五、几何法求轨迹方程(高中数学解题妙法)
- 格式:doc
- 大小:119.00 KB
- 文档页数:3
求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。
在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。
一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。
在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。
通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。
2. 参数法有时候通过引入参数,可以简化问题的解决过程。
我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。
通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。
3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。
将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。
二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。
下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。
这时可以通过点斜式或者两点式求解。
给定圆心和半径,求圆的轨迹方程。
可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。
有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。
可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。
第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。
在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。
高中数学轨迹方程求法梳理1.求轨迹方程的常用方法(1)直接法如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,只需把这种关系“翻译”成含x,y的等式,就得到曲线的轨迹方程.由于这种求轨迹方程的过程直接以曲线方程的定义为依据求解,所以称之为直接法.步骤:(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.(2)几何法若所求的轨迹满足某些几何性质(如线段的垂直平分线、角平分线的性质等),则可以用几何法,列出几何式,再代入点的坐标,较简单(一般通过几何法分析转变为直接法和定义法).几个常见定义:(1)到定点的距离等于定值的点的轨迹--------圆;(2)到定直线的距离等于定值的点的轨迹------两条平行线;(3)到两定点的距离之和为定值的点的轨迹(该和大于两定点间的距离)------椭圆(4)到两定点的距离之和为定值的点的轨迹(该和等于两定点间的距离)------线段(5)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线(6)到两定点的距离之差的为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线的一支(7)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值等于两定点间距离)-----两条射线(8)到两定点的距离之差的为定值的点的轨迹(差的绝对值等于两定点间距离)----------一条射线(9)到定点与到定直线距离相等的点的轨迹(该定点不在定直线上)------抛物线(10)到定点与到定直线距离相等的点的轨迹(该定点在定直线上)-------直线注意:1..理论上,所有的几何定义法的题目都可以用直接法解决,但往往计算量大,容易出错2.而在用几何定义法做题时,也不是万能的,一定要注意定义的细节以及等价原则3.曲线的定义与方程无关,并不是说所有题一定都是标准方程(3)定义法若动点的轨迹符合某一基本轨迹的定义,则可根据定义法直接设出所求方程,再确定系数求出动点的轨迹方程.(4)相关点法(代入法或转移法)有些问题中,若动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)的运动而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫作相关点法或坐标代入法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
二:用直译法求轨迹方程此类问题重在寻找数量关系。
例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
高考解析几何轨迹问题解题策略
一、轨迹方程的求法
1. 直接法:直接法就是不设出动点的坐标,而是根据题设条件,直接列出轨迹上满足的点的几何条件,并从这个条件对方程进行整理,得到轨迹方程.
2. 定义法:定义法就是根据已知条件,结合所学过的圆锥曲线的定义直接写出曲线的方程.
3. 参数法:参数法是指先引入一个参数,如时间、速度等,根据已知条件,写出参数方程,再消去参数化为普通方程.
4. 交轨法:交轨法是指利用圆锥曲线统一定义,通过求交点坐标来求轨迹方程的方法.
二、轨迹问题的解题策略
1. 转化化归:将待求问题转化为已知问题,将复杂问题转化为简单问题,将抽象问题转化为具体问题,这是解决轨迹问题的基本策略.
2. 设而不求:在轨迹问题中,设点而不求出点的坐标是常用的一种解题策略.
3. 整体代换:在轨迹问题中,有时通过整体代换可以简化运算.
4. 坐标转移:在轨迹问题中,有时可以通过坐标转移来转化问题.
5. 逆向思维:在轨迹问题中,有时通过逆向思维可以简化运算.。
高中求轨迹方程的方法
答案:
1.直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直译法。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
3.待定系数法:若动点轨迹题意已直接告知,即为椭圆、双曲线、抛物线、圆或直线,则据题意直接用待定系数法求解。
4.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P (x,y)却随另一动点Q(x',y')的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x',y'表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
5.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
6.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
2019高考数学轨迹方程的求解学问点轨迹方程的求解学问点是高考考察的重点难点,一般都在解答题进行考察,重要性不言而喻。
符合肯定条件的动点所形成的图形,或者说,符合肯定条件的点的全体所组成的集合,叫做满意该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满意的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
五、几何法求轨迹方程
本内容主要研究几何法求轨迹方程.几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.
例:一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?
整理:
借助平面几何中的有关定理、性质、勾股定理、垂径定理等等,这种借助几何的方法是
求动点轨迹方程的重要方法,称为几何法.
再看一个例题,加深印象
例:过圆O:x2 +y2= 4 外一点A(4,0),作圆的割线,求割线被圆截得的弦BC的中点M 的轨迹.
注意:自变量的取值范围.
总结:
1.求轨迹方程时,有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.
2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.
练习:
1.已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交
点M 的轨迹方程.
2.一个圆形纸片,圆心为O ,F 为圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于P ,则P 的轨迹是( )
A.椭圆
B.双曲线
C.抛物线
D.圆
3. 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.
答案:
方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x . 2.解:由对称性可知||PF|=|PM|,则|PF|+|PO|=|PM|+|PO|=R (R 为圆的半径),则P 的轨迹是椭圆,选A.。