高等数学级数2(2)资料
- 格式:ppt
- 大小:859.50 KB
- 文档页数:27
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高数2知识点总结
高等数学2是大学数学的一门课程,是高等数学的延伸和拓展。
它包含了多个知识点,总结如下:
1. 无穷级数:
- 收敛和发散的概念;
- 正项级数的判别法,如比较判别法、比值判别法、根值判别法等; - 任意级数的绝对收敛和条件收敛概念。
2. 函数的连续性和可导性:
- 函数的连续性概念及连续性定理;
- 可导函数的导数定义及性质,如导数的四则运算、链式法则、隐
函数导数等。
3. 多元函数的偏导数:
- 多元函数的偏导数定义和求导法则,如常见的偏导函数的求导法则;
- 高阶偏导数、混合偏导数及其次序可换性。
4. 多元函数的极值和最值:
- 多元函数的极值和最值的概念及存在性定理;
- 极值和最值的求解方法,如拉格朗日乘数法。
5. 重积分:
- 二重积分和三重积分的概念;
- 重积分的计算方法,如累次积分法、极坐标法、柱坐标法、球坐
标法等;
- 坐标变换的雅可比行列式及其应用。
6. 曲线与曲面积分:
- 曲线积分和曲面积分的概念;
- 曲线积分与路径无关性质的应用,如格林公式、斯托克斯公式;
- 曲面积分的计算方法,如参数化计算、高斯公式。
以上是高等数学2的主要知识点总结,通过学习这些知识点,可以进一步理解和应用高等数学的相关内容。
12)1()(x f 0x x =)(00x f a =!)(0)(k x f a k k =ππππ11()cos d (0,1,2,),()sin d (1,2,)ππn n a f x nx x n b f x nx x n --====⎰⎰. 34求收敛半径定理,幂级数展开定理,1 为了叙述方便,称前者为有限加而无穷个数相加只是我们不可能用有限加法的方法来完成另外,有限加法中的结合律和交换律在我们在研究无限累加时,是以有限加法(部一般情况下,这个和的数值不易求得,教科书1 ,B .)级数的求和问题. +-+-=1111x0)11()11(=+-+-= x 1)11()11(1=-----= x x x -=+-+--=1)1111(1 ,于是12x =. 柯西指出:以上解法犯∑∞=--11)1(n n2 ∑∞=1n nu0lim ≠∞→n n u ∑∞=1n nup2 1π3sin4n nn ∞=∑ π303sin π44nnn ⎛⎫<< ⎪⎝⎭13π4nn ∞=⎛⎫ ⎪⎝⎭∑1π3sin4n nn ∞=∑ 11π3sin341π43sin 4n n n n ++=< 1π3sin4n n n ∞=∑ 3 ∑∞=1n nu0lim ≠∞→n n u 0lim =∞→n n u∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu0lim ≠∞→n n u3 ∑∞=---+-11)11()1(n n n n1111211)11()1(1+>-++=--+=--+--n n n n n n n n∑∑∞=∞==+01111n n nn ∑∞=---+-11)11()1(n n n n0112limlim =-++=∞→∞→n n u n n n0)2)(11()1(2)12(2)2()11(1>++--+--++-+=-+---+=-+n n n n n n n n n n n n u u n n4 ∑∞=⎪⎪⎭⎫ ⎝⎛+--21111n n n∑∑∑∞=∞=∞==-=⎪⎪⎭⎫ ⎝⎛+--22112121111n n k k n n n 11k k ∞=∑∑∞=⎪⎪⎭⎫⎝⎛+--21111n n n 4 0n n n a x ∞=∑nn n a a 1lim+∞→R ),(R R -R x ±=nn n a a 1lim +∞→0x x -5 ∑∞=⎪⎭⎫⎝⎛151n nx n111155nnnn n x x n n ∞∞==⎛⎫= ⎪⋅⎝⎭∑∑ 11511lim lim lim lim1(1)55(1)551n n n n n n n na n na n n n ++→∞→∞→∞→∞⋅====+⋅⋅+⎛⎫⋅+ ⎪⎝⎭5=R )5,5(-5=x ∑∞=11n n 5-=n ∑∞=-1)1(n n n)5,5[-6 2111(1)(21)!n n n x n -∞+=--∑2221(21)!1limlim lim 0(21)!2(21)n n n n nu n x x x u n n n +→∞→∞→∞-===⋅+++∞=R ),(+∞-∞7 11(1)(1)nn n x n∞-=--∑ 1-=x t ∑∞=--11)1(n nn nt 1111lim 1lim lim1=+=+=∞→∞→+∞→nn n a a n n n n n1=R )1,1(-1-=t ∑∑∞=∞=--=--1111)1()1(n n n n n n 1=t ∑∞=--111)1(n n n ∑∞=--11)1(n nn nt ]1,1(-]2,0( 5 )(x f )(x f 0lim ()0n n R x →∞=)(x f)1()2()3()4()5( 8 2()12xf x x x=+-x ⎪⎭⎫⎝⎛+--=+-=x x x x x x f 2111131)21)(1()(+++++=-n x x x x2111)11(<<-x+-++-+-=+n n x x x x x )2(842121132⎪⎭⎫ ⎝⎛<<-2121x∑∞=-+=)2)1(1()(n n n nx x f ⎪⎭⎫ ⎝⎛<<-2121xn n 9 x x f ln )(=2-x2()ln[2(2)]ln 2ln 12x f x x -⎛⎫=+-=++⎪⎝⎭22-=x t )1ln(221ln t x +=⎪⎭⎫ ⎝⎛-++-++-+-=-nn t nt t t t 1432)1(432t <-1(1) 2312322(2)(2)(1)(2)ln 12222322n nnx x x x x n -------⎛⎫+=-++++ ⎪⋅⋅⋅⎝⎭ x <0(≤)4+⋅--++-+---+=-n nn n x x x x x 2)2()1(2)2(312)2(21222ln ln 13322x <0(≤)4 10 ∑∞=+++12)2)(1(n n n n x1)3)(2()2)(1(lim=++++=∞→n n n n R n 1±=x ]1,1[-.∑∞=+++=12)2)(1()(n n n n x x S∑∞=++='111)(n n n x x S ∑∞==''1)(n nx x S∑∞=-=11n n x x x xxx S -=''1)()11(<<-x ⎰⎰---=-=''='-'x xx x x xxx x S S x S 00)1ln(d 1d )()0()()11(<<-x 0)0(='S )1ln()(x x x S ---=')11(<<-x⎰⎰---='=-x xx x x x x S S x S 0d )]1ln([d )()0()(⎰--+---=x x xx x x x 02d 1)1ln(2 )1ln()1(22x x x x --+-= )11(<<-x 0)0(='S)1ln()1(2)(2x x x x x S --+-= )11(<<-x11 ∑∞=+02!12n nx n n 0)1)(12(32lim !12)!1(32lim 2232=+++=+++∞→+∞→x n n n x n n xn n n n n n),(+∞-∞∑∞=+=2!12)(n nx n n x S2212200021()d d e !!!n nx x n x n n n n x x S x x x x x x n n n +∞∞∞===+====∑∑∑⎰⎰()2220()()d (e )e (12)x x x S x S x x x x ''===+⎰222021()e (12)!n x n n S x x x n ∞=+==+∑),(+∞-∞∈x )1(10)1)(2(2+++n n x n )2(11nx n n 2!12+1)3(106 )(x f )(x f )(x f )(x f )(x f [π,π]-n a n b ∑∞=++1)sin cos (2n n n nx b nx a a )(x f )(x f [π,π]-n a n b)(x f x )(x f )(x f )(x f 2)()()(-++=x f x f x f∑∞=++=1)sin cos (2)(n n n nx b nx a a x f )(x f12 +-+-=!6!4!21cos 642x x x x 13246357cos isin 1i 2!4!6!3!5!7!θθθθθθθθθ⎛⎫⎛⎫+=-+-++-+-+⎪ ⎪⎝⎭⎝⎭23456i i 1i 2!3!4!5!6!θθθθθθ=+--++--,2i 1=-3i i =-4i 1=5i i =23456i (i )(i )(i )(i )(i )cos isin 1i e 2!3!4!5!6!θθθθθθθθθ+=+++++++=i cos isin e θθθ+=14 10年,每年向球300?假设存储30003000B p B 元. r t nntn r p B ⎪⎭⎫⎝⎛+=1ntn r B p ⎪⎭⎫⎝⎛+=1, re rt B p =e ertrt B p B -==.10300万元,第一次付款是在签约当%5113=(百万元), 2205.013+=33205.13=10905.13=1029131 1.05333324.3211.05 1.05 1.051 1.05⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++++=≈-, 2432300?%5 13= 20.053e-=),30.0523(e )-=),0.050.0520.05333e 3(e )3(e )---=++++,0.05ex -=0.05361.51e -=≈-(百万元).( √ ) )(x f )(x f 能展开成0x x -的幂级)(x f( ⨯ ) )(x f )(x f 时,)(x f,0lim =∞→n n u ∑∞=1n nu收敛; ( ⨯ )0lim =∞→n n u 正项级数∑∞=1n n u 0lim =∞→n n u ∑∞=11n n 01lim =∞→n n ∑∞=11n n(),11∑∞=-n n na ,0lim =∞→n n a ∑∞=-1)1(n n n a ⨯),2,1(1=≥+n u u n n∑∞=1n na0lim =∞→n n a 1lim1<+∞→n nn a a1lim1n n na a +→∞≤ 1lim 1>=+∞→λn n n a a1lim 1<=+∞→nn n a a q∑∞=+1)4(n n nx a2-=x 2=x4+=x t ∑∞=1n nn ta 2-=x 2=t ∑∞=1n nn ta 2-2(,2)∪(2,)-∞-+∞2=x 6=t ∑∞=+1)4(n n nx a∑∞=1n nn x1<x 1≤x11<≤-x 11≤<-x 11lim lim1=+=∞→+∞→n na a n nn n 1)1,1(-1=x ∑∞=11n n 1-=x ∑∞=-1)1(n n n )1,1[-∑∑∑∞=∞=∞=111,,n nn nn ncb a n n nc b a <<),2,1( =n∑∞=1n nb∑∞=1n na∑∞=1n nb∑∞=1n nc∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb)(x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim 00)(=-∞→n n n x x n x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim00)(=-∞→n n n x x n x fe x = 212!!n x x x x n +++++∈R ;=x sin 35211(1)3!5!(21)!n n x x x x x n ---+-+-+∈-R ;=x cos 2421(1)2!4!(2)!nnx x x x n -+-+-+∈R ;=+)1ln(x ]1,1()1(32132-∈+-+-+-+x nx x x x nn ;mx )1(+=)1,1(!)1()1(!2)1(12-∈++--++-++x x n n m m m x m m mx n;∑∞=1n nnx aR ,则∑∞=12n n n x a 的收敛半径为R ;∑∞=1n nnx aR ,则∑∞=1n n n x a 的收敛区间为),(R R -.21nn n a x∞=∑R x <<20⇒R x R <<-,所以,∑∞=12n n n x a 的收敛R)(x f 2π[π,π]-的表达式为{1,π0,()1,0π,x x f x x x --≤<=+≤<则)(x f πx = 1π+ .ππlim ()lim(1)1πx x f x x --→→=+=+, ππlim ()lim(12π)1πx x f x x ++→→=-+=+, πlim ()1π(π)(2ππ)(π)x f x f f f →=+=-=-= ,)(x f πx =)(x f πx =处收敛于(π)f =1π+ .∑∞=+1)1(n nxn n 的收敛域与和函数;∑∞=+1)1(n nxn n =∑∞=-+11)1(n n nxn x=∑∞=++0)1)(2(n nxn n x,)(x s ∑∞=++0)1)(2(n nxn n 1-11)(x u 0()d x s x x ⎰00(2)(1)d x nn n n x x ∞=++∑⎰∑∞=++01)2(n n x n()d x u x x ⎰100(2)d x n n n x x ∞+=+∑⎰∑∞=+02n n xxx -12)(x u )1(2'-x x 22)1()1(2x x x x -+-22)1(2x x x -- )(x s ])(['x u ])1(2[22'--x x x 3)1(2x -∑∞=+1)1(n n x n n )(x xs 3)1(2x x- )1,1(-∈x ∑∞=-11n n nx∑∞=+1212n nn x)(x s ∑∞=-11n n nx()d x s x x ⎰101d x n n nx x ∞-=∑⎰∑∞=1n n x xx-1 )(x s )1('-xx2)1(1x -∑∞=-11n n nx 2)1(1x - )1,1(-∈x∑∞=+1212n n n x ∑∞=++112121n n n x x)(x u ∑∞=++11212n n n x='])([x u )12(112'+∑∞=+n n n x ∑∞=12n nx 221x x - )(x u 0()d x u x x '⎰220d 1xx x x -⎰201d 1x x x -⎰0d x x ⎰x x x --+11ln 21∑∞=+1212n n n x ∑∞=++112121n n n x x 111ln 21--+x xx xx f 1)(=3-x x x f 1)(=3)3(1+-x 331131-+⋅xx+11)1,1()1(12-∈+-+-+-x x x x nnx x f 1)(=331131-+⋅x 31]33)1()33(331[2 +⎪⎭⎫⎝⎛--+--+--nn x x x ∑∞=+--01)3(3)1(n nn n x )1,1(33-∈-x )6,0(∈xx sin π6x +x sin ππsin[()]66x +-3π1πsin()cos()2626x x +-+ )6sin(π+x 35211πππ()()()π666()(1)63!5!(21)!n n x x x x x n --++++-+-+-+∈-R ,πcos()6x +242πππ()()()6661(1)2!4!(2)!nnx x x x n +++-+-+-+∈R ,x sin 3π1πsin()cos()2626x x +-+ 234πππ()()()13π131666()22622!23!24!x x x x +++-+++⋅--⋅+22111ππ()()1366(1)(1)2(2)!2(21)!n n n n x x x n n ---+++-⋅+-⋅+∈-R .{0,()π,f x x =-π0,0π,x x -≤<≤<将)(x f 在[π,π]-上展成傅里叶级数,傅叶级数在0=x0a ππ1()d πf x x -⎰π01(π)d πx x -⎰2π011(π)π2x x -π2n a ππ1()cos d πf x nx x -⎰π01(π)cos d πx nx x -⎰π1(π)d(sin )πx nx n -⎰π01(π)sin πx nx n -π01sin d πnx x n ⎰π021cos πnx n -20,21,2,2,πn k n k n =-⎧⎪⎨=⎪⎩ n b ππ1()sin d πf x nx x -⎰π01(π)sin d πx nx x -⎰π01(π)d(cos )πx nx n --⎰π01(π)cos πx nx n -π01cos d πnx x n ⎰0cos 1n n1 )(x f)(x f π421211[cos(21)sin(21)sin 2](21)π212k k x k x kx k k k ∞=-+-+--∑ )(lim 0x f x +→0lim(π)x x +→-π)(lim 0x f x -→ 0=x π2∑∞=-211n n n11-n n 1)1(1--n n 23)1(1-n∑∞=-223)1(1n n ∑∞=1231n n312p =>p ∑∞=-211n n n11πtan 2n n n ∞+=∑nn n a aq 1lim +∞→=21π(1)tan2limπtan 2n n n n n +→∞++⋅⋅21π(1)2limπ2n n n n n +→∞++⋅⋅n n n 21lim +∞→2111πtan2n n n ∞+=∑∑∞=+-111)1(n nnn n u ∞→lim 11lim+∞→n n1+n u 21+n 11+n n u∑∞=+-111)1(n nn1000 n B ∞→n%)51(10001+⨯=a n %)51(%)51(10001+++⨯=-n n a a1221223323211211000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),n n n n n n n n n a a a a a a a a --------=⨯+++⎧⎪+=⨯+++⎪+=⨯+++⎨⎪⎪+=⨯+++⎩n a 1112%)51(]%)51(%)51(%)51[(1000--++++++++⨯n n an n %)51(1000%)51(1]%)51(1%)[51(10001+⨯++-+-+⨯- ]1%)51(-+nn n a ∞→lim ∞,n B ]1%)51(-+n元,当∞→n。
成教高等数学二教材高等数学二教材高等数学二是成人教育中的一门重要课程,它是高等数学的延伸和拓展。
本教材旨在为成教学生提供全面而深入的高等数学知识,帮助他们掌握相关概念、理论和方法,并能够运用于解决实际问题。
第一章无穷级数1.1 序列和数列极限无穷级数的概念和性质,数列极限的定义和判准,特殊数列的收敛性判定。
1.2 数项级数的性质正项级数的性质,级数的收敛和发散判定,收敛级数的性质。
1.3 幂级数幂级数的概念和收敛域,常见幂级数的展开式。
第二章函数的多项式逼近2.1 泰勒级数函数的泰勒展开,常用函数的泰勒展开式。
2.2 函数的极限与连续性函数极限的定义和性质,连续函数的判定和性质。
2.3 微分学的应用函数的$n$阶导数和高阶导数,函数的凹凸性和拐点,函数图形的描绘。
第三章一元函数的积分学3.1 定积分定积分的概念和性质,微元法求定积分,定积分的计算公式。
3.2 不定积分不定积分的概念和性质,基本积分表和换元法,分部积分和分式积分法。
3.3 定积分的应用定积分的应用,曲线下面积及其计算,定积分的物理及几何应用。
第四章二元函数与偏导数4.1 二元函数的极限和连续性二元函数的极限定义和性质,二元函数的连续性和间断点。
4.2 偏导数偏导数的定义和几何意义,高阶偏导数,隐函数求导。
4.3 方向导数与梯度方向导数的定义和计算,梯度的定义和性质。
第五章多元函数的微分学5.1 多元函数的微分多元函数的全微分和一阶微分近似,多元复合函数微分法。
5.2 隐函数及其导数隐函数存在定理,隐函数求导。
5.3 多元函数的极值与条件极值多元函数的极值判定,条件极值的求解。
第六章多元函数的积分学6.1 二重积分二重积分的定义和性质,二重积分的计算方法。
6.2 三重积分三重积分的定义和性质,三重积分的计算方法。
6.3 广义积分广义积分的概念和性质,广义积分的计算方法。
通过对以上章节的学习及练习,学生将对高等数学的概念和方法有一个更加深入的了解,并能够运用所学知识解决实际问题。
高等数学2 课本教材高等数学2是一个涉及复杂概念和公式的学科。
它是数学的一个分支,主要研究了微积分、线性代数和概率论等内容。
本节文章将以教科书的形式,按照章节的顺序来介绍高等数学2课本的主要内容。
第一章微分方程微分方程是高等数学2中最重要的章节之一。
它涉及到描述变化过程的方程。
本章首先介绍了常微分方程的概念和基本理论。
然后,详细讨论了一阶和二阶常微分方程的解法,包括可分离变量法、齐次方程法和常数变易法等。
接着,介绍了线性常微分方程的解法及其应用。
最后,通过一些实际问题的案例,说明微分方程在物理、经济和生态学等领域的应用。
第二章无穷级数无穷级数是高等数学2中的另一个重要概念。
本章首先介绍了数列和数列极限的概念。
然后,引入了无穷级数的定义,并详细讨论了级数和部分和的性质。
接着,讨论了正项级数的收敛性质,包括比较判别法、比值判别法和根值判别法等。
最后,介绍了幂级数和傅里叶级数的基本概念及其应用。
第三章多元函数微分学多元函数微分学是高等数学2中的一个重要分支。
本章首先引入了多元函数的概念,并讨论了极限和连续等基础理论。
然后,详细讨论了多元函数的偏导数、全微分和方向导数等概念。
接着,介绍了多元复合函数的求导法则和隐函数的求导法则。
最后,引入了多元函数的泰勒公式和拉格朗日乘数法,通过实例讲解了这些概念的应用。
第四章多重积分多重积分是高等数学2中涉及到空间区域的重要内容。
本章首先引入了二重积分和三重积分的概念,并讨论了累次积分和重积分的性质。
然后,介绍了换元积分法和坐标变换法来计算多重积分。
接着,讨论了二重积分和三重积分的应用,包括质量、质心和转动惯量等问题。
最后,介绍了曲线积分和曲面积分的基本概念及其应用。
第五章曲线与曲面的方程曲线和曲面的方程是高等数学2中的一个重要内容。
本章首先介绍了参数方程和方程组的基本概念。
然后,详细讨论了平面曲线和空间曲线的一般方程及其性质。
接着,介绍了曲线的切线和法平面方程的求解方法。
【公式总结】无穷级数(一)常数项级数1、定义:1)无穷级数:ΛΛ+++++=∑∞=n n nu u u u u3211部分和:n nk kn u u u u uS ++++==∑=Λ3211,正项级数:∑∞=1n n u ,0≥n u 交错级数:∑∞=-1)1(n n n u ,0≥n u 2)级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散3)条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散;绝对收敛:∑∞=1n n u 收敛。
2、性质:1)改变有限项不影响级数的收敛性;2)级数∑∞=1n n a ,∑∞=1n n b 收敛,则∑∞=±1)(n n n b a 收敛;3)级数∑∞=1n n a 收敛,则任意加括号后仍然收敛;4)必要条件:级数∑∞=1n n u 收敛⇒0lim =∞→n n u .(注意:不是充分条件!)3、审敛法正项级数:∑∞=1n n u ,0≥n u 1)定义:S S n n =∞→lim 存在;2)∑∞=1n nu收敛⇔{}n S 有界;3)比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1(Λ=≤n v u n n 若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4)比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当m n >时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m ,当m n>时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.5)比较法的极限形式:∑∞=1n n u ,∑∞=1n n v 为正项级数,若)0(lim+∞<≤=∞→l l v u nnn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→nnn v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散.6)比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7)根值法:∑∞=1n n u 为正项级数,设l u n n n =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8)极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→nn u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0(lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n n u ,0≥n u 满足:),3,2,1(1Λ=≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛。
高等数学二教材目录1. 导论1.1 数列与极限1.2 无穷级数2. 函数的极限与连续2.1 函数的极限2.2 连续函数2.3 间断点与间断函数3. 导数与微分3.1 函数的导数与导数的概念3.2 导数的运算法则3.3 高阶导数与隐函数求导3.4 微分与泰勒公式4. 函数的应用4.1 函数的极值与最值4.2 函数的凸性与拐点4.3 微分中值定理与泰勒展开4.4 拉格朗日乘数法与极值问题应用5. 定积分5.1 定积分与不定积分5.2 定积分的性质与换元法5.3 定积分的计算方法5.4 广义积分与应用6. 微分方程6.1 常微分方程6.2 一阶常微分方程6.3 高阶常微分方程6.4 变易法与欧拉方程7. 空间解析几何与多元函数微分学7.1 空间解析几何的基本概念7.2 空间中直线与平面7.3 多元函数与偏导数7.4 全微分与多元函数的微分8. 重积分与曲线曲面积分8.1 二重积分的概念与性质8.2 二重积分的计算方法8.3 三重积分与曲线曲面积分的概念8.4 曲线曲面积分的计算方法9. 向量场与格林公式9.1 向量场的概念与性质9.2 向量场的散度与旋度9.3 格林公式与高斯公式9.4 斯托克斯公式与流形10. 傅里叶级数与傅里叶变换10.1 傅里叶级数的概念与性质10.2 傅里叶级数的计算方法10.3 连续傅里叶变换与离散傅里叶变换10.4 傅里叶变换与偏微分方程这是《高等数学二》教材的目录,按照每个章节所涵盖的内容进行了分类。
通过学习这个教材,你将掌握数列与极限、函数的极限与连续、导数与微分、函数的应用、定积分、微分方程、空间解析几何和多元函数微分学、重积分与曲线曲面积分、向量场与格林公式、傅里叶级数与傅里叶变换等相关知识点。
逐步学习这些内容将使你对高等数学的理解更加全面,能够应用于实际问题的解决中。
希望这本教材能够帮助你更好地掌握高等数学的知识。