(2)
Var(u
i
)
σ
2 u
i 1,2,,n
等方差性
(3)Cov(ui,u j ) 0 (4) Cov(ui,X i ) 0
i j,i,j 1,2,,n i 1,2,,n
无序列相关
进一步假定
u~N(
0,σ
2 u
)
6
1 回归模型的一般描述
五、回归分析预测的一般步骤
1. 以预测对象为因变量建立回归模型; 2. 利用样本数据对模型的参数进行估计; 3. 对参数的估计值及回归方程进行显著性检验; 4. 利用通过检验的方程进行预测。
σ 2(e0 )
σ u2 [1
1 n
(x0 (xi
x)2 -x)2
]
3. 给定置信水平1 ,置信区间为 ( yˆ tα σˆ(e ),yˆ tα σˆ(e, ))其中, 是自t由α 度为年n-2的t分布临界值,
ˆ (e0 ) ˆu
1 1 n
解:使用Excel实现回归
b
(yi
y)(xi (xi x)
x)
.
b y βˆx .
于是所求的方程为 yˆi 138.3480 6.9712 xi
这说明,该厂电的供应量每增加一 万度,年产值增加6.9712万元。
产值(万元)Y 213 242 286 305 306 342 351 373 379 377 384 395 387 402 418
1. 定义:假定Y与X的回归方程为 yˆi bo bxi ,对于给定的 自变量 X x,0 求得 yˆ0 bo bx0 ,称这种预测为点预测。