第2章 简单线性回归模型
- 格式:ppt
- 大小:2.16 MB
- 文档页数:93
i2 2一、判断题2.4 回归系数的区间估计和假设检验1. 如果零假设 H 0:B 2=0,在显著性水平 5%下不被拒绝,则认为 B 2 一定是 0。
(F )2. k 的置信度为(1 -)的置信区间指真实参数落入该区间的概率是(1 -)。
(F)3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。
(F )4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。
(T )二、单项选择题1. 对回归模型Y i = 0 + 1 X i + u i 进行检验时,通常假定u i 服从(C )。
A . N (0,2)B . t (n - 2)C . N (0,2)D . t (n )2. 用一组有 30 个观测值的样本估计模型Y i = 0 + 1 X i + u i ,在 0.05 的显著性水平下对1的显著性作t 检验,则1显著地不等于零的条件是其统计量t 大于( D )。
A . t 0.05 (30)B . t 0.025 (30))C . t 0.05 (28)D . t 0.025 (28)ˆ - 3. 回归模型Y =+ X + u 中,关于检验 H := 0 所用的统计量11, 下i1ii1列说法正确的是( D )。
A. 服从(2C .服从(2 n - 2) n - 1)B. 服从t (n - 1)D .服从t (n - 2)4. 用一组有 30 个观测值的样本估计模型 y t = b 0 + b 1x 1t + b 2x 2t + u t 后,在 0.05 的显著性水平上对b 1 的显著性作t 检验,则b 1 显著地不等于零的条件是其统计量t 大于等于( C ) A. t 0.05 (30) B. t 0.025 (28) C. t 0.025 (27) D. F 0.025 (1,28)三、简答题1. 当给定后,回归系数2的置信区间是什么样的? ⎡ ˆ ˆ ⎤答:总体方差已知时,置信区间为⎢2 - z ,2 + z ⎥ ;总体方差 未知 ⎢ ∑ x 2 ∑ x 2 ⎥ ⎣i i ⎦∑e2则使用ˆ 2=in - 2估计2:①样本容量充分大时,统计量仍服从正态,则置信区间为Var (ˆ ) 1∑ ix2 ∑ i x 2 ⎥ 22⎡ ˆ ˆ ˆ ˆ ⎤ ⎢2 - z ,2 + z ⎥ ;②样本容量较小时,统计量服从 t 分布,则置信区 ⎢ ∑ x 2 ∑ x 2 ⎥ ⎣i i ⎦⎡ 间为 ⎢ˆ2 - tˆ,ˆ2 + tˆ⎤ 。
第2章简单回归模型2.1复习笔记一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:01y x uββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。
因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。
变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。
1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。
0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。
2.回归术语表2-1简单回归的术语3.零条件均值假定(1)零条件均值u 的平均值与x 值无关。
可以把它写作:()()|E u x E u =当方程成立时,就说u 的均值独立于x。
(2)零条件均值假定的意义①零条件均值假定给出1β的另一种非常有用的解释。
以x 为条件取期望值,并利用()|0E u x =,便得到:()01|E y x xββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。
对任何给定的x 值,y 的分布都以()|E y x 为中心。
1β就是斜率参数。
②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。
一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。
二、普通最小二乘法的推导1.最小二乘估计值从总体中找一个样本。
令(){} 1 i i x y i n =,:,…,表示从总体中抽取的一个容量为n 的随机样本。
01i i iy x u ββ=++在总体中,u 与x 不相关。
因此有:()()()0cov 0E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:()010E y x ββ--=()010E x y x ββ--=⎡⎤⎣⎦得到()0111ˆˆ0ni ii y x n ββ=--=∑和()0111ˆˆ0ni i ii x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1ˆβ01ˆˆy x ββ=+则01ˆˆy x ββ=-一旦得到斜率估计值1ˆβ,则有:()111ˆˆ0niiii x y y x x ββ=⎡⎤---=⎣⎦∑整理后便得到:()()111ˆnniii i i i x yy x x x β==-=-∑∑根据求和运算的基本性质,有:()()211n ni i i i i x x x x x ==-=-∑∑()()()11nniii i i i x yy x x y y==-=--∑∑因此,只要有()21nii x x =->∑估计的斜率就为:()()()1121ˆnii i ni i xx y yx x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。
2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。
(F)2.随机扰动项和残差项是一回事。
(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。
(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。
( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。
( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。
A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122iX Y -nXY ˆX -nX β∑∑= D .i i i i 12x n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。
A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。
A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。
A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。
A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。
2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。
(F ) 2.预测区间的宽窄只与样本容量n 有关。
(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。
(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。
(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。
(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。
A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。
A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。
而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。
一般而言,个别值的预测区间比平均值的预测区间更宽。
2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。
答:()f f X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。
2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。
(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。
( F )3. 随机变量的条件期望与非条件期望是一回事。
(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。
(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。
A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。
A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。
A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。
A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。
A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。
A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。
第二章 简单线性回归模型、单项选择题:1、回归分析中定义的(B )C 、解释变量和被解释变量都为非随机变量D 解释变量为随机变量,被解释变量为非随机变量 &下面哪一个必定是错误的( C )。
A Y?=30+0.2X i ,以丫 =0.8B 、= —75 + 1.5X i ,気=0.91 C 2.1X i , r XY =0.78 D 、 Y? = —12 —3.5X i , r XY = —0.969、 产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为Y? = 356 -1.5X ,这说明(D 。
A 产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加 356元D 、产量每增加一台,单位产品成本平均减少1.5元10、 回归模型Yi 八。
「X i , i = 1 ,…,25中,总体方差未知,检验H 。
: r =0时,所用的检验 统计量 —L 服从(D 。
S目A 2(n -2)B 、t (n-1)C 、2(n")D 、t (n-2)11、 对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值的( B )。
A 、Ci (消费)=500弋.8^ (收入)B 、Qdi (商品需求)=10・0.81[(收入)0.9Pi (价格)CQ si (商品供给)二20(价格)D Y (产出量)765K 役(资本)L :"(劳动)12、进行相关分析时,假定相关的两个变量(A )。
A 、解释变量和被解释变量都是随机变量2、 A 3最小二乘准则是指使( D n Z (Y t -Y ) B 下图中“{”所指的距离是( )达到最小值的原则确定样本回归方程。
nE Y -Y? C 、max Y r -Y Dt -1n、' (Y t -Y?)2t 丄 5、 6、 线性 B 、无偏性 C、有效性 D参数-的估计量?具备有效性是指(B )Var ( ?) =0 B 、Var ( ?)为最小 C 亠0反映由模型中解释变量所解释的那部分离差大小的是 总体平方和 B 、回归平方和 C 、残差平方和7、 (B )。
2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。
(F ) 2.预测区间的宽窄只与样本容量n 有关。
(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。
(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。
(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。
(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。
A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。
A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。
而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。
一般而言,个别值的预测区间比平均值的预测区间更宽。
2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。
答:()ff X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。