高中数学解题方法-----求轨迹方程的常用方法
- 格式:pdf
- 大小:339.88 KB
- 文档页数:6
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。
设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。
2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。
解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。
此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。
中学数学解题方法讨论-------求轨迹方程的方法道县五中 周昌雪内容提要:求轨迹方程是每年高考的必考内容且分值较高、难度较大,所以能否正确求轨迹方程对高考的成败至关重要。
本篇论文归纳了六种常用的求轨迹方程的方法。
曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程;直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解;若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之;当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法;若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法;如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程,“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
曲线与方程包括求曲线的方程和由方程研究曲线的性质两个方面的内容,每年必考。
求曲线方程的一般思路是:在平面直角分会坐标系中找出动点P (x,y )的纵坐标y 和横坐标x 之间的关系式(),0f x y =,即为曲线方程,其核心步骤是建系、设点、列式、代入、化简、检验。
检验即为由曲线上的点所具备的条件确定x,y 的范围。
、交轨法等求之。
求曲线方程有两类基本题型:其一是曲线形状明确且便于使用标准形式,此时用待定系数法求方程;另一类是曲线形状不明确,或不便用标准形式表示,这时常用直译法、定义法、思恋法、参数法由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式求解,这时要加强等价转化思想的训练。
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
高中数学:求轨迹方程的几种常用方法
由已知条件求动点轨迹方程是解析几何的基本问题之一,也是解析几何的重点。
轨迹方程的常用方法可归纳为以下四种。
一、普通法
例1. 求与两定点距离的比为1:2的点的轨迹方程。
分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。
解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2. 点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。
分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线
的距离相等。
由抛物线标准方程可写出点M的轨迹方程。
解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。
则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。
故所求轨迹方程为。
三、坐标代换法
例3. 抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。
分析:抛物线的焦点为。
设△ABC重心P的坐标为,点C的坐标为。
解:因点是重心,则由分点坐标公式得:
即
由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4. 当参数m随意变化时,求抛物线的顶点的轨迹方程。
分析:把所求轨迹上的动点坐标x,y分别用已有的参数m
来表示,然后消去参数m,便可得到动点的轨迹方程。
解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。
▍
▍ ▍
▍。
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。
设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。
2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。
解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。
此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。
求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM yk x x =≠-+,直线BM 的斜率(3)3AM yk x x =≠- 由已知有4(3)339y y x x x ∙=≠±+-化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。