淀粉的老化--罗晓娇 ppt分解
- 格式:ppt
- 大小:349.00 KB
- 文档页数:20
淀粉老化的概念淀粉老化是指淀粉在加热煮沸的过程中,其物化特性和化学结构发生变化的现象。
淀粉主要由两种多糖类组成,即支链淀粉和直链淀粉。
支链淀粉的结构比较复杂,含有α-1,6-葡萄糖苷键,而直链淀粉没有支链结构。
淀粉老化的过程可以分为两个阶段:胀发阶段和糊化阶段。
在胀发阶段,淀粉颗粒开始吸水膨胀,水分渗透到淀粉颗粒的内部。
这导致淀粉颗粒的体积膨胀,并形成一种黏稠的胶状物质,称为胀胶。
在糊化阶段,淀粉颗粒开始破裂,释放出淀粉分子。
同时,淀粉分子也开始与周围的水分分子结合,形成淀粉糊。
淀粉老化的过程中,有几个重要的变化发生。
首先,在胀发阶段,淀粉颗粒的内部结构发生改变。
其次,在糊化阶段,淀粉颗粒的分子结构发生改变。
这些变化会影响淀粉的物理性质和化学性质。
淀粉老化会导致淀粉的物理性质发生变化。
在胀发阶段,淀粉颗粒的膨胀程度取决于淀粉颗粒的大小、形状和含水量。
一般来说,淀粉颗粒越小,胀发程度越高。
在糊化阶段,淀粉分子与水分分子结合,形成黏稠的糊状物质。
这种糊状物质具有高粘度和胶结性,常被用于食品工业中的黏稠物质的制备。
淀粉老化也会导致淀粉的化学性质发生变化。
在胀发阶段,淀粉颗粒的破裂释放出淀粉分子。
这些淀粉分子与周围的水分分子结合,形成淀粉糊。
在糊化阶段,淀粉分子的分子结构会发生改变。
淀粉分子中的α-1,4-葡萄糖苷键被水分分子断裂,形成糊化淀粉分子。
这些糊化淀粉分子的结构更加松散,容易被水分更好地吸收。
淀粉老化的过程还受到一些因素的影响。
温度是影响淀粉老化速率的重要因素。
一般来说,温度越高,淀粉老化速率越快。
其他因素,如淀粉的类型、pH值和添加剂(如盐、酸、糖等)也会影响淀粉老化的过程。
总而言之,淀粉老化是指淀粉在加热煮沸的过程中,其物化特性和化学结构发生变化的现象。
淀粉的老化过程分为胀发阶段和糊化阶段,会导致淀粉的物理性质和化学性质发生变化。
淀粉的老化速度受温度、淀粉类型、pH值和添加剂等因素的影响。
淀粉老化含淀粉的粮食经加工成熟,是将淀粉糊化,而糊化了的淀粉在室温或低于室温的条件下慢慢地冷却,经过一段时间,变得不透明,甚至凝结沉淀,这种现象称为淀粉的老化,俗称"淀粉的返生"。
"老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。
值得注意的是:淀粉老化的过程是不可逆的,比如生米煮成熟饭后,不可能再恢复成原来的生米。
老化后的淀粉,不仅口感变差,消化吸收率也随之降低。
米煮成熟饭后,不可能再恢复成原来的生米。
老化后的淀粉,不仅口感变差,消化吸收率也随之降低。
淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。
玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。
食物中淀粉含水量30%~60%时易老化;含水量小于10%时不易老化。
面包含水30%~40%,馒头含水44%,米饭含水60%~70%,它们的含水量都在淀粉易发生老化反应的范围内,冷却后容易发生返生现象。
食物的贮存温度也与淀粉老化的速度有关,一般淀粉变性老化最适宜的温度是2~10℃,贮存温度高于60℃或低于-20℃时都不会发生淀粉的老化现象。
防止和延缓淀粉老化的措施。
1).温度:老化的最适宜的温度为2~4℃,高于60℃低于20℃都不发生老化。
2).水分:食品含水量在30~60%之间,淀粉易发生老化现象,食品中的含水量在10%以下的干燥状态或超过60%以上水分的食品,则不易产生老化现象。
3).酸碱性:在PH4以下的酸性或碱性环境中,淀粉不易老化。
4).表面活性物质:在食品中加入脂肪甘油脂,糖脂,磷脂,大豆蛋白或聚氧化乙烯等表面活性物质,均有延缓淀粉老化的效果,这是由于它们可以降低液面的表面能力,产生乳化现象,使淀粉胶束之间形成一层薄膜,防止形成以水分子为介质的氢的结合,从而延缓老化时间。
淀粉的糊化与老化生淀粉分子靠分子间氢键结合而排列得很紧密,形成束状的胶束,彼此之间的间隙很小,即使水分子也难以渗透进去。
具有胶束结构的生淀粉称为β-淀粉。
β-淀粉在水中经加热后,一部分胶束被溶解而形成空隙,于是水分子进入内部,与余下部分淀粉分子进行结合,胶束逐渐被溶解,空隙逐渐扩大,淀粉粒因吸水,体积膨胀数十倍,生淀粉的胶束即行消失,这种现象称为膨润现象。
继续加热,胶束则全部崩溃,形成淀粉单分子,并为水包围,而成为溶液状态,这种现象称为糊化,处于这种状态的淀粉成为α-淀粉淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化(Gelatinization)。
淀粉要完成整个糊化过程,必须要经过三个阶段:即可逆吸水阶段、不可逆吸水阶段和颗粒解体阶段。
1.可逆吸水阶段淀粉处在室温条件下,即使浸泡在冷水中也不会发生任何性质的变化。
存在于冷水中的淀粉经搅拌后则成为悬浊液,若停止搅拌淀粉颗粒又会慢慢重新下沉。
在冷水浸泡的过程中,淀粉颗粒虽然由于吸收少量的水分使得体积略有膨胀,但却未影响到颗粒中的结晶部分,所以淀粉的基本性质并不改变。
处在这一阶段的淀粉颗粒,进入颗粒内的水分子可以随着淀粉的重新干燥而将吸入的水分子排出,干燥后仍完全恢复到原来的状态,故这一阶段称为淀粉的可逆吸水阶段。
2.不可逆吸水阶段淀粉与水处在受热加温的条件下,水分子开始逐渐进入淀粉颗粒内的结晶区域,这时便出现了不可逆吸水的现象。
这是因为外界的温度升高,淀粉分子内的一些化学键变得很不稳定,从而有利于这些键的断裂。
随着这些化学键的断裂,淀粉颗粒内结晶区域则由原来排列紧密的状态变为疏松状态,使得淀粉的吸水量迅速增加。
淀粉颗粒的体积也由此急剧膨胀,其体积可膨胀到原始体积的50~100倍。
处在这一阶段的淀粉如果把它重新进行干燥,其水分也不会完全排出而恢复到原来的结构,故称为不可逆吸水阶段。
3.颗粒解体阶段淀粉颗粒经过第二阶段的不可逆吸水后,很快进入第三阶段—颗粒解体阶段。
淀粉的老化:淀粉溶液经缓慢冷却或淀粉凝胶经长期放置,会变为不透明甚至产生沉淀的现象,被称为淀粉的老化,实质是糊化后的分子又自动排列成序,形成高度致密的,结晶化的,不溶解性分子微束。
美拉德反应:食品中的还原糖(主要是葡萄糖)的羰基同游离氨基酸或蛋白质分子中氨基酸残基之间的化学反应,又叫羰氨反应,会引起食物的褐变。
油脂的氢化:油脂中不饱和脂肪酸在催化剂(通常用金属镍)作用下在不饱和双键上加氢,从而把在室温下液态的油变成固态的酯,这个过程叫做氢化。
同质多相:化学组成相同而晶体结构不同的一类化合物,但熔化时可产生相同的液相。
食品风味化学:研究食品风味成分的风味,分析方法,生成途径及在贮藏和加工中变化的科学。
夏伦贝格尔的AH/B理论:该理论认为,风味单位是由共价结合的氢键键合质子和位置距离质子大约3A的电负性轨道产生的结合,化合物分子中有相邻的电负性原子是产生甜味的必须条件,其中一个原子还必须具有氢键键合的质子,氧,氮,氯原子在甜味分子中可以起到这个作用,羟基氧原子可以在分子中作为AH或B。
淀粉的糊化:淀粉粒在适当温度下,在水中溶胀分裂形成均匀糊状溶液的过程,其本质是微观结构从有序转化为无序。
同质多晶:具有相同的化学组成,具有相同的晶体形态,融化时具有相同液相的现象。
风味:是人以口腔为主的感觉器官对食品产生的综合感觉(嗅觉,味觉,视觉及触觉)。
滞后现象:采用回吸的方法描制的MSI和采用解吸的方法绘制的MSI并不互相重叠的现象。
脂肪的同质多晶:指化学组成,相同的脂肪具有相同的晶型,主要是∂β和βγ型,但熔化时具有相同的液相。
食品化学:从化学角度和分子水平研究食品组成特性及其在加工贮藏中的变化的科学。
AW:同温度下食品中的水蒸气分压与纯水蒸气压之比。
阈值:是由总体中个体代表所决定的,在一个规定的介质中,将选定的风味物质配成一系列浓度,然后由风味感官评价人员感觉其最低浓度,最后根据评论小组中一半评审员所能感觉到的这种化合物的最低浓度范围称之为阈值。