单晶衍射仪
- 格式:ppt
- 大小:1.66 MB
- 文档页数:35
x射线单晶衍射仪的工作原理X 射线单晶衍射仪就像是一个超级厉害的“侦探”,能帮我们揭开晶体内部的神秘面纱。
咱们先来说说 X 射线是咋回事。
这 X 射线呀,就像一群特别调皮的小精灵,它们以超快的速度向前冲。
当这些小精灵碰到晶体的时候,可就有意思啦!晶体里面的原子就像一个个排列整齐的小士兵,X 射线打在它们身上,会发生散射。
散射之后的 X 射线会形成一些特定的图案,就好像是给我们留下了一些线索。
而X 射线单晶衍射仪呢,就是专门来收集和分析这些线索的。
你想想,晶体内部的原子排列那可是相当有规律的。
X 射线打进去,就像是在一个精心布置的迷宫里穿梭。
不同位置的原子散射出来的 X 射线,角度和强度都不一样。
这个仪器就特别聪明,它能把这些散射出来的 X 射线都捕捉到。
然后通过一系列复杂但又超级厉害的计算和分析,就能得出晶体内部原子的位置、化学键的长度和角度等等好多重要的信息。
比如说,它能告诉我们原子之间的距离有多远,它们是怎么手拉手形成化学键的。
这就像是知道了一个神秘城堡的内部结构一样,是不是很神奇?而且哦,这个过程就像是一场精彩的解谜游戏。
仪器收集到的数据就像是一堆乱码,科学家们要通过各种方法和算法,把这些乱码整理清楚,最终找到答案。
有时候,为了能得到更准确的结果,还需要对晶体进行精心的准备和处理。
就像是给参加比赛的选手做好充分的准备一样,要让晶体处于最佳状态,这样 X 射线单晶衍射仪才能更好地发挥作用。
你再想想,如果没有这个厉害的仪器,我们想要了解晶体内部的结构,那可真是难上加难。
但是有了它,就好像给我们打开了一扇通往微观世界的大门,让我们能够一探究竟。
总之呀,X 射线单晶衍射仪就是科学界的一个大宝贝,帮助我们不断探索未知,解开一个又一个的科学谜团!怎么样,是不是觉得它超级酷?。
单晶衍射仪工作原理单晶衍射仪是一种用于研究晶体结构的仪器,它利用X射线或中子衍射原理,通过衍射图案来确定晶体中原子的排列方式和晶体结构。
单晶衍射仪的工作原理是基于布拉格衍射定理和Laue衍射定理,下面将详细介绍。
布拉格衍射定理指出,当入射光线以一定的角度入射到晶体表面时,会被晶体中的原子散射,散射的光线与入射光线形成一定的夹角,这些散射光线经过相干叠加后,会产生一系列互相干涉的光束,从而形成衍射图案。
这些光束的干涉条件是满足布拉格方程:nλ=2dsinθ,其中n为衍射级数,λ为入射光的波长,d为晶面间距,θ为入射光线与晶面的夹角。
Laue衍射定理则是指出,当入射光线垂直入射晶体时,晶体中的原子会将光线散射成一系列互相干涉的光束,从而形成衍射图案。
这些光束的干涉条件是满足布拉格方程,但由于入射角度为0度,因此θ=0,故布拉格方程可以简化为nλ=2d。
单晶衍射仪利用布拉格衍射定理和Laue衍射定理来研究晶体结构。
在实验中,首先需要制备出单晶样品,并将样品固定在衍射仪的样品台上。
然后,通过调节入射光线的角度和波长来探测样品中的晶体结构。
入射光线的波长通常为X射线或中子,因为它们具有较短的波长和高能量,可以穿透样品表面,与样品中的原子发生相互作用,从而产生衍射图案。
单晶衍射仪的衍射图案可以通过X射线衍射仪或中子衍射仪来观察。
在X射线衍射仪中,衍射图案被记录在X射线胶片上,然后通过测量胶片上的点阵来确定晶体结构。
而在中子衍射仪中,衍射图案被记录在探测器上,然后通过计算机处理来确定晶体结构。
单晶衍射仪利用布拉格衍射定理和Laue衍射定理来研究晶体结构。
它可以通过调节入射光线的角度和波长来探测样品中的晶体结构,从而为物理、化学、材料科学等领域的研究提供了重要手段。
X射线单晶衍射仪操作规程及注意事项一、准备与开机1、打开仪器的总电源开关,然后启动循环冷却水系统。
2、开启CCD冷却系统,等待温度稳定至-7℃。
3、开启仪器的开关(绿色按钮),仪器稳定后,开动X-RAY ON 开关,X-RAY指示灯亮,X-射线正常启动,面板READY和ON指示灯亮。
4、打开CCD电源开关。
5、挑选大小合适的晶体,粘在玻璃纤维顶端插在铜座上,固定于样品台上。
二、数据收集1、双击BIS程序,服务器开启。
2、双击APEX sever程序,点击Instrument>Status,点Manual,通过控制面板上的A和B,调节单晶至中心位置。
3、双击APEX II程序,点击collect,升压至50kV,25mA。
4、点击Unit Cell,测试晶胞参数,设置数据收集策略。
5、Collect>Append Strategy,点Execute,开始收集数据。
6、全部测试完成后,将电压、电流降至20kV,5mA。
三、数据处理1、在APEX II程序界面中点击Integrate,分辨率设为0.74Å,开始数据还原。
2、点击Scale,做吸收校正。
3、点击Xprep,确定空间群,产生.ins及.hkl文件。
4、点击Solve Structure,解析晶体结构。
四、关机(通常情况下不需要关机)1、按X-RAY OFF键,X-射线关闭,关闭仪器的电源开关和循环冷却水系统,最后关闭仪器的总电源开关,实验结束。
2、在记录本上记录使用情况。
五、注意事项1、室内温度应恒定在23度左右,保持室内恒湿。
2、不按open door键不可直接开样品腔门;X射线开启后,不得打开样品腔门。
x射线单晶衍射仪原理引言:x射线单晶衍射是一种重要的实验技术,在材料科学、化学和生物学等领域具有广泛的应用。
本文将介绍x射线单晶衍射仪的原理及其应用。
一、x射线的特性x射线是一种高能量的电磁辐射,具有穿透力强、波长短和能量高的特点。
由于这些特性,x射线能够穿透物体并与物体内部的原子相互作用,从而提供有关物体结构的信息。
二、x射线单晶衍射仪的构成x射线单晶衍射仪主要由以下几个部分组成:1. x射线发生器:用于产生高能量的x射线。
2. 单晶样品:通常由晶体构成,用于衍射x射线。
3. 衍射仪器:包括衍射仪器支架、探测器等,用于测量衍射信号。
三、x射线单晶衍射的原理x射线单晶衍射是基于布拉格定律的原理。
布拉格定律表明,当x 射线通过晶体时,会与晶体中的原子发生相互作用,形成衍射现象。
根据布拉格定律,衍射信号的强度与入射角、晶格常数和波长有关。
通过测量衍射信号的强度和位置,可以得到晶体的结构信息。
四、x射线单晶衍射的应用1. 材料科学:x射线单晶衍射技术可以用于研究材料的结构和性质。
通过测量衍射信号,可以确定材料的晶格常数、晶体结构和晶面取向等信息,从而帮助科学家深入了解材料的性质和行为。
2. 化学:x射线单晶衍射技术在化学领域中被广泛应用。
通过测量衍射信号,可以确定化学物质的分子结构和立体构型,从而揭示化学反应的机理和性质。
3. 生物学:x射线单晶衍射技术在生物学研究中也有重要应用。
通过测量衍射信号,可以确定生物大分子的结构,如蛋白质和核酸等,从而揭示生物分子的功能和相互作用机制。
五、x射线单晶衍射仪的发展随着科学技术的不断进步,x射线单晶衍射仪的性能和精度得到了显著提高。
现代的x射线单晶衍射仪具有高分辨率、高灵敏度和自动化控制等特点,大大提高了实验效率和数据质量。
六、结语x射线单晶衍射仪是一种重要的实验技术,通过测量x射线的衍射信号,可以得到物体的结构信息。
它在材料科学、化学和生物学等领域具有广泛的应用。
X射线单晶体衍射仪原理简介X射线单晶体衍射仪原理简介X射线单晶体衍射仪一.引言X射线单晶体衍射仪的英文名称是X-ray single crystal diffractometer,简写为XRD。
本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。
在一粒单晶体中原子或原子团均是周期排列的。
将X射线〔如Cu的Kα辐射〕射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出晶体的结构[1]。
物质或由其构成的材料的性能是与晶体的结构密切相关的,如金刚石和石墨都是由纯的碳构成的,由于它们的晶体结构不同就有着截然不同的性质。
二.X射线单晶体衍射仪测定晶体结构的原理和仪器构造[2,3].〔一〕晶体衍射的根本公式由于晶体中原子是周期排列的,其周期性可用点阵表示。
而一个三维点阵可简单地用一个由八个相邻点构成的平行六面体〔称晶胞〕在三维方向重复得到。
一个晶胞形状由它的三个边〔a,b,c〕及它们间的夹角〔γ,α,β〕所规定,这六个参数称点阵参数或晶胞参数,见图1。
这样一个三维点阵也可以看成是许多相同的平面点阵平行等距排列而成的,这样一族平面点阵称为一个平面点阵族,常用符号HKL〔HKL为整数〕来表示。
一个三维空间点阵划分为平面点阵族的方式是很多的,其平面点阵的构造和面间距d可以是不同的,见图1。
晶体结构的周期性就可以由这一组dHKL来表示。
图1 代表结晶体周期性的点阵一个小晶体衍射X射线,其衍射方向是与晶体的周期性〔d〕有关的。
一个衍射总可找到一个晶面族HKL,使它与入射线在此面族上符合反射关系,就以此面族的符号HKL作为此衍射之指数。
其间关系用布拉格方程〔式1〕来表示。
2dHKLsinθHKL=nλ〔1〕式中,θHKL为入射线或反射线与晶面族之间的夹角(见图2),λ为入射X射线波长,n为反射级数。
图2 布拉格反射示意图衍射线的强度是与被重复排列的原子团的结构,也即和原子在晶胞中的分布装况〔坐标〕有关,其间的关系由方程式〔2〕表示〔2〕式中, E称为累积能量,I0为入射线强度,e, m为电子的电荷与质量,c为光速,λ为X射线波长,Vu为晶胞体积,称洛仑兹偏振〔LP〕因子,|F|为结构振幅,e-2MT为温度因子,A为吸收因子,V为小单晶体的体积,ω为样品的转速,其中结构因子=|FHKL|eiαHKL 〔3〕式中, fj, xj,yj,zj 分别为第j个原子的原子散射因子及它在晶胞中的分数坐标〔以晶胞边长为1〕。
x射线单晶衍射仪原理
X射线单晶衍射仪是一种用于研究物质结构的仪器,其原理基于X射线的物质衍射现象和布拉格定律。
当X射线通过一束入射光线照射到晶体上时,晶体中的原子
会对X射线进行散射。
这种散射过程被称为物质的X射线衍射。
根据布拉格定律,当入射光线与晶体晶面间距的2倍之比等于衍射角的正弦值时,会出现最强的衍射现象。
衍射角的大小取决于晶体的晶面间距和入射光线的波长。
X射线单晶衍射仪利用这一原理来测定晶体的结构。
首先,一束单色的X射线从射线源发出,经过光学元件聚焦后照射到
晶体上。
晶体中的原子会对射到其上的X射线进行散射。
散
射的X射线在晶体内部相互干涉,然后衍射出来。
接收到的
衍射信号通过一个衍射器件(例如闪烁屏或探测器)进行检测。
通过调整入射角度和测量衍射角度,可以根据布拉格定律计算出晶体的晶面间距和晶体结构的其他参数,如晶胞尺寸和原子位置。
X射线单晶衍射仪的原理使其成为研究材料结构和晶体学的重要工具。
它广泛应用于材料科学、化学、生物学等领域的研究和实验中。
X射线单晶衍射仪
1、性能参数
产品型号:Bruker 公司APEX II DUO
X光源:Mo,Cu双光源系统(软件自动切换)
探测器:4K CCD二维探测器
测角仪:固定κ轴的3轴测角仪
软件:使用图形用户界面的单晶帧数据获取和成像软件;面探测器数据收集整体方案最优化组织软件;SHELXTL结构解析和精修软件。
液氮低温系统:温度控制范围:90K ~ 400K;控温精度:+/– 0.1 K
循环水冷系统:水温、水压与流量满足发生器要求,有过热保护,能连续工作,控温精度优于2 K
2、应用范围
1)X-ray单晶衍射仪可对物质结构及组成进行分析,在不破坏样品的情况下,能够准确地测定分子的单晶结构。
2)单晶衍射技术可以确定晶体内部原子(分子、离子)的空间排布及结构对称性,测定原子间的键长、键角、电荷分布,探讨物质的微观结构与宏观性能的关系。
3、图片。