第09章 电气测量系统的抗干扰技术
- 格式:ppt
- 大小:379.50 KB
- 文档页数:26
电气工程中的电力系统电磁干扰与抗干扰技术在当今高度电气化的时代,电力系统的稳定运行对于社会的正常运转至关重要。
然而,电磁干扰现象却如同一颗隐藏在电力系统中的“定时炸弹”,时刻威胁着电力设备的可靠运行和电力系统的安全稳定。
了解电力系统中的电磁干扰及其抗干扰技术,对于保障电力系统的正常运行具有重要意义。
电磁干扰,简单来说,就是指无用的电磁信号对有用的电磁信号造成了不良影响。
在电力系统中,电磁干扰的来源多种多样。
首先,自然现象如雷电就是一个强大的电磁干扰源。
雷电产生的瞬间强大电流和电磁场,可能会通过输电线路、杆塔等传导进入电力系统,对电力设备造成冲击和损坏。
其次,电力系统中的开关操作也会引发电磁干扰。
当开关闭合或断开时,电流的急剧变化会产生瞬间的高电压和电磁场,从而影响周边的设备。
再者,电力系统中的非线性负载,如变频器、整流器等,在工作过程中会产生谐波电流,这些谐波电流也会形成电磁干扰。
此外,还有外部的电磁辐射源,如无线电发射台、通信基站等,其发射的电磁波可能会耦合到电力系统的线路中,对电力设备产生干扰。
电磁干扰对电力系统的影响不容忽视。
它可能导致电力设备的误动作,例如继电保护装置的误跳闸,影响电力系统的供电可靠性。
电磁干扰还可能降低电力设备的性能,缩短其使用寿命。
例如,干扰信号可能会影响电力变压器的绝缘性能,导致局部放电增加,进而降低变压器的使用寿命。
在通信系统方面,电磁干扰可能会使电力通信信号失真、误码率增加,影响通信质量和数据传输的准确性。
为了应对电力系统中的电磁干扰问题,人们研发了一系列的抗干扰技术。
屏蔽技术是其中常见且有效的一种。
通过使用金属材料制作的屏蔽罩或屏蔽线,可以将电力设备或线路包裹起来,阻止外部的电磁干扰信号进入,同时也能防止内部的电磁信号向外辐射。
滤波技术则是通过滤波器对电源或信号线路中的干扰信号进行滤除。
滤波器可以根据干扰信号的频率特性进行设计,从而有效地去除不需要的频率成分,保证电力设备的正常工作。
浅谈电气测试系统的抗干扰及抑制作者:肖李李来源:《神州·中旬刊》2013年第08期摘要:随着现代科学技术的发展,极大地推动了各学科之间的交叉与渗透。
加速了各个领域内的技术革命与改造。
在测试领域,由于微电子技术和计算机技术的迅速发展,为测试系统带来了前所未有的发展空间,生产方式及管理体系发生了巨大变化。
本文从干扰形成的三要素入手,为提高测试系统的抗干扰能力提出了各种抗干扰的具体措施和方法。
关键词:干扰源干扰途径电气控制测试系统职业素养随着国民经济和社会生产的迅速发展,测试系统已经广泛应用到科学研究和生产实践的各个领域。
由于存在干扰,测试系统的稳定度和精确度受到了直接的影响,严重时不能正常工作,还会造成差错,影响生产,甚至于引起事故。
因此,从系统的设计、制造、使用方式以及工作环境等各个方面都不得不优先考虑抗干扰问题,对干扰的研究成了测试技术的重要课题。
一、干扰形成和抗干扰措施干扰的形成必须具备三个要素,即干扰源、干扰途径和对干扰敏感性较高的接收器 (通常为检测装置的前级电路)。
综观减弱或消除干扰的方法,都是从形成干扰的“三要素” 着眼采取的一些措施。
1、消除和抑制干扰源抗干扰积极的措施是消除干扰源。
例如,使产生干扰的电气设备远离检测装置、将整流子电机改为无刷电机、在继电器、接触器等设备上增加消弧装置等措施。
2、破坏干扰途径对于以“路”的形式浸入的干扰,可采取诸如提高绝缘性能的方法以抑制泄露电流的干扰途径、采用隔离变压器、光电继电器等切断地环路干扰途径、采用滤波、选频、屏蔽等技术手段将干扰信号引开、对数字信号可采用整形、限幅等信号处理方法切断干扰途径、改变接地形式以消除共阻抗耦合干扰途径等。
3、削弱接收电路对干扰的敏感性高输入阻抗的电路比低输入阻抗的电路易受干扰,模拟电路比数字电路抗干扰能力差,这些都说明,对于被干扰对象来说存在着对干扰的敏感性问题。
在电路中采用选频措施就是削弱电路对全频带噪声干扰的敏感性、在电路中采用负反馈就是削弱电子装置内部噪声干扰源影响的有力措施、其它如对信号传输线采用双绞线、对输入电路采用对称结构等措施,都是削弱电子装置对噪声干扰的敏感性。
电力系统抗干扰技术与措施近年来,随着科技的迅猛发展和电力需求的不断增长,电力系统在面临日益复杂和多样的干扰时,必须采取相应的技术和措施来保证电力系统的正常运行。
本文将探讨电力系统抗干扰技术与措施,从干扰监测、干扰削减、抗干扰设备等方面展开论述。
一、干扰监测与分析电力系统是由多个复杂的设备和元件组成的,因此,充分了解干扰的产生机理,对干扰进行及时监测和分析是至关重要的。
根据干扰的类型和来源,可以采用多种手段进行监测。
例如,利用频谱分析仪可以对频率变动干扰进行监测,通过功率品质分析仪可以对电压波动和谐波干扰进行监测,通过隔离放大器和滤波器可以对电磁干扰进行监测,还可以利用故障记录仪等设备对瞬态干扰进行监测。
通过监测和分析,可以准确识别干扰的类型和来源,并为采取相应的措施提供依据。
二、干扰削减技术与措施在电力系统中,各种类型的干扰可能会对电力设备和系统造成不同程度的影响,因此,采取适当的技术和措施来降低干扰的影响至关重要。
以下是一些常见的干扰削减技术与措施:1. 确保设备的合理布局和接地设备的合理布局和接地可以有效降低电磁干扰的传播和影响。
在设备布局上应避免磁场和电场相互干扰,合理规划设备的位置,减小不同设备之间的电磁耦合。
同时,通过合理的接地设计和可靠的接地系统,可以降低电磁干扰的传播和扩散。
2. 采用抗干扰设计的电力设备在电力系统设计中,应优先选择具有良好抗干扰性能的设备,例如,采用屏蔽和过滤技术设计的电缆和绝缘子,能够有效降低电磁干扰的影响。
此外,对于敏感设备,还可以采用可调节的滤波器和隔离器来进一步削减干扰。
3. 优化电力系统的传输和配电网络通过优化电力系统的传输和配电网络结构,可以降低谐波干扰、电压波动和暂态干扰的产生和传播。
例如,采用优化的电缆布线方案、增加电源的容量和负载调整等措施,可以降低谐波干扰;通过合理的传输线路规划和等电位接地设计,可以降低电压波动的产生与传播;通过优化装置的选择和保护措施,可以减轻暂态干扰的影响。
电气控制系统的抗干扰技术措施电气控制系统的抗干扰技术措施主要是为了保证系统的稳定性和可靠性,减少外部干扰对系统的影响。
在电气控制系统中,常见的干扰源包括电磁干扰、电压浪涌、电网电压波动、噪声等。
下面将对电气控制系统的抗干扰技术措施进行详细介绍。
首先,针对电磁干扰,可以采取以下技术措施:1.电磁兼容性(EMC)设计:在系统设计的早期阶段,应考虑到电磁兼容性,合理布局电气设备,减少电气设备之间的相互干扰。
2.地线设计:合理设计地线系统,将设备的金属壳体接地,形成完善的地网,以减少电磁辐射。
3.屏蔽设计:对于特别敏感的设备,可以采用屏蔽措施,如金属屏蔽盒,减少外界电磁场对设备的干扰。
4.滤波器设计:在电源输入端加装滤波器,可以将高频噪声滤除,减小对系统的影响。
其次,对于电压浪涌和电网电压波动引起的干扰,可以采取以下技术措施:1.过压保护器:在电源输入端安装过压保护器,当电压超过设定值时,自动切断电源,以保护系统设备。
2.电容器滤波器:在电源线上并联安装电容器滤波器,能够阻抗电网电压变化的高频干扰。
3.稳压器:通过电压稳定器,将电源的输出保持在一个稳定的范围内,避免电网电压波动对系统的影响。
此外,针对噪声引起的干扰,可以采取以下技术措施:1.屏蔽技术:对于特别敏感的电气设备,可以采用金属屏蔽技术,将设备屏蔽起来,减少噪声的干扰。
2.滤波器:在信号输入端设置滤波器,能够将高频噪声滤除,保证输入信号的准确性。
3.悬空引线:对于特别敏感的信号线,可以使用悬空引线的技术,将信号线与其他线路分开,减少噪声的传导。
另外,还有一些通用的技术措施1.输入电源隔离:使用隔离变压器或光电隔离器,将输入电源与外部干扰隔离开来,减少外来干扰的传导。
2.过滤器:在信号线上使用低通滤波器、带通滤波器或高通滤波器,以根据实际需求滤除特定频段的干扰信号。
3.增加缓冲区:通过增加缓冲区,可以减小外部干扰对系统的影响,并提高系统的稳定性。