器形式的选择 (6)4、鼓式与盘式制动器主要参数的确定 (8)4.1制动鼓内径D (8)4.2摩擦衬片宽度b和包角β (8)4.3摩擦衬片起始角 0 (9)4.4制动器中心到张开力0F作用线的距离e (10)4.5制动蹄支撑点位置坐标a和c (10)4.6摩擦片摩擦系数 (10)4.7制动盘直径D (10)4.8制动盘的厚度h (11)4.9摩擦衬块内外半径的确定 (11)4.10制动衬块工作面积A (11)5、鼓式制动器主要零部件的设计 (12)5.1制动蹄 (12)5.2制动鼓 (12)5.3摩擦衬片 (13)5.4摩擦材料 (14)5.5蹄与鼓之间的间隙自动调整装置 (14)5.6制动支承装置 (16)5.7制动轮缸 (16)5.8张开机构 (16)6、盘式制动器主要零部件设计计算 (17)6.1 滑动钳体 (17)6.2 固定支架 (17)6.3 制动盘 (17)6.4 制动块 (17)6.5同步附着系数的确定 (19)6.6地面对前、后轮的法向反作用力 (19)6.7制动力分配系数的确定β[]4 (20)6.8前、后制动器制动力矩的确定[]4 (20)6.9应急制动和驻车制动所需的制动力矩[]1 (21)6.9.1应急制动 (21)6.9.2驻车制动 (22)6.9.3衬片磨损特性的计算 (23)7、制动驱动机构的设计与计算 (25)7.1 制动驱动机构的形式 (25)7.2 分路系统 (26)7.3 液压制动驱动机构的设计计算 (28)7.3.1 制动轮缸直径的确定 (28)7.3.2 制动主缸直径的确定 (29)7.3.3制动踏板力p F和制动踏板工作行程p S (30)7.3.4真空助力器的设计计算 (31)8、制动性能分析 (31)8.1制动性能评价指标 (31)8.2 制动效能 (31)8.3 制动效能的恒定性 (32)8.4 制动时汽车的方向稳定性 (32)8.5制动器制动力分配曲线分析 (32)8.6制动减速度j和制动距离S (34)参考文献 (35)1、汽车制动系统概述及设计要求1.1 概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。