(完整版)_三角形形状判断
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
判断三角形形状三角形是几何学中的基本形状之一,由三条线段构成。
根据三条边的长度或者三个角的大小,我们可以判断一个三角形的形状。
本文将介绍三种常见的三角形形状,分别是等边三角形、等腰三角形和一般三角形。
一、等边三角形等边三角形是指三条边的长度都相等的三角形。
换句话说,等边三角形的三个角都是60度。
以国际象棋中的象齿为例,就是一个典型的等边三角形。
二、等腰三角形等腰三角形是指两条边的长度相等的三角形。
在等腰三角形中,两个底角(底边两侧的角)相等,而顶角(底边对面的角)则不一定相等。
可以通过测量三角形的边长来判断是否为等腰三角形。
三、一般三角形一般三角形是指三条边的长度都不相等的三角形。
在一般三角形中,三个角的大小也不相等。
只要满足不同边长的几何约束,可以构成无数种形状的一般三角形。
判断一个三角形的形状需要测量角度或边长。
这可以通过以下方法进行:1. 根据边长判断形状:- 三条边长度相等,则为等边三角形;- 两条边长度相等,则为等腰三角形;- 三条边长度都不相等,则为一般三角形。
2. 根据角度判断形状:- 三个角度都为60度,则为等边三角形;- 两个角度相等,则为等腰三角形;- 三个角度都不相等,则为一般三角形。
在实际测量中,我们可以使用量角器来测量角度,使用尺子或直尺来测量边长。
这些工具可以帮助我们准确判断三角形的形状。
除了以上的方法外,还有一些特殊的三角形需要特别注意。
例如直角三角形,其中一个角为90度;锐角三角形,三个角都小于90度;钝角三角形,一个角大于90度。
总结:通过测量角度或边长,我们可以判断三角形的形状。
等边三角形的边长和角度都相等;等腰三角形的两条边长相等或两个角度相等;一般三角形的边长和角度都不相等。
使用合适的工具和准确的测量方法,我们可以迅速判断三角形的形状,提高对几何图形的理解和分析能力。
三角形是几何学中的重要概念,理解三角形的形状有助于我们解决实际问题和推导几何证明。
无论是数学学习还是工程实践,对三角形的形状判断都具有重要的意义。
(一)相似三角形1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1 •所以全等三角形是相似三角形的特例•其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0△ ABC的相似比「当它们全等时,才有k=k' =1③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:•/ DE // BC ,•••△ ABC ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”;③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADEA(双A型)例2、如图,E、F分别是△ ABC的边BC上的点,DE // AB,DF // AC , 求证:△ ABC DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题06解三角形之判断三角形形状和边角证明类问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
但在三角形...中,sin sin A B A B >⇔>成立一、单选题1.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()()2a b c b c a bc +++-=,那么ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .无法确定【答案】B【分析】已知等式左边利用平方差公式即完全平方公式化简,整理后利用勾股定理的逆定理判断即可得到结果.【详解】在ABC 中,()()()2222222a b c b c a b c a b c a bc bc +++-=+-=+-+=,2220b c a ∴+-=,即222b c a +=,则ABC 为直角三角形,故选:B.2.在ABC 中,,,A B C 的对边分别是,,a b c ,若222a b c +<,则ABC 的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .锐角或直角三角形3.在ABC 中,1cos b cA c++=,则三角形的形状为()A .直角三角形B .等腰三角形或直角三角形C .正三角形D .等腰三角形【答案】A【分析】利用余弦定理化简题给条件即可得到222c b a =+,进而得到ABC 的形状为直角三角形.二、基础知识过关4.ABC ∆中,sin sin A B >是a b >的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在Rt ABC 中,90ACB ∠=︒,AB c =,AC b =,BC a =,则下列关系不成立的是()A .cos a cB =⋅B .tan tan 1A B ⋅=C .cos b c A =⋅D .tan a b B=6.ABC 的三边分别为a ,b ,c ,若ABC 是锐角三角形,则()A .sin cos AB <B .tan tan 1A B >C .cos()0A B +>D .sin()sin A B C+>二、填空题7.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos bA c=,则ABC 的形状是____________(填“直角三角形”,“锐角三角形”,“钝角三角形”中的一个).8.ABC 中,角,,A B C 所对的边分别为,,a b c .且满足2cos a b C =,则此三角形的形状是_____.【答案】等腰三角形【分析】利用正弦定理边角互化,由π()A B C =-+结合三角函数和差公式和角的范围即可得B C =,即可得到结果.【详解】因为2cos a b C =,所以由正弦定理可得sin 2sin cos A B C =,又在ABC 中π()A B C =-+,所以sin sin()sin cos sin cos 2sin cos A B C B C C B B C =+=+=,所以sin cos sin cos 0C B B C -=即sin()0C B -=,由,(0,π)B C ∈,故B C =,则此三角形的形状是等腰三角形,故答案为:等腰三角形四、解题技巧实战1.已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且(cos cos )a b c B A -=-.(1)判断ABC 的形状;2.已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且2AB AC BA BC CA CB⋅+⋅=⋅(1)若cos cos A Bb a=,判断ABC 的形状并说明理由;3.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知()2tan tan cos cos A BA B B A+=+.(1)证明:2a b c +=;4.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,证明:2sin a bc C--=.1.(2022·高三课时练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos cos a A b B c C +=,判断ABC 的形状.2.(2022春·福建厦门·高三厦门外国语学校校考期中)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b c =sin cos b A B =.(1)判断ABC 的形状;(2)若O 为ABC 所在平面内一点,且O ,C 在直线AB 的异侧,22OA OB ==,求OC 的最大值.五、跟踪训练达标θ32在AOB 中,由正弦定理可知:sin AB 由余弦定理可知,2cos OB OBA ∠=∴233sin cos 4AB OBC AB AB θ-∠=-=∴在OBC △中,由余弦定理可得:2222cos OC OB BC OB BC 3.(2023春·江苏宿迁·高三校考阶段练习)(1)在ABC 中,角,,A B C 所对的边分别为,,a b c ,若222b c a bc +=+,tan tan tan A B A B ++,判断ABC 的形状;(2)在ABC 中,120,B AB == A 的平分线AD =,求AC 的长.2sin 2ADB ∠∴=,由题意知060ADB ∠<< 4.(2022秋·江苏苏州·高三校考阶段练习)在ABC 中,角A ,B ,C 成等差数列,角A ,B ,C 所对的边分别为a ,b ,c .(1)若aa bba b c+=++,判断ABC 的形状;(2)若ABC 不是钝角三角形,求ac的取值范围.5.(2022秋·湖南长沙·高三长沙一中校考开学考试)已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且2AB AC BA BC CA CB ⋅+⋅=⋅ (1)若cos cos A Bb a=,判断ABC 的形状并说明理由;(2)若ABC 是锐角三角形,求sin C 的取值范围.6.(2022·全国·高三专题练习)已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且()cos cos a b c B A -=-.(1)判断ABC 的形状并给出证明;(2)若a b ¹,求sin sin sin A B C ++的取值范围.7.(河北·模拟预测)在△ABC 中,()12cos c b A =+,求证:2A B =.所以A B B -=或180A B B -+=(舍),所以2A B =8.(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.9.(2021·全国·高三专题练习)在ABC 中,求证:(1)()()222222tan tan 0a b c A a b c B --+-+=;(2)2222cos 2cos 211A B a b a b-=-.【答案】(1)证明见解析;(2)证明见解析;【分析】(1)根据余弦定理将2222222cos ,2cos bc A ac B a b c a b c ==---+-代入左式,整理结合正弦定理,即可证明等式;(2)用二倍角公式将cos2,cos2A B 转化为sin ,sin A B ,再由正弦定理,即可证明等式.10.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)已知,,a b c 分别为ABC 的三个内角,,A B C 的对边,sin sin sin sin a b C B c A B--=+.(1)求A ;(2)若33c b =,证明:2c b =.11.(2023·高三课时练习)在ABC 中,22sin cos 222+=(1)求B 的大小;(2))2a c b +=,证明:a c =.12.(2020春·山东济南·高三统考期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 为AB 的中点.(1)证明:CD =.(2)已知4a =,6b =,4CD =,求ABC 的面积.。
专题17 判定三角形形状的十种常用方法【专题综述】三角形既可以按边分类也可以按角分类,当我们得到了它们的边(或角)之间的关系或最大角的度数时,就能据此判定三角形的形状.这也是考试中的常考题型,本文就判定三角形形状的常用方法归纳介绍如下,供参考.【方法解读】一、利用因式分解例1 在△A BC中,∠A、∠B、∠C所对的边分别为a、b、c,且a2+2ab=c2+2bc,试判定△ABC的形状。
解:∵a2+2ab=c2+2bc,a2-c2+2ab-2bc=0,即(a-c)(a+c)+2b(a-c)=0,∴(a-c)(a+c+2b)=0.∵a+c+2b≠0,,∴a-c=0,即a=c,故△ABC是等腰三角形.【解读】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=c,即可确定出三角形形状,此题考查了三角形边的牲与因式分解的应用,熟练掌握因式分解的方法是解本题的关键。
【举一反三】(2017秋•分宜县校级月考)已知a,b,c是△ABC的三边,且满足a2﹣b2+ac﹣bc=0,判断三角形的形状.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.二、利用配方法例2 已知a、b、c是△ABC的三边,且满足a4+b4+c4=a2b2+b2c2+c2a2,试判定三角形的形状.解:将a4+b4+c4=a2b2+b2c2+c2a2变形为:2a4+2b4+2c4-2a2b2-2b2C2-2c2a2=0.配方,得(a2-b2)2+(b2-c2)2+(c2-a2)2=0,a2-b2=b2-c2=c2-a2=0.即a2=b2=c2.又∵a,b,c均为正数,∴a=b=c.故三角形为等边三角形,【解读】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.【举一反三】(2015春•六合区期末)已知a、b、c是△ABC的三边,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,请你根据此条件判断这个三角形的形状,并说明理由.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【举一反三】(2016春•雁塔区校级期末)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.【分析】根据非负数的性质可得a2﹣b2﹣c2=0,b﹣c=0,进而可得a2﹣b2=c2,b=c,从而可得三角形的形状.8.(2016秋•简阳市期中)已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.9.(2017春•惠民县校级月考)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.学#科*网。
如何正确判断三角形的形状正(余)弦定理是三角函数知识的重要组成部分,它揭示了三角形的边、角关系,是高考的热点之一。
利用正、余弦定理判断三角形的形状,是正、余弦定理应用的重要方面。
1 利用正弦定理判断三角形的形状1.1 在△ABC中,若a2tanB=b2tanA,判断△ABC的形状。
分析:正确使用正弦定理,将已知条件中的边化角后判断△ABC的形状。
解:在△ABC中,有正弦定理:===2Ra=2RsinA,b=2RsinB,∵a2tanB=b2tanA∴(2RsinA)2· =(2RsinB)2· 2sinA2cosA=2sinBcosBsin2A=sin2B,因为A、B为三角形的内角,∴2A=2B或2A=π-2BA=B或A+B=,所以△ABC为等腰三角形或直角三角形。
点评:本题利用正弦定理将已知条件转化成角的关系,利用诱导公式对条件进行化简、整理判断三角形的形状,同时注意角的关系有两种情况。
1.2 已知△ABC中,设=,=,=,则·=·=·判断△ABC的形状。
分析:要判断△ABC的形状,只需确定△ABC的三边或三角即可,此题解题的关键是建立向量的数量积与△ABC的边角关系。
解:如图所示:·=·得∵| |·||·cos(π-C)=| |·| |·cos(π-A), ∴| |·cosC=| |·cosA由正弦定理:a:c=sinA:sinC得sinAcosC=sinCcosA∴sin(A-C)=0,又∵-π<A-C<π ∴A-C=0即A=C,同理由·=·可得B=C,∴A=B=C即△ABC为正三角形。
点评:由===2Ra:b:c=sinA:sinB:sinC可以看出在题目中出现边的齐次式之比时,可以利用正弦定理将相应的边化为角。
2 利用余弦定理判断三角形的形状2.1 在△ABC中,若cos2=,试判断△ABC的形状。
全等三角形第 1 节全等三角形的性质和判断【知识梳理】1、全等图形:能够完整重合的两个图形就是全等图形.2、全等三角形的观点与表示:能够完整重合的两个三角形叫作全等三角形.能够互相重合的极点、边、角分别叫作对应极点、对应边、对应角.全等符号为“≌”.3、全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角均分线相等,面积相等.4、全等三角形的判断方法:(1)边角边定理 ( SAS) :两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理 ( ASA) :两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理 ( SSS) :三边对应相等的两个三角形全等.(4)角角边定理 ( AAS ) :两个角和此中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理 ( HL ) :斜边和一条直角边对应相等的两个直角三角形全等.【诊疗自测】1、假如ABC≌Δ DBC,则 AB的对应边是_____,AC的对应边是_____,∠DBC的对应角是_____,∠ DCB的对应角是_____.2、如图,已知△ABE≌△ DCE, AE=2 cm, BE=1.5 cm,∠ A=25°,∠ B=48°;那么 DE=_____cm,EC= _____cm,∠C= _____°;∠D= _____°.C 和点E,点 B 和点D 分别是对应点,则另一3、假如△ABC和△ DEF这两个三角形全等,点组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是.【考点打破】种类一:全等形例 1、由同一张底片冲刷出来的两张五寸照片的图案 _____全等图案,而由同一张底片冲刷出来的五寸照片和七寸照片 ____全等图形。
(填“是”或许“不是”)种类二:全三角形的定义和性质例 2、如图,点 E,F 在线段 BC 上,△ ABF 与△ DCE 全等,点 A 与点 D ,点 B 与点 C 是对应极点, AF 与 DE 交于点 M ,则∠ DCE= ()A .∠B B.∠ A C.∠ EMF D .∠ AFB例 3、如图,△ ABE 和△ ADC 是△ ABC 分别沿着AB 、AC 边翻折 180°形成的,若∠ BAC :∠ABC :∠ BCA=28 : 5: 3,则∠α的度数为()A . 90° B. 85° C. 80° D. 75°种类三:全等三角形的判断(SSS)例 4、用直尺和圆规作一个角等于己知角的作图印迹如下图,则作图的依照是()A . SSS B. SAS C. ASA D. AAS例 5、已知:如图 2- 1,△ RPQ 中, RP= RQ, M 为 PQ 的中点.求证: RM 均分∠ PRQ.剖析:要证 RM 均分∠ PRQ,即∠ PRM= ______,只需证 ______≌ ______证明:∵M 为 PQ 的中点(已知),∴______= ______在△ ______和△ ______中,RP RQ(已知 ),PM ______,______ ______(),∴______≌ ______().∴∠ PRM = ______( ______).即 RM.例 6.已知:如图, AD =BC. AC= BD .试证明:∠ CAD =∠ DBC .种类四:全等三角形的判断(SAS)例 7. 已知:如图3-1,AB、CD订交于O点,AO=CO,OD=OB.求证:∠ D=∠ B.剖析:要证∠ D=∠ B,只需证 ______≌ ______证明:在△ AOD 与△ COB 中,AO CO ( ),______ ______( ),OD ______( ),∴△ AOD ≌△ ______ ().∴∠D=∠ B ( ______).例8、小红家有一个小口瓶(如下图),她很想知道它的内径是多少?可是尺子不可以伸在里边直接测,于是她想了想,唉!有方法了.她拿来了两根长度同样的细木条,而且把两根长木条的中点固定在一同,木条能够绕中点转动,这样只需量出AB 的长,就能够知道玻璃瓶的内径是多少,你知道这是为何吗?请说明原因.(木条的厚度不计)例 9、如图,将两个一大、一小的等腰直角三角尺拼接∠ABC= ∠ EBD=90 °),连结 AE 、 CD,试确立 AE 结论.(A 、B、D 三点共线,AB=CB ,EB=DB ,与 CD 的地点与数目关系,并证明你的种类五:全等三角形的判断(AAS和 ASA)例 10、某同学把一块三角形的玻璃打坏成了 3 块,现要到玻璃店去配一块完整同样的玻璃,同学小明知道只需带③ 去就行了,你知道此中的道理是()A . SAS B. SSA C. ASA D. HL例 11.如图,已知△ ABC的六个元素,则以下甲、乙、丙三个三角形中和△ABC 全等的图形是例 12、已知:如图,PM = PN,∠ M=∠ N.求证: AM= BN.剖析:∵ PM= PN,∴要证AM=BN,只需证PA= ______,只需证 ______≌ ______.证明:在△ ______与△ ______中,______ ______( ),______ ______( ),______ ______( ),∴△ ______≌△ ______ ().∴ PA= ______ ().∵PM=PN (),∴PM - ______= PN- ______,即 AM = ______.例 13、已知: AB ⊥ AE ,AD ⊥ AC ,∠ E=∠ B, DE=CB .求证: AD=AC ..例 14、如图,在△ ABC中,∠ ACB=90°, AC=BC,BE⊥CE于点 E. AD⊥CE于点D.求证:△ DEC≌△ CDA.种类六:全等三角形的判断(HL)例 15. 已知在△ ABC和△ DEF中 , ∠ A=∠D=90°, 则以下条件中不可以判断△ABC和△DEF全等的是 ( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠ F,BC=EF例 16、如下图,在△ ABC中,∠ C=90°, DE⊥AB 于点 D, BD=BC,若 AC=6,则AE+DE=_____BDAE C【易错优选】1、如下图,△ABC ≌△ DEC,则不可以获得的结论是()A . AB=DEB .∠ A= ∠ D C. BC=CD D .∠ ACD= ∠ BCE2、如图,梯形 ABCD中,AD∥BC,点 M是 AD的中点,且 MB=MC,若 AD=4,AB=6,BC=8,则梯形 ABCD的周长为()A.22 B.24 C.26 D. 283、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度 DF 相等,则∠ ABC+∠ DFE=__________度【精髓提炼】判断三角形全等的基本思路:找夹角SAS已知两边 SS找直角HL找另一边SSS边为角的对边→找随意一角→AAS找这条边上的另一角→ASA已知一边一角 SA边就是角的一条边找这条边上的对角→AAS找该角的另一边→ SAS找两角的夹边ASA已知两角 AA找随意一边AAS备注:找寻对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边 ( 或最大角 ) 是对应边 ( 或对应角 ) ,一对最短边 ( 或最小角 ) 是对应边 ( 或对应角 ) .要想正确地表示两个三角形全等,找出对应的元素是重点.全等三角形的图形概括起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型【本节训练】训练【 1】如图, E 为线段 BC 上一点, AB ⊥BC,△ ABE ≌△ ECD ,判断 AE 与 DE 的关系,并证明你的结论.训练【 2】如图,点A、F、C、D在同向来线上,点 B 和点 E 分别在直线 AD的双侧,且 AB=DE,∠ A=∠ D,AF= DC.求证: BC∥EF.训练【 3】已知图中的两个三角形全等,则∠ 1 等于度.【训练 4】.如图,∠ BAC= ∠DAE ,∠ ABD= ∠ ACE ,AB=AC .求证: BD=CE .基础稳固一、选择题1、以下说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.此中正确的有().A、1 个B、2 个C、3 个D、4 个DE=BC,以D、 E 为两个极点作地点不一样的三2、如图,△ABC是不等边三角形,角形,使所作三角形与△ABC全等,这样的三角形最多能够画出[ ] .A.2 个B.4 个C.6 个D.8 个3、以下说法正确的选项是()A、全等三角形是指周长和面积都同样的三角形;B、全等三角形的周长和面积都同样;C、全等三角形是指形状同样的两个三角形;D、全等三角形的边都相等4、以下两个三角形中,必定全等的是()A.两个等边三角形B.有一个角是 40°,腰相等的两个等腰三角形C.有一条边相等,有一个内角相等的两个等腰三角形D.有一个角是 100°,底相等的两个等腰三角形5、如图,△ ABC与△ BDE都是等边三角形, AB<BD,若△ ABC不动,将△ BDE绕点CD的大小关系为( )B 旋转,则在旋转过程中,AE与A.AE=CD B . AE>CD C.AE<CD D.没法确立ECA B D6、如图,已知 AB=AD,那么增添以下一个条件后,仍没法判断△ABC≌△ ADC的是()A.CB=CD B .∠ BAC=∠DAC C.∠ BCA=∠ DCA D.∠ B=∠D=90°二、填空题6、如图,在△ ABC 中,AD⊥ BC 于 D,BE⊥ AC 于 E,AD 与 BE 订交于点F,若 BF=AC,则∠ ABC=_______7、如图,等腰直角三角形ABC的直角极点 B 在直线 PQ上,AD⊥ PQ于 D,CE⊥PQ 于 E,且 AD=2cm,DB=4cm,则梯形 ADEC的面积是 _____ .8、(着手操作实验题)如下图是小明自制对顶角的“小仪器”表示图:(1)将直角三角板 ABC的 AC边延伸且使 AC固定;(2)另一个三角板 CDE?的直角极点与前一个三角板直角极点重合;(3)延伸 DC,∠PCD与∠ ACF就是一组对顶角,已知∠ 1=30°,∠ ACF为多少?三、简答题9、如图,已知AB=AC ,∠ 1=∠ 2,AD=AE ,求证:∠ C=∠ B.10、如图,在△ ABC中, AD是∠ BAC的均分线, DE、DF分别是△ ABD和△ ACD的高线,求证: AD⊥EF。
全等三角形》讲义(完整版)全等三角形讲义全等三角形定义:若两个三角形形状大小相同,能够完全重合,则它们是全等形三角形。
对应顶点、对应边、对应角均重合。
全等三角形的性质是对应边相等,对应角相等。
全等三角形判定定理:1.边边边定理(SSS):若两个三角形的三条边对应相等,则它们是全等三角形。
2.边角边定理(SAS):若两个三角形的一条边和它们的夹角对应相等,且另一条边对应相等,则它们是全等三角形。
3.角边角定理(ASA):若两个三角形的两个角和它们的夹边对应相等,则它们是全等三角形。
4.角角边定理(AAS):若两个三角形的两个角和其中一个角的对边对应相等,则它们是全等三角形。
5.斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则它们是全等三角形。
角平分线的性质:在角平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。
典型例题举例:1.已知△ABN≌△ACM,对应角为∠B和∠C,对应边为AB和AC。
2.已知AB=AC,AD是连结点A与BC中点D的支架,求证△ABD≌△ACD。
3.已知点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF,求证△ABE≌△CDF。
4.在△ABC中,D在AB上,E在AC上,AB=AC,∠B =∠C,求证AD=AE。
5.已知∠1=∠2,∠3=∠4,求证AC=AD,其中D是线段BC上的一点,且BD=DC。
6.在图中,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,判断AB是否平行于CD,说明理由。
7.在图1中,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,判断△ABC与△AEG 面积之间的关系,并说明理由。
8.在图中,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF。
(完整版)三角形的经典题型三角形的经典题型1. 题型一:根据边长判断三角形类型根据三角形的边长可以判断其类型,主要有以下几种情况:1. 等边三角形:三条边的长度都相等。
2. 等腰三角形:两条边的长度相等,第三条边与它们不相等。
3. 直角三角形:其中一条边与另外两条边呈直角关系。
4. 一般三角形:三条边的长度都不相等。
2. 题型二:根据角度判断三角形类型根据三角形的角度大小可以判断其类型,主要有以下几种情况:1. 锐角三角形:三个角都小于90度。
2. 钝角三角形:三个角中有一个角大于90度。
3. 直角三角形:其中一个角为90度。
3. 题型三:勾股定理勾股定理是三角形的重要定理之一,可以用于解决与三角形边长和角度相关的问题。
根据勾股定理,对于一个直角三角形,其两个较短的边的平方和等于最长边的平方。
勾股定理的数学表达式为:a^2 + b^2 = c^24. 题型四:计算三角形的面积计算三角形的面积可以使用以下方法:1. 根据底边和高的关系:面积 = 1/2 * 底边长度 * 对应的高。
2. 根据两边和夹角的关系:面积 = 1/2 * 边1长度 * 边2长度 * sin(夹角)。
5. 题型五:解决三角形的相似性问题当两个三角形的对应的角度相等,且对应的边长成比例时,可以判断它们为相似三角形。
相似三角形有以下性质:1. 对应角度相等。
2. 对应边长成比例。
6. 题型六:海伦公式海伦公式是计算三角形面积的一种方法,适用于已知三边长度的情况。
根据海伦公式,可以计算三角形面积的公式如下:面积 = sqrt(s * (s - a) * (s - b) * (s - c))其中,s为三边长度之和的一半,a、b、c为三边长度。
以上是一些关于三角形的经典题型和解题方法的简要介绍。
希望对你有所帮助!。
判定三角形形状的十种常用方法三角形既可以按边分类也可以按角分类,当我们得到了它们的边(或角)之间的关系或最大角的度数时,就能据此判定三s角形的形状.本文就判定三角形形状的常用方法归纳介绍如下,供参考.一、利用因式分解例1 在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a2+2ab=c2+2bc,试判定△ABC的形状,解∵a2+2ab=c2+2bc,a2-c2+2ab-2bc=0,即(a-c)(a+c)+2b(a-c)=0,∴(a-c)(a+c+2b)=0.∵a+c+2b≠0,,∴a-c=0,即a=c,故△ABC是等腰三角形.二、利用配方法例2 已知a、b、c是△ABC的三边,且满足a4+b4+c4=a2b2+b2c2+c2a2,试判定三角形的形状.解将a4+b4+c4=a2b2+b2c2+c2a2变形为:2a4+2b4+2c4-2a2b2-2b2C2-2c2a2=0.配方,得(a2-b2)2+(b2-c2)2+(c2-a2)2=0,a2-b2=b2-c2=c2-a2=0.即a2=b2=c2.又∵a,b,c均为正数,∴a=b=c.故三角形为等边三角形,三、利用根的判别式例3 已知a、b、c是△ABC的三边,且方程(a2+b2+c2)x2-(a+b+c)x+34=0有实根,试判定△ABC的形状.解据题意,有△=[-(a+b+c)]2-4(a2+b2+c2)×3 4=a2+b2+c2+2ab+2bc+2ac-3a2-3b2-3c2=-[(a-b)2+(b-c)2+(a-c)2]≥0,∴(a-b)2+(b-c)2+(a-c)2≤0.又∵(a-b)2+(b-c)2+(a-c)2≥0,∴(a-b)2+(b-c)2+(a-c)2=0.∴a=b,b=c,a=c,从而a=b=c,故△ABC是等边三角形.四、利用构造方程例4 已知k>1,b=2k,a+c=2k2,ac=k4-1,试判定以a、b、c为边的三角形形状,解由a+c=2k2,ac=k4-1,可知a、c是方程x2-2k2x+k4-1=0的两个根.解得x1=k2+1,x2=k2-1,∴a=k2+1,c=k2-1,或a=k2-1,c=k2+1.∵(k2-1)2+(2k)2=(k2+1)2,∴b2+c2=a2,或a2+b2=c2,所以△ABC是直角三角形.五、利用公共根例5 设a、b、c是△ABC的三边长,方程x2+2ax+b2=0与x2+2cx-b2=0有一个相同的根,求证:△ABC是直角三角形证明设两个方程的相同根(公共根)为a,则a2+2aα+b2=0①,α2+2cα-b2=0②.①-②,得2(a-c) α=-2b2,即(c-a) α=b2.当a=c时,b=0不合题意,舍去;当a ≠c 时,α=2bc a .将其代入①、②,得2222b ba c a c a +b 2=0.化简,得b 2+c 2=a 2,所以△ABC 是以∠A 为直角的直角三角形.六、利用韦达定理例6 如果方程x 2-xbcos A +acosB =0的两根之积等于两根之和,a 、b 、c 为三角形的三边,试判定△ABC 的形状.解在△ABC 中,作CD ⊥AB 于D ,在△ADC 中,AD =bcos A ,在△CDB 中,BD =acosB ,由韦达定理,得x 1+x 2=bcos A ,x 1·x 2=acos B .∴bcos A =acosB ,即AD =BD .又∵CD ⊥AB ,∴△ABC 为等腰三角形,七、利用三角形面积公式例7 已知△ABC 中,若h a +h b +h c =9r ,其中h a 、h b 、h c 为三边上的高,r 为三角形内切圆的半径,试判定△ABC 的形状.解设△ABC 面积为S,由三角形面积公式可得。
.3全等三角形的经典模型(一)满分晋级三角形 7级倍长中线与截长补短三角形 8级秋天班第二讲全等三角形的经典模型(一)三角形 9级全等三角形的经典模型(二)秋天班第三讲秋天班第四讲漫画释义舞弊?知识互联网题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特别边特别角证题( AC=BC 或 90°,45 ,45 ) . 如图 1; ⑵常有协助线为作高,利用三线合一的性质解决问题 .如图 2;⑶补全为正方形 . 如图 3, 4.CC45° 45°BAABD图 1 图 2图3 图4典题精练【例 1】已知:以下图, Rt△ABC 中, AB=AC, BAC 90°, O 为 BC 的中点,⑴写出点 O 到△ ABC 的三个极点 A、 B、 C 的距离的关系(不要 B求证明)⑵假如点 M、 N 分别在线段 AC、 AB 上挪动,且在挪动中保持OAN=CM .试判断△ OMN 的形状,并证明你的结论 . N⑶假如点 M、 N 分别在线段 CA、 AB 的延伸线上挪动,且在挪动中保持 AN=CM,试判断⑵中结论能否依旧建立,假如是请给出证明.A CM【分析】⑴ OA=OB=OCB⑵连结 OA,∵OA=OCBAOC 45° AN=CMO ∴△ ANO ≌△ CMO∴ON=OM N∴NOA MOC∴NOA BONMOCBON 90 ∴NOM 90 A CM∴△ OMN 是等腰直角三角形⑶△ ONM 依旧为等腰直角三角形,证明:∵∠ BAC=90°, AB=AC,O 为 BC 中点∴∠ BAO=∠ OAC =∠ABC =∠ ACB=45°,∴AO=BO=OC,∵在△ANO 和△CMO 中,AN CMBAO C NBOAO COM AC ∴△ ANO≌△ CMO ( SAS)∴ON=OM,∠AON=∠COM ,又∵∠ COM∠ AOM =90°,∴△ OMN 为等腰直角三角形.M B 【例 2】两个全等的含 30o, 60o角的三角板ADE和三角板 ABC ,如 D图所示搁置, E, A,C 三点在一条直线上,连结BD ,取 BD的中点 M ,连结 ME ,MC.试判断△EMC的形状,并说明原因. ECA【分析】△ EMC 是等腰直角三角形..证明:连结AM .由题意,得DE AC , DAE BAC 90o , DAB90.oD ∴△DAB 为等腰直角三角形.∵DM MB,∴MA MB DM , MDA MAB 45o. E∴MDE MAC 105o,∴△EDM ≌ △CAM.∴EM MC, DME AMC .又EMC EMA AMC EMA DME 90o.∴CM EM,∴△ EMC 是等腰直角三角形.【例 3】已知:如图,△ ABC 中,AB AC ,BAC ,D 是AC 的中90°点, AF BD于E,交BC于F,连结 DF.求证:ADB CDF .【分析】证法一:如图,过点A作AN BC于 N,交BD于M.B ∵ AB AC ,BAC 90°,∴ 3 DAM 45°.∵ C ,∴ 3 C .45°∵ AF BD,∴ 1 BAE 90°∵BAC ,∴.90°2BAE 90°∴ 1 2 .在△ ABM 和△CAF 中,1B1 2AB AC3 C∴ △ ABM ≌△CAF .∴ AM CF .在△ ADM 和△CDF 中,AD CDDAM CAM CF∴△ADM ≌△CDF .∴ADB CDF .证法二:如图,作CM AC 交AF的延伸线于M.∵AF BD ,∴32 ,90°∵BAC ,90°∴ 1 2 90°,∴ 1 3 .3 在△ ACM 和△BAD 中,BM BA CADEFCA3 2DMEN FCA21DEC.1 3AC ABACM BAD90°∴△ACM ≌△BAD .∴ M ADB ,AD CM∵ AD DC ,∴ CM CD .在△CMF 和△CDF 中,CF CFMCF DCF 45°CM CD∴ △CMF ≌△ CDF .∴M CDF∴ADB CDF .【例 4】如图,等腰直角△ ABC中,AC BC , ACB 90°,P为△ ABC 内部一点,知足PB PC ,AP AC ,求证:BCP 15 .AD AP PB CB C【分析】补全正方形ACBD ,连结 DP,易证△ ADP 是等边三角形,DAP 60 ,BAD 45 ,∴BAP 15 ,PAC 30 ,∴ACP 75 ,∴BCP 15 .【研究对象】等腰直角三角形添加成正方形的几种常有题型在解相关等腰直角三角形中的一些问题,若碰到不易解决或解法比较复杂时,可将等腰直角三角形引协助线转变成正方形,再利用正方形的一些性质来解,经常能够起到化难为易的成效,进而顺利地求解。
三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。
三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
三角形相似的判定方法6种三角形相似是几何学中的一个重要概念,它描述了两个三角形形状相同,大小可能不同的关系。
判断两个三角形是否相似,主要依靠六种判定方法,它们分别是:AA相似、SSS相似、SAS相似、ASA相似、AAS相似以及HL相似(仅限于直角三角形)。
本文将详细阐述这六种判定方法,并辅以例题和图形说明,力求全面、深入地讲解三角形相似的判定。
一、 AA相似(角角相似)如果两个三角形的两个角对应相等,那么这两个三角形相似。
这是最常用的相似判定方法,其简洁性使其在解题中应用广泛。
原理:两个角对应相等,则第三个角也必然相等(因为三角形内角和为180°)。
三个角对应相等,保证了两个三角形的形状完全一致,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果∠A = ∠A’ 且∠B = ∠B’,则△ABC ∽△A’B’C’。
例题1:已知△ABC中,∠A = 60°,∠B = 80°;△DEF中,∠D = 60°,∠E = 80°。
判断△ABC与△DEF是否相似,并说明理由。
解答:因为∠A = ∠D = 60°,∠B = ∠E = 80°,根据AA相似判定定理,△ABC ∽△DEF。
二、 SSS相似(边边边相似)如果两个三角形的对应边成比例,那么这两个三角形相似。
这是基于比例关系的相似判定方法。
原理:对应边成比例意味着两个三角形形状相同,只是大小不同。
比例关系保证了三角形的形状不变,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果AB/A’B’ = BC/B’C’ = AC/A’C’,则△ABC ∽△A’B’C’。
例题2:已知△ABC的三边长分别为6cm、8cm、10cm;△DEF的三边长分别为3cm、4cm、5cm。
人教版八年级数学上册知识点整理(完整版)第十一章三角形一、三角形的有关概念(一)三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
(二)基本元素1、三个顶点:点A、点B、点C2、三个内角:∠A、∠B、∠C3、三条边(1)表示方法①线段AB、AC、BC②a(∠A所对的边BC用a表示)、b、c(2)三角形的三边关系(依据:两点之间线段最短)①三角形两边之和大于第三边,数学语言:a+b>c,a+c>b,b+c>a。
;②三角形两边之差小于第三边,数学语言:a−b<c,a−c<b,b−c<a。
③判断三条线段能否组成三角形,只需判断“两条较短的线段之和大于第三条”即可。
4、三角形的表示方法:顶点是A、B、C的三角形,记作∆ABC,读作“三角形ABC”。
(三)三角形的稳定性:三角形三条边的长度确定之后,三角形的形状就唯一确定了。
二、三角形的分类(一)按边分类1、三边都不相等的三角形2、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(2)等边三角形:三边都相等的三角形叫做等边三角形(特殊的等腰三角形)。
(二)按角分类1、锐角三角形:三个内角都是锐角。
2、直角三角形:有一个内角是直角的三角形。
3、钝角三角形:有一个内角是钝角的三角形。
三、与三角形有关的线段(一)三角形的高1、定义:从三角形的一个顶点向它所对的边所在直线画垂线,顶点和垂足之间的线段叫做三角形的这条边上的高。
从∠ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做∠ABC 的边BC上的高,记作AD∠BC于点D。
3、几何语言(1)AD是三角形的边BC上的高。
(2)AD⊥BC于点D。
4、三角形三条高的位置(1)锐角三角形:三条高及其交点都在三角形内部。
(2)直角三角形:有两条高与两条直角边重合,斜边上的高在三角形内部,三条高交于三角形的直角顶点。
解三角形复习之一 三角形形状判断
三、课前热身
⑴在△ABC 中,a cosA =b cosB =c cosC
,则△ABC 为 三角形。
⑵已知方程x 2-b (cosA )x+acosB=0两根之积等于两根之和,则△ABC 为 三角形。
⑶在△ABC 中,sinA=2sinBcosC ,且sin 2A =sin 2B +sin 2C ,则△ABC 为 三角形。
⑷在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cosA.sinB=sinC ,则△ABC 为 三角形。
⑸在△ABC 中,B=60°,b 2=ac , 则△ABC 为 三角形。
四、例题分析
例1. 在△ABC 中,已知cos 2A 2 =b+c 2c
,判断三角形的形状。
例2 在△ABC 中,已知2asinA=(2b+c)sinB+(2c+b)sinC
⑴ 求A 的大小;
⑵若sinB+sinC=1,判断三角形的形状。
例3 在△ABC 中,4sin2B+C 2 -cos2A=7 2
, ⑴ 求A 的大小;
⑵若a= 3 ,b+c=3,求b ,c 的值。
例4:已知△ABC 中,bsinB=csinC,且C B A 222sin sin sin +=,试判断三角形的形状.
例5: 已知sinA=
C B C B cos cos sin sin ++,试判断三角形的形状.
例6:在△ABC 中,(1)已知a -b=ccosB -ccosA ,判断△ABC 的形状.
(2)若b=asinC,c=acosB,判断△ABC 的形状.。