金属性能与位错密度的关系
- 格式:ppt
- 大小:59.00 KB
- 文档页数:1
材料科学基础答案1.为什么室温下金属晶粒越细强度,硬度越高,塑性韧性也越好答:金属晶粒越细,晶界面积越大,位错障碍越多,需要协调的具有不同位向的晶粒越多,金属塑性变形的抗力越高,从而导致金属强度和硬度越高。
金属的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目也越多,变形越均匀,推迟了裂纹的形成和扩展,使得在断裂前发生较大的塑性变形。
在强度和塑性同时增加的情况下,金属在断裂前消耗的功增大,因而其韧性也比较好。
因此,金属的晶粒越细,其塑性和韧性也越好。
2.冷塑性变形金属产生加工硬化的原因随变形量增加,空密度增加。
④由于晶粒由有利位向而发生几何硬化,因此使变形抗力增加。
随变形量增加,亚结构细化,亚晶界对位错运动有阻碍作用。
答:①晶体内部存在位错源,变形时发生了位错增值,随变形量增加,位错密度增加。
由于位错之间的交互作用,使变形抗力增加。
3.某厂用冷拉钢丝绳吊运出炉热处理工件去淬火,钢丝绳的承载能力远超过工件的质量,但在工件的运送过程中钢丝绳发生断裂,试分析其原因答:冷拉钢丝绳是利用热加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。
在淬火的温度下保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复软化状态。
在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。
4细化晶粒方法1.在浇注过程中: 1)增大过冷度; 2)加入变质剂; 3)进行搅拌和振动等。
2. 在热轧或锻造过程中: 1)控制变形度; 2)控制热轧或锻造温度。
3. 在热处理过程中:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。
4. 对冷变形后退火态使用的合金: 1)控制变形度; 2)控制再结晶退火温度和时间5、试说明滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向。
解答:滑移:切应力作用、切应力大于临界分切应力;台阶攀移:纯刃位错、正应力、热激活原子扩散;多余半原子面的扩大与缩小交滑移:纯螺位错、相交位错线的多个滑移面;位错增殖位错滑移运动的方向,外力方向与b一致时从已滑移区→未滑移区。
陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。
金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。
而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。
另外,位错对晶体的扩散和相变等过程也有较大影响。
首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。
此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。
其次,滑移赋予了金属材料的延性。
如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。
第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。
把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。
如板条状马氏体钢( F12钢)等。
第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。
第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。
金属的强化strengthening of metals通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。
所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。
随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。
每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。
一种手段对提高某一强度指标可能是有效的,而对另一强度指标未必有效。
《金属学与热处理》复习题绪论基本概念:1.工艺性能:金属材料适应实际加工工艺的能力。
(分类)2.使用性能:金属材料在使用时抵抗外界作用的能力。
(分类)3.组织:用肉眼,或不同放大倍数的放大镜和显微镜所观察到的金属材料内部的情景。
宏观组织:用肉眼或用放大几十倍的放大镜所观察到的组织。
(金属内部的各种宏观缺陷)显微组织:用100-2000倍的显微镜所观察到的组织。
(各个组成相的种类、形状、尺寸、相对数量和分布,是决定性能的主要因素)4:结构:晶体中原子的排列方式。
第一章基本概念:1.金属:具有正的电阻温度系数的物质,其电阻随温度升高而增加。
2.金属键;金属正离子和自由电子之间相互作用而形成的键。
3.晶体:原子(离子)按一定规律周期性地重复排列的物质。
4.晶体特性:(原子)规则排列;确定的熔点;各向异性;规则几何外形。
5.晶胞:组成晶格的最基本的几何单元。
6.配位数:晶格中任一原子周围与其最近邻且等距的原子数目。
7.晶面族:原子排列相同但空间位向不同的所有晶面称为晶面族。
8.晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。
9.多晶型性:当外部条件(如温度和压强)改变时,有些金属会由一种晶体结构向另一种晶体结构转变。
又称为同素异构转变。
10.晶体缺陷:实际晶体中原子排列偏离理想结构的现象。
11.空位:晶格结点上的原子由于热振动脱离了结点位置,在原来的位置上形成的空结点。
12.位错:晶体中有一列或若干列原子发生了有规则的错排现象,使长度达几百至几万个原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。
13.柏氏矢量:在实际晶体中沿逆时针方向环绕位错线作一个闭合回路。
在完整晶体中以同样的方向和步数作相同的回路,由回路的终点向起点引一矢量,该矢量即为这条位错线的柏氏矢量。
14.晶粒:晶体中存在的内部晶格位向完全一致,而相互之间位向不相同的小晶体。
15.各向异性:由于晶体中不同晶面和晶向上的原子密度不同,因而晶体在不同方向上的性能有所差异。
一、形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。
机理:随塑性变形的进展,位错密度不断增加,因此位错在运动时的彼此交割加重,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引发变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。
规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,依照公式Δσ=αbG ρ1/2,可知强度与位错密度〔ρ〕的二分之一次方成正比,位错的柏氏矢量〔b〕越大强化成效越显著。
方式:冷变形〔挤压、滚压、喷丸等〕。
形变强化的实际意义〔利与弊〕:形变强化是强化金属的有效方式,对一些不能用热处置强化的材料能够用形变强化的方式提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在利用进程中的平安性,零件的某些部位显现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停顿从而提高了平安性。
另一方面形变强化也给材料生产和利用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进展再结晶退火,增加生产本钱。
二、固溶强化随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。
强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。
所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。
固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,那么强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化成效越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,那么强化作用越大。
6 材料在塑性变形中的组织结构与性能变化本章仅将简要地介绍冷形变及其后的加热过程、以及热形变过程对金属和合金的组织结构与性能的影响的主要理论。
6.1 冷形变后金属组织结构和性能的变化金属和合金在低于再结晶温度进行压力加工时,通常就称为冷形变或冷加工。
钢在常温下进行的冷轧、冷拔、冷挤、冷冲等压力加工过程皆为冷形变过程。
在冷形变过程中组织和性能都会发生变化。
6.1.1 金属组织结构的变化金属塑性变形的物理实质基本上就是位错的运动,位错运动的结果就产生了塑性变形。
在位错的运动过程中,位错之间、位错与溶质原子、间隙位置原子以及空位之间、位错与第二相质点之间都会发生相互作用,引起位错的数量、分布和组态的变化。
从微观角度来看,这就是金属组织结构在塑性变形过程中或变形后的主要变化。
塑性变形对位错的数量、分布和组态的影响是和金属材料本身的性质以及变形温度、变形速度等外在条件有关的。
单晶体塑性变形时,随着变形量增加,位错增多,位错密度增加,运动位错在各种障碍前受阻,要继续运动需要增加应力,从而引起加工硬化。
变形到一定程度后产生交滑移,因而引起动态回复,这些塑性变形过程中的变化已是我们所熟知的,不再细述。
多晶体塑性变形时,随着变形量增加和单晶体变形一样,位错的密度要增加。
用测量电阻变化、储能变化的方法,或者用测量腐蚀坑的方法以及电镜直接观测的方法都可以出金属材料的位错密度。
退火状态的金属,典型的位错密度值是105~108 cm -2,而大变形后的典型数值是1010~1012cm -1。
通过实验得到的位错密度(ρ)同流变应力(σ)之间的关系是:21ρασGb = (6-1) 式中:a —等干0.2~0.3范围的常数;G —剪切弹性模量;b —柏氏矢量。
多晶体塑性变形时,因为各个晶粒取向不同,各晶粒的变形既相互阻碍又相互促进,变形量稍大就形成了位错胞状结构。
所谓胞状结构,是变形的各种晶粒中,被密集的位错缠给结区分许多个单个的小区域。
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
苏铁健1. 冷变形金属的组织变化(1)点缺陷(空位)密度增加位错在外力作用下攀移的结果;(2)位错密度增加金属塑性变形时,位错源在外力作用下不断产生新的位错;(3)晶粒碎化塑性变形足够大时,出现位错缠结并进一步发展形成位错胞结构(中心位错密度低,胞壁处位错密度很高),使得晶粒分割成很多极小的碎块,称为晶粒碎化;剧烈冷变形金属中的位错胞(4)纤维组织随着变形量增加,晶粒沿着最大变形方向伸长,最后成为细条状,这种变形组织称为纤维组织;(5)变形织构塑性变形量足够大时,各软取向晶粒逐渐转向为硬取向晶粒,各晶粒的取向逐渐趋向一致,这种组织称为变形织构。
变形前变形后的纤维组织变形织构1)加工硬化金属随着变形量增加,其强度与硬度增加,塑性降低的现象。
原因:塑性变形中位错密度和点缺陷密度增加,使得位错滑移更为困难;软取向晶粒朝着硬取向变化。
加工硬化是不能用热处理强化的金属材料(如奥氏体不锈钢制品)提高强度的主要途径。
2)产生残余应力塑性变形在宏观和微观上的不均匀性,造成卸载后仍在其内部留存应力,称为残余应力。
根据其作用范围大小分为:宏观残余应力(第一类残余应力)遍及整个材料微观残余应力(第二类残余应力)晶粒尺度点阵畸变(第三类残余应力)晶粒内部第三类内应力是形变金属中的主要内应力,也是金属强化的主要原因。
而第一、二类内应力一般都使金属强度降低。
3)出现各向异性塑性变形产生的各晶粒取向趋于一致的组织,即变形织构,导致其力学、物理等性能呈现方向性(不同方向性能不同)。
板料的织构使板料沿不同方向变形不均匀,冲压成的零件边缘出现凹凸不平的形状,称为制耳现象。
板料冲压件的制耳现象4)物理、化学变化电阻率提高;密度下降;耐蚀性降低。
加热会增强原子的活动能力,使金属的组织和性能会通过回复、再结晶等一系列变化过程重新回到冷变形前的状态。
1)回复组织变化——加热温度较低时,原子将获得一定扩散能力。
通过原子的扩散,点缺陷密度下降,位错形成亚晶界。
专题一名词解释第一章1.金属键:处于聚集状态的金属原子,全部或大部分将他们的价电子贡献出来,为其整个原子集体所公有,称之为电子气或电子云。
这些价电子或自由电子已不在只围绕自己的原子核转动,而是与所有的价电子一起在所有的原子核周围按量子力学的规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,他们依靠运动与其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫金属键。
没有饱和性和方向性。
2.熔点:晶体向非结晶状态的液体转变的临界温度。
3。
晶体结构:晶体中原子在三维空间有规律的周期性的具体排列方式。
4.阵点:将构成晶体的原子抽象为纯粹的几何点,称之为阵点。
5.空间点阵:阵点有规律的周期性重复排列所形成的三维空间阵列称之为6.晶格:认为的将阵点用直线连接起来形成空间格子,称之为晶格。
他的实质是空间点阵。
7.晶胞:能够完全反应晶格特性的最小几何单元称之为晶胞。
8晶格常数、轴间夹角:晶胞的棱边长度一般称为晶格常数,晶胞的棱间夹角称为轴间夹角。
9.配位数:是指晶体结构中与任一原子最近邻、等距离的原子数目。
10.晶面、晶向:在晶体中,由一系列原子所组成的平面称之为晶面。
任意两原子之间连线所指的方向叫晶向。
11.晶粒:组成固态金属的结晶颗粒叫晶粒12.多晶体:有二颗以上晶粒所组成的晶体称为多晶体。
13.伪等向性:由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶粒不显示各向异性,称之为伪等向性。
14:多晶型:具有两种或几种晶体结构。
15:多晶型转变或同素异构转变:金属内部有一种晶体结构向另一种晶体结构的转变称之为多晶型转变或同素异构转变。
16晶体缺陷:一些原子偏离规则排列的不完整性区域。
17:空位:在某一温度下的某一瞬间,总有一些原子具有足够高的能量,以克服周围原子对他的约束,脱离开原来的平衡位置迁移到别处,于是在原来的位置上出现了空结点,这就是空位。
18.晶格畸变:19:间隙原子:处于晶格间隙中的原子叫20:置换原子:占据在原来基体原子上的异类原子21:位错:在晶体中某处有一列或若干列原子发生了有规律的错排现象,使长度达几百至几万个原子间距,宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。