函数的三要素
- 格式:pdf
- 大小:170.51 KB
- 文档页数:1
第8讲函数的三要素函数的三要素是指函数的定义、函数的参数和函数的返回值。
这三个要素是函数的基本组成部分,决定了函数的行为和功能。
1.函数的定义:函数是一段封装了特定功能的代码块,用于实现特定的任务。
函数的定义包括函数名、参数列表、返回类型和函数体。
函数名是用来唯一标识函数的名称,可以根据函数的功能来命名函数名,通常使用驼峰命名法。
参数列表是函数用来接收外部传入数据的部分。
参数可以是0个或多个,每个参数都有自己的类型和名称。
返回类型是函数执行完任务后返回的数据类型。
返回类型可以是任意有效数据类型,可以是基本数据类型、数组、结构体等。
函数体是函数的具体实现逻辑。
函数体中包含了一组语句,用来实现函数的功能。
函数的定义示例:```int add(int a, int b)int sum = a + b;return sum;```上述示例定义了一个函数名为add的函数,该函数有两个参数a和b,返回类型为int。
函数的功能是计算a和b的和,并将结果返回。
2.函数的参数:函数的参数是函数定义中的一部分,用来接收外部传入的数据。
函数的参数可以是0个或多个,每个参数都有自己的类型和名称。
函数可以通过参数来获取外部传入的数据,并在函数体中使用这些数据进行计算或逻辑操作。
函数的参数可以分为两种类型:值传递和引用传递。
值传递是指将参数的值复制给函数内部的局部变量,函数内部对参数的修改不会影响外部变量的值。
引用传递是指将参数的地址传递给函数内部的指针变量,函数内部可以通过指针修改外部变量的值。
函数的参数示例:```int add(int a, int b)int sum = a + b;return sum;```上述示例中的add函数有两个参数a和b,都是int类型的。
在函数体内,使用a和b进行计算,并将结果返回。
3.函数的返回值:函数的返回值是函数执行完任务后返回的数据。
函数可以根据实际需要选择是否返回值,以及返回的数据类型。
函数三要素一、定义域1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)实际问题中的函数的定义域还要保证实际问题有意义.(7)复合函数定义域 1.求下列函数的值域① y=3x+2(-1≤x ≤1) ②xx f -+=42)( ③ 1+=x x y④ xx y 1+=2. 求下列函数的定义域 (1)8|3x |15x 2xy 2-+--=(1)2|1|)43(432-+--=x x xy (2))103(log 22327---=x x y(-≦,-3)∪(-3,-1)∪[4,+≦] [-3,-2]∪(5,6)3. 求下列函数的定义域:(1)y=x x x -+||)1(0; (2)y=232531xx -+-; (3)y=1·1-+x x .{x|x <0且x ≠-1}. {x|-5≤x ≤5且x ≠〒3} [1,+≦).复合函数定义域:已知函数()f x 的定义域为(,)a b ,函数()g x 的定义域为(,)m n ,则函数[()]f g x 的定义域为()(,)(,)g x a b x m n ∈⎧⎨∈⎩,解不等式得结果。
已知函数[()]f g x 的定义域为(a,b ),则f (x )的定义域a ≤x≤b ,推导出…≤g (x )≤…,即得f (x )的定义域。
1.函数()f x 定义域为(0,2),求下列函数的定义域:(1)y=f(3x); (2)y=f(x 1); (3)y=f()31()31-++x f x (1)2()23f x + (2)2y =(3)|1|1y x =--2.函数(2)xf 的定义域为[1,2],求2(log )f x 的定义域 3已知()f x 的定义域为[-2,2],求2(1)f x -的定义域。
函数的三要素:定义域、对应关系和值域 函数的定义域:函数的定义域是自变量x 的取值范围,它是构成函数的重要组成部分,如果没有标明定义域,则认为定义域是使函数解析式有意义的或使实际问题有意义的x 的取值范围 函数y=f(x)的定义域的求法:①若f(x)是整式,则函数的定义域是实数集R ;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.如为半径r 与圆面积S 的函数关系为S=πr 2的定义域为{r ︱r>0} ⑥)(x f =x 0的定义域是{x ∈R ︱x ≠0}注意:列不等式(组)求函数的定义域时,考虑问题要全面,要把所有制约自变量取值的条件都找出来。
【例1】求下列函数的定义域: ① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(.【练1】求下列函数的定义域:(1)()422--=x x x f (2)()2f x x =+ (3) y = (4)xx x y -+=||)1(0【2012高考四川文13】函数()f x =的定义域是____________。
(用区间表示)【2012高考广东文11】函数y x=的定义域为 .表达式中参数求法:根据定义域或其他的条件找到参数应满足的条件或表达式,从而求出相应参数的取值范围。
【例1】若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围【练1】已知函数()f x 的定义域为R ,求实数k 的范围复合函数1.复合函数定义定义:设函数)(u f y =,)(x g u =,则我们称))((x g f y =是由外函数)(u f y =和内函数)(x g u=复合而成的复合函数。
第一章函数第一讲函数的概念【知识归纳】(1) 映射映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.一对一,多对一是映射但一对多显然不是映射辨析:①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;③存在性:映射中集合A的每一个元素在集合B中都有它的象;④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.映射三要素:集合A、B以及对应法则f,缺一不可;(2) 映射观点下的函数概念如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).(3)函数概念:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集.(4)函数的表示方法1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系.3.图象法:用图象表示两个变量之间的对应关系.【经典例题】例1 以下给出的对应是不是从集合A 到B 的映射?(1)集合A = {P | P 是数轴上的点},集合B = R ,对应关系f :数轴上的点与它所代表的实数对应;(2)集合A = {P | P 是平面直角坐标系中的点,集合B = {(x | y ) | x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;(3)集合A = {x | x 是三角形},集合B = {x | x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A = {x | x 是新华中学的班级},集合B = {x | x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.练1 已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由: (1)A=N ,B=Z ,对应法则:“取相反数”;(2)A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; (3)A={1,2,3,4,5},B=R ,对应法则:“求平方根”;(4)A={α|00≤α≤900},B={x|0≤x ≤1},对应法则:“取正弦”.例21. 函数y = f (x )表示( )A .y 等于f 与x 的乘积B .f (x )一定是解析式C .y 是x 的函数D .对于不同的x ,y 值也不同2.下列各图中,可表示函数y =f (x )的图象的只可能是 ( )A B C D3. 下列四种说法中,不正确的是( )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素4. 已知f (x ) = x 2+ 4x + 5,则f (2) = __ ,f (–1) = __ .5. 已知f (x ) = x 2(x ∈R ),表明的“对应关系”是______,它是____→_____的函数.x y o x y o x y o x y o第二讲 函数的定义域【知识归纳】1.函数的定义域:函数的定义域是指使得函数有意义的自变量x 的取值。
函数的概念:A.a叫做A中元素的象集是B的子集.f映射三要素:集合A、B以及对应法则,缺一不可;映射观点下的函数概念如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).例以下给出的对应是不是从集合A到B的映射?(1)集合A = {P | P是数轴上的点},集合B = R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A = {P | P是平面直角坐标系中的点,集合B = {(x | y) | x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A = {x | x是三角形},集合B = {x | x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A = {x | x是新华中学的班级},集合B = {x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.(1)按照建立数轴的方法可知,数轴上的任意一个点,都有惟一的实数与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有惟一的一个实数对与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B不是从集合A到B的一上映射.1.图1-2-2-21(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?图1-2-2-21“一对一”或“多对一”的对应,即集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应.例1,已知下列集合A到B的对应,请判断哪些是A到B的映射?并说明理由:;)函数定义的理解.定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.表示;表示;表示;相等?;;.)y、已知的定义域,求的定义域,其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。
函数三要素分别是
函数三要素分别是:定义域A、值域C和对应法则f。
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x 是自变量,y是x的函数。
x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
函数的概念
在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
感谢您的阅读,祝您生活愉快。
一、函数定义及其定义域研究函数必须树立定义域优先考虑.......的原则!(很重要,但又很容易忽视)1.函数的定义:设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.①函数f(x)的图象与动直线x=m至多只有一个公共点!这是判断一个图象是不是函数图象的方法.②点(a,b)在函数y=f(x)的图象上⇔f(a)=b.③函数表示法——解析法、列表法、图象法.④两个函数为同一函数的充要条件是定义域与对应关系相同【即在定义域相同的条件下解析式可化为相同】.⑤设函数y=f(x)的定义域为集合P,若f(x)在集合Q上有意义,则Q⊆P.⑥区间表示法:设a<b,则{x|a≤x≤b}=[a,b],{x|a<x<b}=(a,b),R=(−∞,+∞),….2.映射的定义:设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y和它对应,那么就称f:A→B为从集合A到集合B的一个映射.【函数与映射都是:一对一,或多对一.】3.若A中含有m个元素,B中含有n个元素,从A到B能建立多少个映射?4.给出函数的解析式,求函数的定义域所遵循的原则是:①f(x)g(x)中要求g(x)≠0;②√f(x)2n中要求f(x)≥0;③[f(x)]0中要求f(x)≠0;④y=a x(a>0,且a≠1),x∈R;⑤y=log a x(a>0,且a≠1),x>0;⑥y=tanx,x∈R,x≠kπ+π2,k∈Z;⑦通过加、减、乘、除四则运算及有限次复合构造出新函数,则新函数的定义域是每个函数定义域的交集.⑧应用问题的定义域,除了要考虑解析式本身的定义域,还要考虑使应用问题有意义.⑨求定义域时最好不要对解析式先变形,否则容易出错.5.不给出f(x)的解析式,函数f(x),f(g(x)),f(ℎ(x))三者之间定义域的关系:【定义域都是指x的取值范围.】①已知f(x)的定义域是(a,b),求f(g(x))的定义域:解不等式a<g(x)<b,其解集就是f(g(x))的定义域.②已知f(g(x))的定义域是(a,b),求f(x)的定义域:利用a<x<b求g(x)的值域,该值域就是f(x)的定义域.③已知f(g(x))的定义域是(a,b),求f(ℎ(x))的定义域:利用x∈(a,b)先求出g(x)的值域(c,d),然后解不等式c<ℎ(x)<d,此不等式的解集就是f(ℎ(x))的定义域.【总之,求抽象函数的定义域,关键是抓住被同一个 f 作用的对象取值范围相同.】6.①|a|={a, a≥0,−a, a<0.②|a−b|=|b−a|(数轴上a,b两点间的距离);③|−a|=|a|,④(a−b)2=(b−a)2.C n1∙C n1∙⋯∙C n1⏟m个=n m(个).1.定义域必须用集合或区间的形式表示!2.集合{x|y=f(x)}的含义:即函数y=f(x)的定义域.3.要养成这样一个习惯:一研究函数问题,就指出该函数的定义域!二、 函数解析式的求法【函数变量是个筐,代数式都可以装(变量替换).例:对于f (x )=ax 2+bx +c ,f()=a 2+b +c .】 1.函数解析式的求法:【函数与方程的思想;恒等式的变量替换,如:3x +4=(x +3)+(2x +1).】(1)代入法【直接法,适用于①由f(x)求复合函数f[g (x )],②由f(x +a)、f(x −a)、f(ax)、f(xa )等求f(x); 注意:由分段函数f(x)求复合函数f[g (x )]时,首先需要根据f(x)中对x 的分段,替换为对g(x)的分段.】(2)凑配法【整体替换法,适用于f (√x +1)、f (1+1x )、f(x +1x )、f(x −1x )等类型.】 (3)换元法【如f (3x +1)=2x 2−3x +1.换元法与凑配法可以交替使用,如f (√x +1),f (1+1x )等类型.】 (4)待定系数法【告知函数类型,就要设出该函数表达式,如f(x)是一次函数,则可设f (x )=kx +b ;然后,①利用条件得恒等式,由对应项的系数相等完成;②或利用条件得方程(组),然后解方程(组)即可.】(5)解方程组法【给出的方程同时含:①f(x)与f(−x),或f(x)与f(a −x); 【前者x →−x ,后者x →a −x 】②一奇一偶函数f(x)与g(x); 【x →−x 】③f(x)与f(1x ),或f(x)与f(a x ); 【前者x →1x ,后者x →ax 】 方法:将原方程中的变量进行变量替换得新方程,联立原方程解方程组!】(6)图象变换法【根据变换过程写解析式,或根据对称关系、相关关系等用代入法求曲线(或轨迹)方程.】(7)赋值法【给出可以求出解析式的恒等式时使用.】2.二次函数的解析式的三种形式(a ≠0):①一般式:y =ax 2+bx +c ; 对称轴是x =−b2a ; 顶点(−b2a ,4ac−b 24a ).②顶点式:y =a(x −ℎ)2+k ; 对称轴是x =ℎ; 顶点(ℎ,k).③两根式:y =a (x −x 1)(x −x 2); 对称轴是x =x 1+x 22; 顶点(x 1+x 22,−a (x 1−x 22)2). 【提醒1】用待定系数法求二次函数的解析式按照③、②、①的顺序考虑去设解析式较好.【提醒2】f (x )=ax 2+bx +c =a (x −x 1)(x −x 2):一般式与两根式的相互转化使用,常有利于解决问题.【已知一个零根x 1时,另一零根x 2可由韦达定理求出.】【提醒3】与二次函数有关的问题【值域,最值,单调性等】,要学会直接运用对称轴和图象解决!3.应用题中求函数解析式:关键是寻找等量关系,即同一个量用不同方式表达,由此就得到方程(或等式),从而就可得到函数解析式. 注意:①没有给出字母变量的,一定要先设出来.②要根据实际意义,准确求出函数定义域.③不能用一个式子表示的,则需要用分段函数表示.(几何背景的应用题常需要用分段函数表示!)4.缴纳个人所得税也可以画线段示意图分段处理(分段纳税).(还可建立分段函数模型)常见函数的平方表示:[f(x)]2=f 2(x),(log a x )2=log a 2x ,(sinx )2=sin 2x ,(cosx )2=cos 2x ,(tanx )2=tan 2x .基数免税 3% 10% 20% 3500元 1500元 3000元 4500元 26000元 25% 20000元 25000元 30% 35% 45%补充1.设f (x ),g(x)均为定义域相同的两段式的分段函数,①若分段标准一致,则y =f (x )±g(x),y =f (x )∙g(x),y =f(x)g(x)(g (x )≠0)等函数仍为两段式的分段函数. ②若分段标准不一致,则y =f (x )±g(x),y =f (x )∙g(x),y =f(x)g(x)(g (x )≠0)等函数均为三段式的分段函数. 2.给出分段函数f (x )={f 1(x ),x ≤a ,f 2(x ),x >a .如何解不等式(或方程):f(g (x ))≥f(ℎ(x)). 方法一:就g (x ),ℎ(x)与a 的大小关系分四种情形,将两边代出后求解;方法二:令g (x )=a ,ℎ(x )=a ,解出x 的值,得到(能分段代出两边的)标准后,分段求解.3.若f (x )=a n x n +a n−1x n−1+⋯+a 2x 2+a 1x +a 0,且f (t )=0,则f(x)必含有因式(x −t);必要时可以用竖式除法或待定系数法将f(x)因式分解;若x =x 0为f(x)的极值点,则x =x 0必为方程f (x )=f(x 0)的重根.4.y =ax 2+bx +c =a (x +b 2a )2+4ac−b 24a 在a 确定的情况下,抛物线的形状(即开口大小)也就随之确定!5.三次函数f (x )=ax 3+bx 2+cx +d 的解析式:【其图象(a >0)的各种情形你知道吗?】①若已知f (x )=0的三个根为x 1,x 2,x 3,则可设f (x )=a (x −x 1)(x −x 2)(x −x 3).②若已知f (x )=0的两个根为x 1,x 2,则可设f (x )=a (x −x 1)(x −x 2)(x −m).③若已知f (x )=0的一个根为x 1,则可设f (x )=a (x −x 1)(x 2+mx +n).6.三次函数f (x )=ax 3+bx 2+cx +d 有极值的充要条件是:f′(x )=3ax 2+2bx +c =0有两个不等实根.【由f′(x )=3ax 2+2bx +c =3a (x −x 1)(x −x 2)的图象可知.】三、 值域,最值1.观察法:主要针对一些简单函数,或作简单变形后观察,即可求出值域或最值.2.配方法(对称轴法):对于型如f (x )=ax 2+bx +c ,x ∈[m ,n]的形式的二次函数,利用配方法或直接利用对称轴x =−b2a 完成.可以结合图象完成求值域或最值.【配方其实也是为了找出对称轴!】3.换元法:代数换元法,三角换元法.运用换元法解题时要注意确定新元的取值范围和整体置换的策略.使用换元法时,一般来说,需求两次值域,一次在换元时求新元的取值范围,一次在换元后求新函数值域. ①y =ax +b +k √cx +d ,令t =√cx +d .(注意:该函数有时可直接快速判定单调性!)②y =a f (x ),令u =f(x),则y =a u ; ③y =log a f(x),令u =f(x),则y =log a u ;④y =f(a x ),令t =a x ,则y =f(t); ⑤y =f(log a x),令t =log a x ,则y =f(t);⑥令a x +a −x =t ,则a 2x +a −2x =t 2−2(t ≥2); ⑦令√1−x +√1+x =t ,则√1−x 2=t 2−22.无参函数先定性,定性之后再前行! 定性:是指先确定函数定义域,值域,单调性,奇偶性,周期性,图象等性质;然后再结合性质去解题.a a 1 a 2 函数符号的使用:p =kV ⇒p (V )=kV ,y =ax 2+bx +c ⇒y (x )=ax 2+bx +c ,但对于后者习惯用f(x). 在使用函数符号时,“y =⋯”,根据需要可改用“f (x )=⋯”.【y 即f(x),f(x)即y ,因为y =f(x).】 如:判断函数单调性和奇偶性及周期性等,就应该使用函数符号f(x).⑧y=ax+b±k√c2−x2,令x=csinα,α∈[−π2,π2](或令x=ccosα,α∈[0,π]).⑨x∈R时,令x=tanα,α∈(−π2,π2);⑩令sinx+cosx=t,则sinxcosx=t2−12.4.图象法(数形结合法):(直观实用!)■①一些简单函数及分段函数的求值域或最值常利用图象完成.②求f(x)=max{f1(x),f2(x),⋯,f n(x)}或f(x)=min{f1(x),f2(x),⋯,f n(x)}的值域,可先分别作出其中所含函数:f1(x),f2(x),⋯,f n(x)的图象,再利用它们的交点分段确定f(x)的图象,从而确定值域或最值.③根据函数表达式的几何意义【分式→斜率?平方和(的算术根)→距离?等】,作出图象,求出值域或最值.5.单调性法:若函数为单调函数,可根据函数的单调性求值域或最值. (优先考虑!)■6.有界性法:含x2,|x|,√x,x(x∈(m,n)),a x,sinx,cosx的函数,若可用y表示它们,则常利用其有界性来求值域或最值.7.基本(均值)不等式法:利用a+b2≥√ab或a+b+c3≥√abc3(一正二定三相等)等公式来求值域或最值,一定要看等号能否成立,否则用数形结合法、单调性法完成,如y=x+kx(k>0).【还要注意柯西不等式的应用.】8.判别式法:用于y=f(x)=a1x2+b1x+c1a2x2+b2x+c2.(a12+a22≠0,分子、分母无公因式,且x无人为限制.)先化成(a2y−a1)x2+(b2y−b1)x+(c2y−c1)=0,再运用∆≥0求值域(但要注意讨论二次项系数为0的情况).附:若含参数的函数f(x)=a1x 2+b1x+c1a2x2+b2x+c2的值域为[a,b],求所含参数的值.方法①:利用判别式法;方法②:利用a≤a1x 2+b1x+c1a2x2+b2x+c2≤b恒成立且等号也可成立.9.导数法:通过求导研究函数的单调性,确定极值与端点值,从而得出值域或最值.(万能方法!)■⒑分类讨论法:对于含参数的函数求值域或最值,最常用的方法是数形结合、分类讨论.通常先作出函数的一般图象(形状),再由函数图象左右移动悟出讨论标准!二次函数f(x)=ax2+bx+c,x∈[m,n]的最值问题(对称轴含参数问题、区间含参数问题)是最典型的.注意是否需要讨论开口方向,①对称轴x=−b2a与x轴上区间[m,n]的两端点m,n的三种位置关系;②对称轴x=−b2a 与x轴上区间[m,n]的中点m+n2的两种位置关系;同理:对于函数f(x)=k|x−a|+b,x∈[m,n]的最值问题(对称轴含参数问题),可参照上述思路解决.补充1.求函数值域问题,从方程角度讲,就是关于x的方程..在定义域内有解..,从而求参数y的取值范围问题!求函数值域问题,从图象角度讲,就是函数图象上每一点的纵坐标...组成的集合!2.求函数值域与求最值方法是相同(通)的,既可求出值域而确定最值,也可求出最值而确定值域.3.可学会使用的符号:①f(x)max=f(p),f(x)min=f(q);②f(x)max=max{f(p),f(q)}=⋯,f(x)min=min{f(p),f(q)}=⋯.【含参数时可根据f(p)−f(q)的符号分类确定。
第二章函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值X 围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值X 围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。