14.位错密度
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
金属的塑性变形习题1.名词解释塑性是指固体材料在外力作用下发生永久变形,而不破坏其完整性的能力。
塑性指标为了衡量金属塑性的高低,需要有一种数量上的指标变形速率金属塑性加工时单位时间内工件的平均变形程度变形抗力塑性变形时,变形金属抵抗塑性变形的力超塑性材料在一定内部条件下和外部条件下,呈现出异常低的流变抗力、异常高的流变性能的现象。
交滑移在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移孪生变形晶体特定晶面(孪晶面)的原子沿一定方向(孪生方向)协同位移(称为切变)的结果包辛格效应在金属塑性加工过程中正向加载引起的塑性应变强化导致金属材料在随后的反向加载过程中呈现塑性应变软化(屈服极限降低)的现象。
残余应力引起附加应力的外因去处后,在物体内仍残存的应力叫残余应力,残余应力是弹性应力,不超过材料的屈服应力,也是相互平衡成对出现的。
最小阻力定律当物体各质点有在不同方向移动的可能时,变形物体内的每一个质点都将沿其最小阻力方向移动。
2.影响金属塑性的内因和外因有哪些?答案:影响金属塑性高低的主要因素有两方面:内因,金属本身的化学成分、组织结构等;外因,变形温度、变形速度、变形程度、应力状态、变形状态、尺寸以苏、周围介质等。
3.改善金属材料的工艺塑性有哪些途径,怎样才能获得金属材料的超塑性?答案:(1)途径:①控制化学成分、改善组织结构,提高材料的成分和组织的均匀性;②采用合适的变形温度-速度制度;③选用三向压应力较强的变形过程,减小变形的不均匀性,尽量造成均匀的变形状态;④避免加热和加工时周围介质的不良影响。
(2)获得金属材料超塑性的方法:①超细等轴晶粒组织在一定温度区间和一定的变形速度条件可以获得恒温超塑性;②材料具有固态相变的特性,并在外加载荷作用下,在相变温度上下循环加热与冷却,诱发产生发福的组织结构变化时金属原子;发生剧烈运动而呈现出相变超塑性。
③有些材料在消除应力退火过程中,在应力作用下也可以得到超塑性。
材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。
3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。
(《笔记》聚合物拉伸时出现的细颈伸展过程。
)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。
(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。
(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。
)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。
7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。
8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。
(《书》晶体开始滑移时,滑移方向上的分切应力。
)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。
(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。
)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。
(《书》使金属在再结晶温度以上发生加工变形的工艺。
)11、柏氏矢量:是描述位错实质的重要物理量。
反映出柏氏回路包含的位错所引起点阵畸变的总积累。
(《书》揭示位错本质并描述位错行为的矢量。
)反映由位错引起的点阵畸变大小的物理量。
12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。
13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。
7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值σ/ε称为弹性模量E,也称为杨氏模量。
E标志材料抵抗弹性变形的能力,用以表示材料的刚度。
14、断裂韧性:金属材料阻止裂纹失稳扩散的属性或材料的韧性。
1、金属特性:金属在固态下具有以下特征:①具有良好的导电性和导热性;②具有正的电阻温度系数;③具有良好的反射能力、不透明性和金属光泽;④具有良好的塑性变形能力。
4、晶体与晶体特性:原子(或分子)在三维空间呈有规则的周期性排列的一类物质称为晶体。
晶体特性:①晶体中的原子(或分子)在三维空间呈有规则的周期性排列;②具有确定的熔点;③具有各向异性;④具有规则的几何外形。
5、空间点阵:将刚球模型中的刚球抽象为纯粹的几何点,得到一个由无数几何点在三维空间规则排列而成的列阵,称之为空间点阵。
6、晶格与晶胞:描述原子(离子、分子)或原子团在晶体中排列方式的几何空间格架称为结晶格子,简称晶格。
从晶格选取一个能够完全反映晶体特征的最小几何单元。
这个有代表性的最小几何单元称为晶胞。
7、晶面与晶向:在晶体中,有一系列原子所组成的平面称为晶面;任意两个原子之间的连线称为原子列,其所指方向称为晶向。
8、晶面指数与晶向指数:为确定晶面和原子列在晶体中的空间位向所采用的统一符号,分别称为晶面指数与晶向指数。
9、晶面族(或晶向族):某些晶面(或晶向)上的原子排列相同但空间位向不同,它们在晶体学上属等同晶面(或晶向),可归并为一个晶向族称为晶面族(或晶向族)。
10、配位数与致密度:晶格中任一原子周围与其最近邻且等距离的原子数目称为配位数;一个晶胞内原子所占体积与晶胞体积之比称为致密度。
12、多晶型转变或同素异构转变:具有多晶型的金属在温度或压力变化时,由一种晶体结构变为另一种晶体结构的过程叫多晶型转变或同素异构转变。
14、点缺陷:在三维尺度上都很小的晶体缺陷,一般不超过几个原子间距。
点缺陷主要有空位、间隙原子和置换原子等。
15、线缺陷:在二维尺度上很小,而在三维尺度上很大的晶体缺陷,包括刃型位错、螺型位错、混合位错。
第一章原子结构与键合此章主要掌握概念1.金属键(1)典型金属原子结构的特点是其最外层电子数很少,极易挣脱原子核的束缚而成为自由电子,并在整个晶体内运动,及弥漫于金属正离子组成的晶格之中而形成电子云。
这种由金属中的自由电子与金属正离子相互作用所构成的键合为金属键。
(2)绝大多数金属均以金属键方式结合,它的基本特点是电子的共有化,而且无方向性,无饱和性.(3)金属一般具有良好的到点和导热,以及良好的延展性的原因:自由电子的存在。
2.离子键大多数盐类、碱类和金属氧化物主要以离子键的方式结合,靠静电引力结合在一起。
3。
共价键共价键是由两个或多个电负性相差不大的原子通过共用电子对而形成的化学键。
共价键又分为非极性键和极性键两种.有方向性和饱和性。
4.范德瓦耳斯力是借助这种微弱的、瞬时的电偶极矩的感应作用,将原来具有稳定的原子结构的原子或分子结合为一体的键合,没有方向性和饱和性.5.氢键氢键是一种极性分子键,存在于HF、H2O、NF3等分子间,它的键能介于化学键与范德瓦耳斯力之间。
第二章固体结构重点:晶面指数和晶向指数、配位数以及致密度等一些概念、合金相结构的几种类型、间隙固溶体和间隙化合物和间隙相的异同点.主要是简答题按照原子或分子排列的特征可将固态物质分为两大类:晶体和非晶体.1.晶体结构的基本特征是,原子或分子或离子在三维空间呈周期性重复排列,即存在长程有序。
(各向异性)2.空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。
(概念题)3.晶格:为了便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,构成了一个三维几何架子。
(概念题)4。
晶胞:可在点阵中取出一个具有代表性的基本单元,作为点阵的组成单元。
(概念题)5。
选取晶胞的原则:a.选取的平行六面体应反映出点阵的最高对称性。
b.平行六面体内的棱和角相等的数目应最多。
c。
当平行六面体的棱边夹角存在直角时,直角数目应最多。
材料科学基础名词解释第一章固体结构1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。
2、中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3、晶体点阵:由实际原子、离子、分子或各种原子集团,按一定几何规律的具体排列方式称为晶体结构或晶体点阵。
4、配位数:晶体结构中任一原子周围最近邻且等距离的原子数。
5、晶格:描述晶体中原子排列规律的空间格架称之为晶格。
6、晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。
7、空间点阵:由周围环境相同的阵点在空间排列的三维列阵成为空间点阵。
8、晶向:在晶格中,穿过两个以节点的任一直线,都代表晶体中一个原子列在空间的位向,称为晶向。
9、晶面:由节点组成的任一平面都代表晶体的原子平面,称为晶面。
10、晶向指数(晶面指数):为了确定晶面、晶向在晶体中的相对取向、就需要一种符号,这种符号称为晶面指数和晶向指数。
国际上通用的是密勒指数。
一个晶向指数并不是代表一个晶向,二十代表一组互相平行、位向相同的晶向。
11、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族,以<uvw>表示。
12、晶面间距:相邻两个平行晶面之间的垂直距离。
低指数晶面的面间距较大,而高指数晶面的面间距较小。
晶面间距越大,则该晶面上原子排列越紧密,该原子密度越大。
13、配位数:每个原子周围最近邻且等距离的原子数目,称为配位数。
14、多晶型性:有些金属固态在不同温度或不同压力范围内具有不同的晶体结构,这种性质称为晶体的多晶型性。
15、多晶型性转变:具有多晶型性的金属在温度或压力变化时,由一种结构转变为另一种结构的过程称为多晶型性转变,也称为同素异构转变。
()四位错密度应用一些物理的和化学的实验方法可以将晶体中的位错显示出来1. 如用浸蚀法可得到位错腐蚀坑,由于位错附近的能量较高,所以位错在晶体表面露头的地方最容易受到腐蚀,从而产生蚀坑。
位错腐蚀坑与位错是一一对应的。
2. 此外用电子显微镜可以直接观察金属薄膜中的位错组态及分布3. 还可以用X 射线衍射等方法间接的检查位错的存在位错的形态特点:● 由于位错是已滑移区和未滑移区的边界,所以位错线不能中止在品体内部,而只能中止在晶体的表面或晶界上。
● 在品体内部,位错线一定是封闭的,或者自身封闭成一个位错圈,或者构成三维位错网图1.42是晶体中三维位错网络示意图图1.43是晶体中位错的实际照片位错密度的概念:● 在实际晶体中,经常会含有大量的位错,通常把单位体积中所包含的位错线的总长度称为位错密度即VL =ρ。
式中,V 是晶体体积,L 为该晶体中位错线的总长度,ρ的单位为2-m 。
● 位错密度的另一个定义是:穿过单位截面积的位错线数目,单位也是2-m 。
位错密度有多大一般在经过充分退火的多晶体金属中,位错密度达2121010~10-m ,而经过剧烈冷塑性变形的金属,其位错密度高达2161510~10-m ,即在31cm 的金属内,含有千百万公里长的位错线。
金属材料的强度和位错密度之间的关系:1. 不含位错的金属强度:⏹ 如果金属中不含位错,那么它将有极高的强度,目前采用一些特殊方法已经能制造出几乎不含位错的结构完整的小晶体—直径约为m μ2~05.0、长度为mm 10~2的晶须,其变形抗力很高⏹ 例如直径m μ6.1的铁晶须,其抗拉强度竟高达213400m MN ,而工业上应用的退火纯铁,抗拉强度则低于2300m MN ,两者相差40多倍。
⏹ 不含位错的晶须,不易塑性变形,因而强度很高,而工业纯铁中含有位错,易于塑性变形,所以强度很低。
2. 如果采用冷塑性变形等方法使金属中的位错大大提高,则金属的强度也可以随之提高。
原子结构与结合键 + 材料的结构1、第一电离能气态原子失去一个电子成为气态一价正离子所需要的最低能量称为第一电离能。
2、第二电离能气态A+再失去一个电子成为气态二价正离子所需要的最低能量称为第二电离能。
3、结合键原子间的结合力,主要表现为原子间的吸引力和排斥力的合力结果。
4、离子键通过两个或多个原子失去或获得电子而成为离子后形成,本质上可以归结为静电吸引作用,主要存在于晶体化合物中。
5、共价键由两个或多个电负性相差不大的原子共用电子对所形成的化学键,有方向性、饱和性。
6、金属键金属正离子和自由电子之间的相互作用所构成的结合力,无方向性、饱和性7、范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键,属于分子间作用力,无方向性和饱和性。
8、氢键已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力,具有方向性和饱和性。
9、晶体指内部质点(原子、分子或离子)在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。
10、晶胞能充分反映晶体的晶体结构特征的最小体积单位(平行六面体)。
11、阵胞在三维方向上两两平行且相等的六面体,是空间点阵中的体积单元。
12、晶格原子在晶体中排列规律的空间格架。
13、空间点阵由一系列在三维空间按周期性排列的几何点称为一个空间点阵。
空间点阵四要素:阵点、阵列、阵面、阵胞)14、晶族依据晶体中高次轴(n>2)的数目,将晶体分为低级(无高次轴),中级(一个高次轴)和高级(多于一个高次轴)晶族。
15、空间群晶体结构中所有对称要素的组合所构成的对称群,晶体微观结构中共存在230种空间群。
16、晶面/晶向在晶体内部构造中,由物质质点所组成的平面/穿过物质质点所组成的直线方向。
17、晶带所有相交于某一直线或平行于此直线的所有晶面的组合(此直线称为晶带轴)。
18、晶面间距一组平行晶面中,最近邻的两个晶面间距称为晶面间距。
晶面间距越大,晶面上原子排列的密度越大,反之越小。
1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。
共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。
离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。
范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。
金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。
2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。
单晶体:由一个晶粒组成的晶体。
准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。
玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。
非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。
非晶态金属又称作金属玻璃。
微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。
纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。
3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。
阵点:代表原子(分子或离子)中心的点。
晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。
晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。
晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。
4、晶向:晶体中某些原子在空间排列的方向叫晶向。
1.阵点:晶体中的质点抽象位规则排列于空间的几何点。
2.空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。
3.空间格子:用来描述空间点阵的三维几何格架。
4.简单晶胞:只有在平行六面体每个顶角上有一阵点的晶胞。
5.复杂晶胞:除在顶角外,在体心、面心或底心上有阵点。
6等同点:晶体结构中物质环境和几何环境完全相同的点。
7.合金:由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成,并具有金属特性的物质。
8.组元:组成合金的基本的、独立的物质。
9.相:合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。
10.单相合金:有一种相组成的合金。
11.多相合金:由几种不同的相组成的合金。
12.固溶体:以某一组元位溶剂,在其晶体点阵中融入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。
13.中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
14.中间相的分类:正常价化合物、电子化合物、与原子尺寸因素有关的化合物(间隙相和间隙化合物、拓扑密堆相)固溶体根据溶质原子在溶剂点阵中所处位置,分为置换固溶体和间隙固溶体。
按固溶度分类:有限固溶体和无限固溶体。
按各组元原子分布的规律性分类:无序固溶体和有序固溶体。
15.置换固溶体:溶质原子置换了溶剂点阵的部分溶剂原子的固溶体。
16.极限电子浓度:最大溶解度时的电子浓度数值接近位1.4。
17.间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。
18间隙相:当非金属X和金属M原子半径的比值r x/r M<0.59时,形成具有简单的晶体结构的相。
19.间隙化合物:当r x/r M>0.59时,形成具有复杂的晶体结构的相。
()四位错密度
应用一些物理的和化学的实验方法可以将晶体中的位错显示出来
1. 如用浸蚀法可得到位错腐蚀坑,由于位错附近的能量较高,所以位错在晶体表面露头的地方最容易受到腐蚀,从而产生蚀坑。
位错腐蚀坑与位错是一一对应的。
2. 此外用电子显微镜可以直接观察金属薄膜中的位错组态及分布
3. 还可以用X 射线衍射等方法间接的检查位错的存在
位错的形态特点:
● 由于位错是已滑移区和未滑移区的边界,所以位错线不能中止在品体内部,而只能中止在晶体的表面或晶界上。
● 在品体内部,位错线一定是封闭的,或者自身封闭成一个位错圈,或者构成三维位错网
图1.42是晶体中三维位错网络示意图
图1.43是晶体中位错的实际照片
位错密度的概念:
● 在实际晶体中,经常会含有大量的位错,通常把单位体积中所包含的位错线的总长度称为位错密度即V
L =ρ。
式中,V 是晶体体积,L 为该晶体中位错线的总长度,ρ的单位为2-m 。
● 位错密度的另一个定义是:穿过单位截面积的位错线数目,单位也是2-m 。
位错密度有多大
一般在经过充分退火的多晶体金属中,位错密度达2121010~10-m ,而经过剧烈冷塑性变形的金属,其位错密度高达2161510~10-m ,即在31cm 的金属内,含有千百万公里长的位错线。
金属材料的强度和位错密度之间的关系:
1. 不含位错的金属强度:
⏹ 如果金属中不含位错,那么它将有极高的强度,目前采用一些特殊方法
已经能制造出几乎不含位错的结构完整的小晶体—直径约为
m μ2~05.0、长度为mm 10~2的晶须,其变形抗力很高
⏹ 例如直径m μ6.1的铁晶须,其抗拉强度竟高达213400m MN ,而工业上应用的退火纯铁,抗拉强度则低于2300m MN ,两者相差40多倍。
⏹ 不含位错的晶须,不易塑性变形,因而强度很高,而工业纯铁中含有位
错,易于塑性变形,所以强度很低。
2. 如果采用冷塑性变形等方法使金属中的位错大大提高,则金属的强度也可以
随之提高。
3. 金属强度与位错密度之间的关系如图1.44所示。
图中位错密度m ρ处,晶体的
抗拉强度最小,相当于退火状态下的晶体强度,当经过加工变形后,位错密度增加,由于位错之间的相互作用和制约,晶体的强度便又上升。