高考数学二轮复习 小题综合限时练(八)
- 格式:doc
- 大小:100.00 KB
- 文档页数:5
2020年高考数学二轮复习小题押题(12+4)提速综合练习7-8“12+4”小题提速综合练(七)一、选择题1.(2016·浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.2.(2017·南京模拟)若复数z =(a -1)+3i(a ∈R)在复平面内对应的点在直线y =x +2上,则a 的值等于( ) A .1 B .2 C .5D .6解析:选B 因为复数z =(a -1)+3i(a ∈R)在复平面内对应的点为(a -1,3),所以由题意得点在直线y =x +2上,则3=a -1+2,解得a =2.3.把函数y =sin ⎝⎛⎭⎫x +π3的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位,所得图象对应的函数为( )A .y =sin ⎝⎛⎭⎫2x -π3B .y =sin 2xC .y =sin ⎝⎛⎭⎫12x +π6 D .y =sin 12x解析:选A 把函数y =sin ⎝⎛⎭⎫x +π3的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,再将图象向右平移π3个单位,所得图象对应的函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π3=sin ⎝⎛⎭⎫2x -π3. 4.如图所示的程序框图,程序运行时,若输入的S =-12,则输出S 的值为( ) A .4 B .5C .8D .9解析:选C 第一次循环,得S =-10,n =2;第二次循环,得S =-6,n =3;第三次循环,得S =0,n =4;第四次循环,得S =8,n =5.此时S >n ,不满足循环条件,退出循环,输出S 的值为8,故选C.5.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .1B .2C .4D .6解析:选B 法一:等差数列{a n }的前n 项和为S n =na 1+12n (n -1)d ,所以有S n n =a 1+12(n -1)d ,代入S 33-S 22=1中,得a 1+12(3-1)d -a 1+12(2-1)d =12d =1,所以d =2.法二:易知数列⎩⎨⎧⎭⎬⎫S n n 是公差为d2的等差数列,所以d =2.6.在[-2,6]上随机取一个数m ,则使关于x 的一元二次方程x 2-4x +m 2=0有实数根的概率是( ) A.12 B.13C.14D.15解析:选A 由关于x 的一元二次方程x 2-4x +m 2=0得(-4)2-4m 2≥0,解得-2≤m ≤2,所以所求概率P =2-(-2)6-(-2)=12.7.函数y =e x cos e xe 2x -1的图象大致为( )解析:选D 设f (x )=e x cos e xe 2x -1,则易得函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (-x )=e -x cos (-e x )e -2x -1=e x cos e x 1-e 2x=-f (x ),所以函数f (x )为奇函数,函数图象关于原点中心对称,排除A ;当0<x <π2e 时,f (x )>0,排除B ;当x增大时,函数值的符号正负交替出现,排除C ,故选D.8.(2017·南京模拟)某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A.323B.643C .16D .32解析:选A 由三视图可知该几何体如图所示,此几何体是三棱锥,且底面是腰长为4的等腰直角三角形,高为4,故该几何体的体积V =13×⎝⎛⎭⎫12×4×4×4=323. 9.(2017·惠州模拟)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3B. 2 C .2D .3解析:选A 设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝⎛⎭⎫c 2a 2-1=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴e =1+b 2a2= 3. 10.(2017·湘中名校联考)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z) B.⎣⎡⎦⎤k π,k π+π2(k ∈Z) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z) 解析:选C 因为f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,即⎪⎪⎪⎪f ⎝⎛⎭⎫π6=⎪⎪⎪⎪sin ⎝⎛⎭⎫π3+φ=1,所以φ=k π+π6(k ∈Z).因为f ⎝⎛⎭⎫π2>f (π),所以sin(π+φ)>sin(2π+φ),即sin φ<0,所以φ=-5π6+2k π(k ∈Z),所以f (x )=sin ⎝⎛⎭⎫2x -5π6,所以由三角函数的单调性知2x -5π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z),得x ∈k π+π6,k π+2π3(k ∈Z). 11.已知曲线C :y =18x 2的焦点为F ,过点F 的直线l 与曲线C 交于P ,Q 两点,且|FP |=2|FQ |,则△OPQ 的面积等于( )A .6 2 B.322C .12 2D.324解析:选A 由题意得抛物线的标准方程为x 2=8y ,所以焦点F (0,2),易得直线l 的斜率一定存在,则不妨设直线l 的方程为y =kx +2,与抛物线的方程联立,消去y 得x 2-8kx -16=0,则x P x Q =-16, ①又因为|FP |=2|FQ |,所以x P =-2x Q , ②联立①②,解得⎩⎨⎧ x P =42,x Q =-22或⎩⎨⎧x P =-42,x Q =22,所以S △OPQ =12(|x P |+|x Q |)·|OF |=6 2.12.(2018届高三·昆明两区七校调研)若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,在区间(-1,1]内,g (x )=f (x )-mx -m2有两个零点,则实数m 的取值范围是( )A.⎣⎡⎭⎫0,13B.⎝⎛⎦⎤0,23 C.⎝⎛⎦⎤0,13 D.⎣⎡⎭⎫23,+∞解析:选B 依题意,f (x )=1f (x +1)-1,当x ∈(-1,0)时,x +1∈(0,1), f (x )=1f (x +1)-1=1x +1-1, 由g (x )=0得f (x )=m ⎝⎛⎭⎫x +12. 在同一坐标系上画出函数y =f (x )与y =m ⎝⎛⎭⎫x +12在区间(-1,1]内的图象, 结合图象可知,要使g (x )有两个零点,只需函数y =f (x )与y =m ⎝⎛⎭⎫x +12该直线斜率为m ,过点-12,0在区间(-1,1]内的图象有两个不同的交点,故实数m 的取值范围是⎝⎛⎦⎤0,23,选B. 二、填空题13.(2017·合肥模拟)某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是________.解析:因为对一组数据同时加上或减去同一个常数,方差不变,所以本题中可以先对这5个数据同时减去110,得到新的数据分别为0,4,11,9,16,其平均数为x =15(0+4+11+9+16)=8,根据方差公式可得s 2=(0-8)2+(4-8)2+(11-8)2+(9-8)2+(16-8)25=30.8. 答案:30.814.(2018届高三·广西五校联考)已知向量a =(1,3),b =(3,m ),且b 在a 上的投影为3,则向量a 与b 的夹角为________.解析:因为a ·b =3+3m ,|a |=12+(3)2=2,|b |=9+m 2,由|b |cos 〈a ,b 〉=3,可得a ·b|a |=3,故3+3m 2=3,解得m =3,故|b |=9+3=23,故cos 〈a ,b 〉=323=32,故〈a ,b 〉=π6,即向量a 与b 的夹角为π6. 答案:π615.(2017·西安八校联考)设实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,若z =x +2y 的最大值为3,则a 的值是________.⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a表示的平解析:依题意得a >0,在平面直角坐标系内大致画出不等式组面区域如图所示,结合图形可知,直线z =x +2y 经过直线y =a 与直线x -y =0的交点,即点A (a ,a )时,z =x +2y 取得最大值3,因此a +2a =3,a =1.答案:116.(2017·福建质检)数列{a n }的前n 项和为S n ,且a 1=23,a n +1-S n =23.用[x ]表示不超过x 的最大整数,如:[-0.4]=-1,[1.6]=1.设b n =[a n ],则数列{b n }的前2n 项和为________.解析:当n ≥2时,由题意,得S n =a n +1-23,S n -1=a n -23,两式相减得,a n =a n +1-a n ,即a n +1a n =2(n ≥2),又当n =1时,a 1=23,a 2-a 1=23,所以a 2=43,即a 2a 1=2,所以数列{a n }是首项为23,公比为2的等比数列,所以a n =23·2n -1=13·2n.所以b 1=0,b 2=1=2b 1+1, b 3=2=2b 2,b 4=5=2b 3+1, b 5=10=2b 4,b 6=21=2b 5+1, b 7=42=2b 6,b 8=85=2b 7+1, …,b 2n -1=2b 2n -2,b 2n =2b 2n -1+1, 所以b 1+b 2=21-1,b 3+b 4=23-1, b 5+b 6=25-1,b 7+b 8=27-1,…, b 2n -1+b 2n =22n -1-1,设数列{b n }的前2n 项和为T 2n , 则T 2n =2(1-4n )1-4-n =22n +13-n -23.答案:22n +13-n -23“12+4”小题提速综合练(八)一、选择题1.(2017·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( ) A .{2} B .{2,8} C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.2.(2017·兰州模拟)下列命题中的真命题为( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x ≥x 2C .已知a ,b 为实数,则a +b =0的充要条件是ab=-1D .已知a ,b 为实数,则a >1,b >1是ab >1的充分不必要条件解析:选D 选项A 为假命题,理由是对∀x ∈R ,e x >0;选项B 为假命题,不妨取x =3,则23<32,显然不满足∀x ∈R,2x ≥x 2;选项C 为假命题,当b =0时,由a +b =0推不出a b =-1,但由ab =-1可推出a +b =0,即a +b =0的充分不必要条件是ab =-1.3.(2017·石家庄模拟)已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( ) A .80 B .85 C .90D .95解析:选C 由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90.4.(2017·合肥模拟)设向量a ,b 满足|a +b |=4,a ·b =1,则|a -b |=( ) A .2 B .2 3 C .3D .2 5解析:选B 因为|a +b |2=a 2+2a ·b +b 2,|a -b |2=a 2-2a ·b +b 2,以上两式相减可得,4a ·b =|a +b |2-|a -b |2,所以|a -b |2=|a +b |2-4a ·b =16-4=12,即|a -b |=2 3.5.(2018届高三·湖北五校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .6.一个凸多面体,其三视图如图,则该几何体体积为( )A .5 2B .6 2C .9D .10解析:选C 由三视图知,该几何体是一个四棱锥,画出该几何体的直观图如图中实线所示,所以该四棱锥由两个三棱锥组成,其体积V =2×13×12×32×3=9.7.(2017·云南模拟)执行如图所示的程序框图,如果输入的N =30,则输出的S =( )A .26B .57C .225D .256解析:选B 第一次循环,得S =1,n =3;第二次循环,得S =4,n =7;第三次循环,得S =11,n =15;第四次循环,得S =26,n =31;第五次循环,S =57,n >30.所以此时退出循环,故输出的S =57.8.(2018届高三·玉溪四校联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解析:选D 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2;由x 2+3x +2=0得x =-1或x =-2,则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2).9.(2017·广西三市联考)已知在(0,+∞)上函数f (x )=⎩⎪⎨⎪⎧-2,0<x <1,1,x ≥1,则不等式log 2x -(log 144x -1)f (log 3x +1)≤5的解集为( )A.⎝⎛⎭⎫13,1 B .[1,4] C.⎝⎛⎦⎤13,4D .[1,+∞)解析:选C 原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝⎛⎭⎫log 144x -1≤5 或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2⎝⎛⎭⎫log 144x -1≤5,解得1≤x ≤4或13<x <1,∴原不等式的解集为⎝⎛⎦⎤13,4. 10.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,法二:如图,建立平面直角坐标系,由正三角形的性质易得E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.11.(2018届高三·贵州摸底)已知函数f (x )=sin ωx -3cos ωx (ω>0),若方程f (x )=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )A.⎝⎛⎦⎤136,72 B.⎝⎛⎦⎤72,256 C.⎝⎛⎦⎤256,112D.⎝⎛⎦⎤112,376解析:选B 因为f (x )=2sin ⎝⎛⎭⎫ωx -π3, 方程2sin ⎝⎛⎭⎫ωx -π3=-1在(0,π)上有且只有四个实数根,即sin ⎝⎛⎭⎫ωx -π3=-12在(0,π)上有且只有四个实数根.设t =ωx -π3,因为0<x <π,所以-π3<t <ωπ-π3,所以19π6<ωπ-π3≤23π6,解得72<ω≤256.12.(2018届高三·石家庄调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与该双曲线的左支交于A ,B 两点,AF 2,BF 2分别交y 轴于P ,Q 两点,若△PQF 2的周长为12,则ab 取得最大值时该双曲线的离心率为( )A. 2B. 3C .2 2D.233解析:选D 由题意,得|AF 1|+|BF 1|=|AB |=2b 2a , ①且P ,Q 分别为AF 2,BF 2的中点. 由双曲线的定义,知|AF 2|-|AF 1|=2a , ② |BF 2|-|BF 1|=2a , ③联立①②③,得|AF 2|+|BF 2|=4a +2b 2a .因为△PQF 2的周长为12,所以△ABF 2的周长为24, 即4a +4b 2a =24,亦即b 2=6a -a 2, 所以(ab )2=6a 3-a 4. 令f (a )=6a 3-a 4,则f ′(a )=18a 2-4a 3=4a 2⎝⎛⎭⎫92-a , 所以f (a )在⎝⎛⎭⎫0,92上单调递增, 在⎝⎛⎭⎫92,+∞上单调递减, 所以当a =92时,f (a )取得最大值,此时b 2=6×92-⎝⎛⎭⎫922=274,所以c =a 2+b 2=33, 所以e =c a =233.二、填空题13.若函数f (x )=(x -a )(x +3)为偶函数,则f (2)=________.解析:由f (x )=x 2+(3-a )x -3a 为偶函数,知其奇次项的系数为0,所以3-a =0,a =3,所以f (2)=22-9=-5.答案:-514.(2017·贵阳模拟)已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n 个不等式为________________________________.解析:由已知,三个不等式可以写成1+122<2×2-12,1+122+132<2×3-13,1+122+132+142<2×4-14,所以照此规律可得到第n 个不等式为1+122+132+…+1n 2+1(n +1)2<2(n +1)-1n +1=2n +1n +1.答案:1+122+132+…+1n 2+1(n +1)2<2n +1n +115.(2017·广西五校联考)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.解析:两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0分别配方得,(x +a )2+y 2=4,x 2+(y -2b )2=1,依题意得两圆相外切,故a 2+4b 2=1+2=3,即a 2+4b 2=9,则1a 2+1b 2=⎝⎛⎭⎫a 29+4b 29⎝⎛⎭⎫1a 2+1b 2=19+a 29b 2+4b 29a 2+49≥59+2a 29b 2·4b 29a 2=1,当且仅当a 29b 2=4b 29a 2,即a 2=2b 2时等号成立,故1a 2+1b 2的最小值为1. 答案:116.设A ,B 是球O 的球面上两点,∠AOB =π3,C 是球面上的动点,若四面体OABC 的体积V 的最大值为934,则此时球的表面积为________.解析:在四面体OABC 中,显然△OAB 的面积一定,设球O 的半径为R ,则S △OAB =12×R ×32R =34R 2,要使四面体的体积最大,则只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以(V C -OAB )max =13×34R 2×R =312R 3=934,解得R =3,由球的表面积公式得S 球=4πR 2=4×32×π=36π. 答案:36π。
热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。
(限时:分钟)一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.) .设平面α与平面β相交于直线,直线在平面α内,直线在平面β内,且⊥,则“⊥”是“α⊥β”的( ).充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件解析因为α⊥β,⊥,所以⊥α,又直线在平面α内,所以⊥;但直线,不一定相交,所以“⊥”是“α⊥β”的必要不充分条件,故选.答案.已知=,=,=,则( )>>>>>>>>解析因为=>,<==<,=<,所以>>,故选.答案.已知函数()=-,且′()=(),则的值是( ).-.-.-解析因为′()=+=-,所以=-,所以=-)==,故选.答案.若某几何体的三视图(单位:)如图所示,则此几何体的体积是( )解析由三视图可知,上面是个长为,宽为,高为的长方体,下面是一个放倒的四棱柱,高为,底面是个梯形,上、下底分别为,,高为.所以长方体的体积为××=,四棱柱的体积为××=,所以该几何体的体积为+=,选.答案.已知,满足约束条件目标函数=+的最小值是,则的最大值是( )解析由解得代入直线-++=得=,即直线方程为-++=,平移直线+=,由得即(,),当直线经过点时,直线的纵截距最大,此时取最大值,代入直线=+得=×+=,故选.答案.等差数列{}中的,是函数()=-+-的极值点,则=( ).-.-解析因为′()=-+,而和为函数()=-+-的极值点,所以和为′()=-+=的根,所以+=,又、和为等差数列,所以=+,即=,所以=-,故选.答案.将标号为,,,的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号、的两个篮球不能分给同一个小朋友,则不同的分法种数为( )解析四个篮球两个分到一组有种,个篮球进行全排列有种,标号、的两个篮球分给一个小朋友有种,所以有-=-=,故选.答案.已知点是抛物线=的对称轴与准线的交点,点是其焦点,点在该抛物线上,且。
专题限时训练建议用时:60分钟1.已知函数f (x )=13|x -a |(a ∈R ). (1)当a =2时,解不等式⎪⎪⎪⎪⎪⎪x -13+f (x )≥1; (2)设不等式⎪⎪⎪⎪⎪⎪x -13+f (x )≤x 的解集为M ,若⎣⎢⎡⎦⎥⎤13,12⊆M ,求实数a 的取值范围. 解析:(1)当a =2时,原不等式可化为|3x -1|+|x -2|≥3.①当x ≤13时,原不等式可化为-3x +1+2-x ≥3, 解得x ≤0,所以x ≤0;②当13<x <2时,原不等式可化为3x -1+2-x ≥3, 解得x ≥1,所以1≤x <2;③当x ≥2时,原不等式可化为3x -1-2+x ≥3,解得x ≥32,所以x ≥2. 综上所述,当a =2时,不等式的解集为{x |x ≤0或x ≥1}.(2)不等式⎪⎪⎪⎪⎪⎪x -13+f (x )≤x 可化为|3x -1|+|x -a |≤3x , 依题意不等式|3x -1|+|x -a |≤3x 在⎣⎢⎡⎦⎥⎤13,12恒成立, 所以3x -1+|x -a |≤3x ,即|x -a |≤1,即a -1≤x ≤a +1,所以⎩⎪⎨⎪⎧ a -1≤13,a +1≥12, 解得-12≤a ≤43, 故所求实数a 的取值范围是⎣⎢⎡⎦⎥⎤-12,43. 2.(2019·济南模拟)设函数f (x )=|2x -a |+|x |,其中a >0.(1)当a =2时,求不等式f (x )≤4的解集;(2)若对任意的实数x 都有f (x )-f (-x )≥a 2-8,求a 的取值范围.解析:(1)当a =2时,不等式为|2x -2|+|x |≤4,当x ≤0时,不等式化为2-3x ≤4,解得x ≥-23,即x ∈⎣⎢⎡⎦⎥⎤-23,0, 当0<x <1时,不等式化为2-x ≤4,解得x ≥-2,即x ∈(0,1),当x ≥1时,不等式化为3x -2≤4,解得x ≤2,即x ∈[1,2].综上所述,当a =2时,不等式的解集为⎣⎢⎡⎦⎥⎤-23,2. (2)因为对任意实数x 都有f (x )-f (-x )≥a 2-8,所以(f (x )-f (-x ))min ≥a 2-8,又因为f (x )-f (-x )=|2x -a |-|2x +a |≥-|2x -a -2x -a |=-|2a |=-2a ,所以只需-2a ≥a 2-8,解得-4≤a ≤2,又a >0,所以0<a ≤2.3.(2018·湖北省襄阳市高三模拟考)已知函数f ()x =3||x -a +||3x +1,g ()x =||4x -1-||x +2.(1)求不等式g ()x <6的解集;(2)若存在x 1,x 2∈R ,使得f (x 1)和g (x 2)互为相反数,求a 的取值范围.解析:(1)由题意可得g ()x =⎩⎪⎨⎪⎧ -3x +3,x≤-2,-5x -1,-2<x<14,3x -3,x ≥14.当x ≤-2时,-3x +3<6,得x >-1,无解;当-2<x <14时,-5x -1<6,得x >-75, 即-75<x <14; 当x ≥14时,3x -3<6,得14≤x <3, 综上所述,g ()x <6的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-75<x<3.(2)因为存在x 1,x 2∈R ,使得f ()x1=-g ()x2成立, 所以{}y|y =f ()x ,x∈R ∩{}y|y =-g ()x ,x∈R ≠∅, 又f ()x =3||x -a +||3x +1≥|(3x -3a )-(3x +1)|=|3a +1|,由(1)可知g (x )∈⎣⎢⎡⎭⎪⎫-94,+∞, 则-g (x )∈⎝⎛⎦⎥⎤-∞,94. 所以|3a +1|≤94,解得-1312≤a ≤512. 故a 的取值范围为⎣⎢⎡⎦⎥⎤-1312,512. 4.(2019·包河区期中)(1)设A (x 1,y 1),B (x 2,y 2),O 是坐标原点,且A ,B ,O 不共线.证明:S △OAB =12|x 1y 2-x 2y 1|; (2)设a ,b ,c 均为正数,且a +b +c =1.证明:a2b +b2c +c2a ≥1. 解析:(1)证明:∵A (x 1,y 1),∴|OA |=x21+y21,直线OA 的方程为y 1x -x 1y =0,∴B (x 2,y 2)到直线OA 的距离d =|x1y2-x2y1|x21+y21, ∴S △AOB =12|OA |·d =12|x 1y 2-x 2y 1|. (2)证明:因为a2b +b ≥2a ,b2c +c ≥2b ,c2a +a ≥2c , 故a2b +b2c +c2a +(a +b +c )≥2(a +b +c ), 即a2b +b2c +c2a≥a +b +c . 所以a2b +b2c +c2a≥1.。
限时练(一)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x 2-2x <0},N ={-2,-1,0,1,2},则M ∩N =( ) A.∅ B.{1}C.{0,1}D.{-1,0,1}解析 ∵M ={x |0<x <2},N ={-2,-1,0,1,2},∴M ∩N ={1}. 答案 B2.设(2+i)(3-x i)=3+(y +5)i(i 为虚数单位),其中x ,y 是实数,则|x +y i|等于( ) A.5B.13C.2 2D.2解析 易得6+x +(3-2x )i =3+(y +5)i(x ,y ∈R ). ∴⎩⎨⎧6+x =3,3-2x =y +5,∴⎩⎨⎧x =-3,y =4,故|x +y i|=|-3+4i|=5. 答案 A3.已知等差数列{a n }的前n 项和为S n ,且a 2+a 8=0,S 11=33,则公差d 的值为( ) A.1B.2C.3D.4解析 ∵a 2+a 8=2a 5=0,∴a 5=0, 又S 11=(a 1+a 11)×112=11a 6=33,∴a 6=3,从而公差d =a 6-a 5=3. 答案 C4.设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a ,a ∥α,a ∥βB.存在一条直线a ,a ⊂α,a ∥βC.存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD.存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析 对于A ,a ∥α,a ∥β,则平面α,β可能平行,也可能相交,所以A 不是α∥β的一个充分条件.对于B ,a ⊂α,a ∥β,则平面α,β可能平行,也可能相交,所以B 不是α∥β的一个充分条件.对于C ,由a ∥b ,a ⊂α,b ⊂β,a ∥β,b ∥α可得α∥β或α,β相交,所以C 不是α∥β的一个充分条件.对于D ,存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α,如图,在β内过b 上一点作c ∥a ,则c ∥α,所以β内有两条相交直线平行于α,则有α∥β,所以D 是α∥β的一个充分条件.答案 D5.设双曲线的一条渐近线为方程y =2x ,且一个焦点与抛物线y 2=4x 的焦点相同,则此双曲线的方程为( ) A.54x 2-5y 2=1 B.5y 2-54x 2=1 C.5x 2-54y 2=1D.54y 2-5x 2=1解析 抛物线y 2=4x 的焦点为点(1,0),则双曲线的一个焦点为(1,0),设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧b a =2,a 2+b 2=1,解得⎩⎪⎨⎪⎧a =55,b =255,所以双曲线方程为5x 2-54y 2=1. 答案 C6.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为“4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目,则P (A |B )的值为( ) A.14B.34C.29D.59解析 ∵P (B )=3344,P (AB )=A 3344, 由条件概率P (A |B )=P (AB )P (B )=A 3333=29.答案 C7.在如图所示的△ABC 中,点D ,E 分别在边AB ,CD 上,AB =3,AC =2,∠BAC =60°,BD =2AD ,CE =2ED ,则向量BE →·AB→=( )A.9B.4C.-3D.-6解析 根据题意,AB =3,BD =2AD ,则AD =1, 在△ADC 中,又由AC =2,∠BAC =60°, 则DC 2=AD 2+AC 2-2AD ·AC cos ∠BAC =3, 即DC =3,所以AC 2=AD 2+DC 2, 则CD ⊥AB ,故BE →·AB →=(BD →+DE →)·AB →=BD →·AB →+DE →·AB →=BD →·AB →=3×2×cos 180°=-6. 答案 D8.设定义在R 上的偶函数f (x )满足:f (x )=f (4-x ),且当x ∈[0,2]时,f (x )=x -e x +1,若a =f (2 022),b =f (2 019),c =f (2 020),则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.c <a <bD.b <a <c解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (4-x ),则f (x )的周期为4,则a =f (2 022)=f (2),b =f (2 019)=f (3)=f (4-3)=f (1),c =f (2 020)=f (0). 又当x ∈[0,2]时,f (x )=x -e x +1,知f ′(x )=1-e x <0. ∴f (x )在区间[0,2]上单调递减, 因此f (2)<f (1)<f (0),即a <b <c . 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·聊城模拟)已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A.C 的方程为x 23-y 2=1 B.C 的离心率为 3C.曲线y =e x -2-1经过C 的一个焦点D.直线x -2y -1=0与C 有两个公共点解析 ∵双曲线的渐近线为y =±33x ,∴设双曲线C 的方程为x 23-y 2=λ(λ≠0).又双曲线C 过点(3,2),∴323-(2)2=λ,解得λ=1,故A 正确.此时C 的离心率为3+13=233,故B 错误.双曲线C 的焦点为(-2,0),(2,0),曲线y =e x -2-1经过点(2,0),故C 正确.把直线方程代入双曲线C 的方程并整理,得x 2-6x +9=0,所以Δ=0,故直线x -2y -1=0与双曲线C 只有一个公共点,所以D 错误.故选AC. 答案 AC10.(2020·青岛质检)已知函数f (x )=sin 2x +23sin x cos x -cos 2x ,x ∈R ,则( ) A.-2≤f (x )≤2B.f (x )在区间(0,π)上只有1个零点C.f (x )的最小正周期为πD.直线x =π3为函数f (x )图象的一条对称轴解析 已知函数f (x )=sin 2x +23sin x cos x -cos 2x =3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,x ∈R ,则-2≤f (x )≤2,A 正确;令2x -π6=k π,k ∈Z ,则x =k π2+π12,k ∈Z ,则f (x )在区间(0,π)上有2个零点,B 错误;f (x )的最小正周期为π,C 正确;当x =π3时,f ⎝ ⎛⎭⎪⎫π3=2sin(2×π3-π6)=2,所以直线x =π3为函数f (x )图象的一条对称轴,D正确.故选ACD.答案ACD11.在某次高中学科竞赛中,4 000名考生的竞赛成绩(单位:分)统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()A.成绩在[70,80)的考生人数最多B.不及格的考生人数为1 000C.考生竞赛成绩的平均数约为70.5D.考生竞赛成绩的中位数约为75解析由频率分布直方图可知,成绩在[70,80)的考生人数最多,所以A正确.不及格的人数为4 000×(0.01+0.015)×10=1 000,所以B正确.考生竞赛成绩的平均数约为(45×0.01+55×0.015+65×0.02+75×0.03+85×0.015+95×0.01)×10=70.5,所以C正确.设考生竞赛成绩的中位数约为x0,因为(0.01+0.015+0.02)×10=0.45<0.5,(0.01+0.015+0.02+0.03)×10=0.75>0.5,所以0.45+(x0-70)×0.03=0.5,解得x0≈71.7,D错误.故选ABC.答案ABC12.下列结论正确的是()A.若a>b>0,c<d<0,则一定有b c> a dB.若x>y>0,且xy=1,则x+1y>y2x>log2(x+y)C.设{a n}是等差数列,若a2>a1>0,则a2>a1a3D.若x∈[0,+∞),则ln(1+x)≥x-1 8x2解析对于A,由c<d<0,可得-c>-d>0,则-1d>-1c>0,又a>b>0,所以-ad>-bc,则bc>ad,故A正确.对于B,取x=2,y=12,则x+1y=4,y2x=18,log2(x+y)=log 252>1,故B 不正确.对于C ,由题意得a 1+a 3=2a 2且a 1≠a 3,所以a 2=12(a 1+a 3)>12×2a 1a 3=a 1a 3,故C 正确.对于D ,设h (x )=ln(1+x )-x +18x 2,则h ′(x )=11+x -1+x 4=x (x -3)4(x +1),当0<x <3时,h ′(x )<0,则h (x )单调递减,h (x )<h (0)=0,故D不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.已知圆C :(x -2)2+y 2=r 2(r >0)与双曲线E :x 2-y 2=1的渐近线相切,则r =________.解析 ∵双曲线x 2-y 2=1的渐近线为x ±y =0.依题意,得r =21+1=1. 答案 114.已知等差数列{a n },其前n 项和为S n .若a 2+a 5=24,S 3=S 9,则a 6=________,S n 的最大值为________.(本小题第一空2分,第二空3分)解析 由S 3=S 9,得a 4+a 5+…+a 9=0,则a 6+a 7=0.又a 2+a 5=24,所以设等差数列{a n }的公差为d ,可得⎩⎨⎧a 1+5d +a 1+6d =0,a 1+d +a 1+4d =24,解得⎩⎨⎧a 1=22,d =-4,所以a 6=a 1+5d =2,S n =-2n 2+24n =-2(n -6)2+72,故当n =6时,S n 取得最大值72. 答案 2 7215.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =________. 解析 由已知得C 25·22+a ·C 35·23=20,解得a =-14. 答案 -1416.(2020·河南百校大联考)魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图所示),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4.若“牟合方盖”的体积为163,则正方体的外接球的表面积为________.解析因为“牟合方盖”的体积为163,又正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,所以正方体的内切球的体积V球=π4×163=43π.则内切球的半径r=1,正方体的棱长为2.所以正方体的体对角线d=23,因此正方体外接球的直径2R=d=23,则半径R= 3.所以正方体的外接球的表面积为S=4πR2=4π(3)2=12π.答案12π限时练(二)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,复数z=1-3i1+i在复平面内对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限解析z=1-3i1+i=(1-3i)(1-i)(1+i)(1-i)=-1-2i,∴复数z在复平面内对应的点(-1,-2)在第三象限.答案 B2.若集合A={x|x(x-2)>0},B={x|x-1≤0},则A∩(∁R B)=()A.{x|x>1或x<0}B.{x|1<x<2}C.{x|x>2}D.{x|x>1}解析易知A={x|x>2或x<0},∁R B={x|x>1},∴A∩(∁R B)={x|x>2}.答案 C3.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司7月份这种型号产品的销售额为( ) A.19.5万元 B.19.25万元 C.19.15万元D.19.05万元解析 易知x -=4,y -=16.8.∵回归直线y ^=0.75x +a ^过点(4,16.8),∴a ^=16.8-4×0.75=13.8,则y ^=0.75x +13.8.故7月份的销售额y ^=0.75×7+13.8=19.05(万元). 答案 D4.⎝ ⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( ) A.-3 2B.3 2C.6D.-6解析 通项T r +1=C r 3⎝ ⎛⎭⎪⎫2x 23-r(-x 4)r=C r 3(2)3-r(-1)r x -6+6r , 当-6+6r =0,即r =1时为常数项,T 2=-6. 答案 D5.已知等比数列{a n }中,a 1=2,数列{b n }满足b n =log 2a n ,且b 2+b 3+b 4=9,则a 5=( ) A.8B.16C.32D.64解析 由{a n }是等比数列,且b n =log 2a n , ∴{b n }是等差数列,又b 2+b 3+b 4=9,所以b 3=3.由b 1=log 2a 1=1,知公差d =1,从而b n =n , 因此a n =2n ,于是a 5=25=32. 答案 C6.(2020·青岛质检)某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率是( ) A.112125B.80125C.113125D.124125解析 某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”“升级题型”“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相应独立,则该参赛者答完三道题后至少答对两道题的概率:P =⎝ ⎛⎭⎪⎫453+C 23⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫15=112125. 答案 A7.函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π,且x ≠0)的图象可能为( )解析 由f (-x )=-f (x )及-π≤x ≤π,且x ≠0判定函数f (x )为奇函数,其图象关于原点对称,排除A ,B 选项;当x >0且x →0时,-1x →-∞,cos x →1,此时f (x )→-∞,排除C 选项,故选D. 答案 D8.在△ABC 中,AB =3,AC =2,∠BAC =120°,点D 为BC 边上的一点,且BD →=2DC →,则AB →·AD →=( ) A.13B.23C.1D.2解析 以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,如图所示.则A (0,0),B (3,0),C (-1,3),∵BD→=2DC →,∴BD →=23BC →=23(-4,3)=⎝ ⎛⎭⎪⎫-83,233,则D ⎝ ⎛⎭⎪⎫13,233,∴AD→=⎝ ⎛⎭⎪⎫13,233,AB →=(3,0), 所以AB →·AD→=3×13+0×233=1. 答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·淄博模拟)甲、乙、丙三家企业的产品成本(万元)分别为10 000,12 000,15 000,其成本构成比例如图,则下列关于这三家企业的说法正确的是( )A.成本最大的企业是丙B.其他费用支出最高的企业是丙C.支付工资最少的企业是乙D.材料成本最高的企业是丙解析 由扇形统计图可知,甲企业的材料成本为10 000×60%=6 000(万元),支付工资10 000×35%=3 500(万元),其他费用支出为10 000×5%=500(万元); 乙企业的材料成本为12 000×53%=6 360(万元),支付工资为12 000×30%= 3 600(万元),其他费用支出为12 000×17%=2 040(万元);丙企业的材料成本为15 000×60%=9 000(万元),支付工资为15 000×25%= 3 750(万元),其他费用支出为15 000×15%=2 250(万元).所以成本最大的企业是丙,其他费用支出最高的企业是丙,支付工资最少的企业是甲,材料成本最高的企业是丙.故选ABD.答案 ABD10.(2020·海南模拟)将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,则下列说法正确的是( )A.φ=π6B.函数f (x )的最小正周期为πC.函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0成中心对称D.函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12解析 由题意可知函数f (x )的最小正周期T =2π2=π,B 正确;将函数f (x )=sin(2x +φ)(0<φ<π)的图象向右平移π4个单位长度后得到函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象,所以sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+φ=sin ⎝ ⎛⎭⎪⎫2x -π2+φ=sin ⎝ ⎛⎭⎪⎫2x +π6,所以-π2+φ=π6,所以φ=2π3∈(0,π),A 错误;f (x )=sin ⎝ ⎛⎭⎪⎫2x +2π3,令2x +2π3=k π,k ∈Z ,则x =k π2-π3,k ∈Z ,C 错误;令2k π+π2≤2x +2π3≤2k π+3π2,k ∈Z ,解得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12,D 正确.故选BD.答案 BD11.已知实数a >b >0,则下列不等关系正确的是( ) A.b a <b +4a +4B.lga +b 2>lg a +lg b2C.a +1b <b +1aD.a -b >a -b解析 对于A ,因为b a -b +4a +4=b (a +4)-a (b +4)a (a +4)=4(b -a )a (a +4),又a >b >0,所以b a <b +4a +4,故A 正确;因为lg a +lgb 2=lg ab ,又a +b 2≥ab ,当且仅当a =b 时等号成立,由a >b >0,得a +b 2>ab ,所以lg a +b 2>lg ab ,即lg a +b 2>lg a +lg b2,故B 正确;因为a +1b -⎝ ⎛⎭⎪⎫b +1a =(a -b )+⎝ ⎛⎭⎪⎫1b -1a =(a -b )+a -b ab =(a -b )·⎝ ⎛⎭⎪⎫1+1ab ,又a >b >0,所以a +1b -⎝ ⎛⎭⎪⎫b +1a >0,即a +1b >b +1a ,故C 错误;因为a >b >0,所以a-b >0,则(a -b )2=a +b -2ab ,而(a -b )2=a -b ,即(a -b )2-(a -b )2=2b -2ab =2(b -ab ),又a >b >0,所以b -ab <0,所以(a -b )2<(a -b )2,即a -b <a -b ,故D 错误.故选AB. 答案 AB12.(2020·临沂模拟)已知点P 在双曲线C :x 216-y 29=1上,点F 1,F 2是双曲线C 的左、右焦点.若△PF 1F 2的面积为20,则下列说法正确的是( ) A.点P 到x 轴的距离为203 B.|PF 1|+|PF 2|=503 C.△PF 1F 2为钝角三角形 D.∠F 1PF 2=π3解析 由双曲线C :x 216-y 29=1可得,a =4,b =3,c =5,不妨设P (x P ,y P ),由△PF 1F 2的面积为20,可得12|F 1F 2||y P |=c |y P |=5|y p |=20,所以|y P |=4,选项A 错误.将|y P |=4代入双曲线C 的方程x 216-y 29=1中,得x 2P16-429=1,解得|x P |=203.由双曲线的对称性,不妨设点P 在第一象限,则P ⎝ ⎛⎭⎪⎫203,4,可知|PF 2|=⎝ ⎛⎭⎪⎫203-52+(4-0)2=133.由双曲线的定义可知|PF 1|=|PF 2|+2a =133+8=373,所以|PF 1|+|PF 2|=373+133=503,选项B 正确.在△PF 1F 2中,|PF 1|=373>2c =10>|PF 2|=133,且cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=-513<0,则∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,选项C 正确.由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=319481≠12,所以∠F 1PF 2≠π3,选项D 错误.故选BC. 答案 BC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.某年级有1 000名学生,一次数学考试成绩服从正态分布X ~N (105,102),P (95≤X ≤105)=0.34,则该年级学生此次数学成绩在115分以上的人数大约为________.解析 ∵数学考试成绩服从正态分布X ~N (105,102),∴考试成绩关于X =105对称.∵P (95≤X ≤105)=0.34,∴P (X >115)=12×(1-0.68)=0.16,∴该年级学生此次数学成绩在115分以上的人数大约为0.16×1 000=160. 答案 160 14.曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x (x +2)2=2(x +2)2,∴y ′|x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y +1=2(x +1),即2x -y +1=0.答案 2x -y +1=015.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为________,此时S n =________.(本小题第一空3分,第二空2分)解析 所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;……;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27. 答案 27 54616.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,有下列判断:①平面PB 1D ⊥平面ACD 1; ②A 1P ∥平面ACD 1;③异面直线A 1P 与AD 1所成角的取值范围是⎝ ⎛⎦⎥⎤0,π3;④三棱锥D 1-APC 的体积不变.其中,正确的是________(把所有正确判断的序号都填上). 解析 在正方体中,B 1D ⊥平面ACD 1,B 1D ⊂平面PB 1D ,所以平面PB 1D ⊥平面ACD 1,所以①正确.连接A 1B ,A 1C 1,如图,容易证明平面A 1BC 1∥平面ACD 1,又A 1P ⊂平面A 1BC 1,所以A 1P ∥平面ACD 1,所以②正确.因为BC 1∥AD 1,所以异面直线A 1P 与AD 1所成的角就是直线A 1P 与BC 1所成的角,在△A 1BC 1中,易知所求角的范围是⎣⎢⎡⎦⎥⎤π3,π2,所以③错误.VD 1-APC =VC -AD 1P ,因为点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥D 1-APC 的体积不变,所以④正确. 答案 ①②④限时练(三)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河南联检)已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则B ∪(∁A C )=( ) A.{2,3,4,5} B.{2,3,4,5,6} C.{1,2,3,4,5,6}D.{1,3,4,5,6,7}解析 因为A ={x ∈N |0<x <8}={1,2,3,4,5,6,7},所以∁A C ={1,4,5,6},所以B∪(∁A C)={1,2,3,4,5,6}.故选C.答案 C2.若z=(3-i)(a+2i)(a∈R)为纯虚数,则z=()A.163i B.6i C.203i D.20解析因为z=3a+2+(6-a)i为纯虚数,所以3a+2=0,解得a=-23,所以z=203i.故选C.答案 C3.(2020·潍坊模拟)甲、乙、丙、丁四位同学各自对变量x,y的线性相关性进行试验,并分别用回归分析法求得相关系数r,如下表:哪位同学的试验结果能体现出两变量有更强的线性相关性?()A.甲B.乙C.丙D.丁解析由于丁同学求得的相关系数r的绝对值最接近于1,因此丁同学的试验结果能体现出两变量有更强的线性相关性.故选D.答案 D4.设a=ln 12,b=-5-12,c=log132,则()A.c<b<aB.a<c<bC.c<a<bD.b<a<c解析由题意易知-a=ln 2,-b=5-12,-c=log32.因为12=log33<log32<ln 2<1,0<5-12<4-12=12,所以-b<-c<-a,所以a<c<b.故选B.答案 B5.(2020·青岛质检)已知某市居民在2019年用手机支付的个人消费额ξ(元)服从正态分布N(2 000,1002),则该市某居民在2019年用手机支付的消费额在(1 900,2 200]内的概率为()附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5,P(μ-3σ<ξ≤μ+3σ)≈0.997 3.A.0.975 9B.0.84C.0.818 6D.0.477 2解析 ∵ξ服从正态分布N (2 000,1002),∴μ=2 000,σ=100,则P (1 900<ξ≤ 2 200)=P (μ-σ<ξ≤μ+σ)+12[P (μ-2σ<ξ≤μ+2σ)-P (μ-σ<ξ≤μ+σ)]≈0.682 7+12(0.954 5-0.682 7)=0.818 6.故选C. 答案 C6.设抛物线C :y 2=2px (p >0)的焦点为F ,斜率为k 的直线过F 交C 于点A ,B ,且AF →=2FB →,则直线AB 的斜率为( ) A.2 2 B.2 3 C.±2 2D.±2 3解析 由题意知k ≠0,F ⎝ ⎛⎭⎪⎫p 2,0,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程消去x ,得y 2-2p k y -p 2=0.不妨设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2).因为AF →=2FB →,所以y 1=-2y 2.又y 1y 2=-p 2.所以y 2=-22p ,x 2=p 4,所以k AB=-22p -0p 4-p 2=2 2.根据对称性,直线AB 的斜率为±2 2. 答案 C7.已知点A (1,0),B (1,3),点C 在第二象限,且∠AOC =150°,OC →=-4OA →+λOB →,则λ=( ) A.12B.1C.2D.3解析 设|OC→|=r ,则OC →=⎝ ⎛⎭⎪⎫-32r ,12r ,由已知,得OA →=(1,0),OB →=(1,3),又OC→=-4OA →+λOB →,∴⎝ ⎛⎭⎪⎫-32r ,12r =-4(1,0)+λ(1,3)=(-4+λ,3λ),∴⎩⎪⎨⎪⎧-32r =-4+λ,12r =3λ,解得λ=1.答案 B8.在△ABC中,AB=AC,D,E分别在AB,AC上,DE∥BC,AD=3BD,将△ADE 沿DE折起,连接AB,AC,当四棱锥A-BCED体积最大时,二面角A-BC-D 的大小为()A.π6 B.π4 C.π3 D.π2解析因为AB=AC,所以△ABC为等腰三角形,过A作BC的垂线AH,垂足为H,交DE于O,∴当△ADE⊥平面BCED时,四棱锥A-BCED体积最大.由DE⊥AO,DE⊥OH,AO∩OH=O,可得DE⊥平面AOH,又BC∥DE,则BC⊥平面AOH,∴∠AHO为二面角A-BC-D的平面角,在Rt△AOH中,由AOOH=ADDB=3,∴tan∠AHO=AOOH=3,则二面角A-BC-D的大小为π3.答案 C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020·济宁模拟)“悦跑圈”是一款社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月每月跑步的里程(十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A.月跑步里程数逐月增加B.月跑步里程数的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程数D.1月至5月的月跑步里程数相于6月至11月波动性更小,变化比较平稳 解析 根据折线图可知,2月跑步里程数比1月小,7月跑步里程数比6月小,10月跑步里程数比9月小,A 错误.根据折线图可知,9月的跑步里程数最大,B 正确.一共11个月份,将月跑步里程数从小到大排列,根据折线图可知,跑步里程的中位数为8月份对应的里程数,C 正确.根据折线图可知D 正确.故选BCD. 答案 BCD10.下列各式中,值为12的是( ) A.sin 15°cos 15°B.cos 2π6-sin 2π6C.1+cos π62D.tan 22.5°1-tan 222.5°解析 sin 15°cos 15°=sin 30°2=14,排除A ;cos 2π6-sin 2π6=cos π3=12,B 正确;1+cos π62=1+322=2+32,排除C ;tan 45°=2tan 22.5°1-tan 222.5°,得tan 22.5°1-tan 222.5°=12,D 正确.故选BD.答案 BD11.已知{a n }是等比数列,若a 6=8a 3=8a 22,则( )A.a n =2n -1B.a n =2nC.S n =2n -1D.S n =2n +1-2解析 设数列{a n }的公比为q ,由a 6=8a 3,得a 3·q 3=8a 3,则q 3=8,所以q =2.又8a 3=8a 22,则a 2·q =a 22,又a 2≠0,所以a 2=2,即a n =a 2q n -2=2n -1,所以a 1=1,S n =a 1(1-q n )1-q =2n -1,故选AC.答案 AC12.数列{F n }:1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n项和为S n,则下列结论正确的是()A.F n=F n-1+F n-2(n≥3)B.S4=F6-1C.S2 019=F2 020-1D.S2 019=F2 021-1解析根据题意有F n=F n-1+F n-2(n≥3),所以S3=F1+F2+F3=1+F1+F2+F3-1=F3+F2+F3-1=F4+F3-1=F5-1,S4=F4+S3=F4+F5-1=F6-1,S5=F5+S4=F5+F6-1=F7-1,…,所以S2 019=F2 021-1.答案ABD三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设a=210+1211+1,b=212+1213+1,则a,b的大小关系为________.解析法一由题意知,a-b=210+1211+1-212+1213+1=(210+1)(213+1)-(212+1)(211+1)(211+1)(213+1)=3×210(211+1)(213+1)>0,故a>b.法二可考虑用函数的单调性解题.令f(x)=2x+12x+1+1=12⎝⎛⎭⎪⎫1+12x+1+1,则f(x)在定义域内单调递减,所以a=f(10)>b=f(12).答案a>b14.(2020·深圳统测)很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123).已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为________.解析由0,1,2,…,9中的四个数字随机组成的“递增型验证码”共有C410个,而首位数字是1的“递增型验证码”有C38个.因此某人收到的“递增型验证码”的首位数字是1的概率p=C38C410=415.答案4 1515.设双曲线C:x2a2-y2b2=1(a>0,b>0)的左焦点为F,直线4x-3y+20=0过点F且与双曲线C在第二象限的交点为P,O为原点,|OP|=|OF|,则双曲线C的右焦点的坐标为________,离心率为________.(本小题第一空2分,第二空3分)解析如图,∵直线4x-3y+20=0过点F,∴F(-5,0),半焦距c=5,则右焦点为F2(5,0).连接PF2.设点A为PF的中点,连接OA,则OA∥PF2.∵|OP|=|OF|,∴OA⊥PF,∴PF2⊥PF.由点到直线的距离公式可得|OA|=205=4,∴|PF2|=2|OA|=8.由勾股定理,得|FP|=|FF2|2-|PF2|2=6.由双曲线的定义,得|PF2|-|PF|=2a=2,∴a=1,∴离心率e=ca=5.答案(5,0) 516.(2020·厦门质检)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在侧面D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q所形成的轨迹的长度为________.解析因为QB∥平面D1NT,所以点Q在过点B且与平面D1NT平行的平面内,如图,取DC的中点E1,取A1G=1,则平面BGE1∥平面D1NT.延长BE1,交AD 的延长线于点E,连接EG,交DD1于点I.显然,平面BGE∩平面D1DAA1=GI,所以点Q的轨迹是线段GI.∵DE1綊12AB,∴DE1为△EAB的中位线,∴D为AE的中点.又DI∥AG,∴DI=12AG=1,∴GI=(2-1)2+32=10.答案10限时练(四)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=log2(x-2)},B={x|x2≥9},则A∩(∁R B)=()A.[2,3)B.(2,3)C.(3,+∞)D.(2,+∞)解析A={x|y=log2(x-2)}=(2,+∞),∵B={x|x2≥9}=(-∞,-3]∪[3,+∞),∴∁R B=(-3,3),则A∩(∁R B)=(2,3).答案 B2.设x,y∈R,i为虚数单位,且3+4iz=1+2i,则z=x+y i的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析z=3+4i1+2i=(3+4i)(1-2i)5=115-25i,则z-=115+25i,z-对应点⎝⎛⎭⎪⎫115,25在第一象限.答案 A3.(2020·福建漳州适应性测试)如图是某地区从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.若该地区从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列{a n},{a n}的前n项和为S n,则下列说法中正确的是()A.数列{a n}是递增数列B.数列{S n}是递增数列C.数列{a n}的最大项是a11D.数列{S n}的最大项是S11解析因为1月28日新增确诊人数小于1月27日新增确诊人数,即a7>a8,所以{a n }不是递增数列,所以A 错误;因为2月23日新增确诊病例数为0,所以S 33=S 34,所以数列{S n }不是递增数列,所以B 错误;因为1月31日新增病例数最多,从1月21日算起,1月31日是第11天,所以数列{a n }的最大项是a 11,所以C 正确;由a n ≥0,知S n +1≥S n ,故数列{S n }的最大项是最后一项,所以D 错误.故选C. 答案 C4.大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( ) A.112B.12C.13D.16解析 大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总个数n =C 24A 33=36,小明恰好分配到甲村小学包含的基本事件个数m =A 33+C 23A 22=12,所以小明恰好分配到甲村小学的概率p =m n =1236=13. 答案 C5.(2020·荆门模拟)在二项式⎝ ⎛⎭⎪⎫x 12+12x 7的展开式中,有理项的项数为( ) A.1B.2C.3D.4解析 该二项展开式的通项为T r +1=C r 7x7-r 2⎝ ⎛⎭⎪⎫12x r=C r 7⎝ ⎛⎭⎪⎫12r ·x 7-3r 2,r =0,1,2,…,7.当r =1,3,5,7时,T r +1为有理项,共有4项.故选D. 答案 D6.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为( )A.π2 B.π3 C.π4D.π6解析 以A 为原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (0,2,0),∴D ⎝ ⎛⎭⎪⎫22,22,0,∴AD →=⎝ ⎛⎭⎪⎫22,22,0,A 1C →=(0,2,-2), ∴cos 〈AD →,A 1C →〉=AD →·A 1C →|AD →||A 1C →|=12,∴〈AD →,A 1C →〉=π3. 答案 B7.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB→|=2,OC →=13OA →+23OB →,若M是线段AB 的中点,则OC →·OM →的值为( )A. 3B.2 3C.2D.3解析 由OC→=13OA →+23OB →,又OM →=12(OA →+OB →), 所以OC →·OM →=⎝ ⎛⎭⎪⎫13OA →+23OB →·12(OA →+OB →)=16(OA →2+2OB →2+3OA →·OB →), 又△OAB 为等边三角形,所以OA →·OB →=2×2cos 60°=2,OA →2=4,OB →2=4,所以OC →·OM →=3. 答案 D8.(2020·天津适应性测试)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,2x -4x ,x >0.若函数F (x )=f (x )-|kx -1|有且只有3个零点,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,916 B.⎝ ⎛⎭⎪⎫916,+∞C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫-116,0∪⎝ ⎛⎭⎪⎫0,916解析 当k =12时,|kx -1|=⎪⎪⎪⎪⎪⎪12x -1=⎩⎪⎨⎪⎧12x -1,x ≥2,1-12x ,x <2.作出函数y =f (x )与y =⎪⎪⎪⎪⎪⎪12x -1的图象,如图.此时两函数的图象有且只有3个交点,此时F (x )有且只有3个零点,排除B ,C.当k =-120时,|kx -1|=⎪⎪⎪⎪⎪⎪-120x -1=⎩⎪⎨⎪⎧-120x -1,x ≤-20,1+120x ,x >-20,作出函数y =⎪⎪⎪⎪⎪⎪-120x -1的图象,如图.由图可得函数y =f (x )的图象与y =⎪⎪⎪⎪⎪⎪-120x -1的图象有且只有3个交点,此时F (x )有且只有3个零点,排除A.故选D. 答案 D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知0<c <1,1>a >b >0,则下列不等式成立的是( )A.c a <c bB.a a +c <b b +cC.ba c >ab cD.log a c >log b c解析 构造函数y =c x ,因为0<c <1,所以函数y =c x 是减函数,而a >b >0,根据指数函数的单调性得c a<c b,故A 正确;由题意得a +c a =1+c a ,b +c b =1+cb ,因为0<c <1,1>a >b >0,所以0<c a <c b ,即0<a +c b <b +c b ,取倒数得a a +c >b b +c ,故B 错误;由题意得⎝ ⎛⎭⎪⎫a b c <a b ,整理得ba c <ab c ,故C 错误;由已知得log a c >0,log b c >0,又0<log c a <log c b ,所以1log c a >1log c b ,则log a c >log b c ,故D 正确.故选AD.答案 AD10.已知f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则函数f (x )的对称中心可以为( )A.⎝ ⎛⎭⎪⎫2π3,0B.⎝ ⎛⎭⎪⎫π6,1 C.⎝ ⎛⎭⎪⎫-π6,1 D.⎝ ⎛⎭⎪⎫π3,1 解析 由图象知A =3+12=2,B =3-12=1,又T =2⎝ ⎛⎭⎪⎫7π12-π12=π,所以ω=2.由2×π12+φ=π2+2k π(k ∈Z )且|φ|<π2,得φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.令2x +π3=k π(k ∈Z ),得x =-π6+k π2(k ∈Z ),取k =0,有x =-π6;k =1,x =π3. 答案 CD11.对于函数f (x )=ln xx ,下列说法正确的是( )A.f (x )在x =e 处取得极大值1eB.f (x )有两个不同的零点C.f (4)<f (π)<f (3)D.π4<4π解析 f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2.令f ′(x )=0,得x =e.∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,因此f (x )在x =e 处取得极大值f (e)=1e ,A 正确.令f (x )=0,解得x =1,故函数f (x )有且仅有一个零点,B 错误.由f (x )在(e ,+∞)上单调递减,得f (4)<f (π)<f (3),则C 正确.因为f (4)<f (π),即ln 44<ln ππ,所以ln 4π<ln π4,则4π<π4,D 错误.综上知,正确的为AC. 答案 AC12.(2020·烟台诊断)已知P 是双曲线C :x 23-y 2m =1(m >0)上任意一点,A ,B 是双曲线C 上关于坐标原点对称的两点.设直线P A ,PB 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,则下列说法正确的是( )A.双曲线C 的方程为x 23-y 2=1 B.双曲线C 的离心率为2C.函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点D.直线2x -3y =0与双曲线C 有两个交点解析 设A (x 1,y 1),P (x 2,y 2).由A ,B 是双曲线C 上关于坐标原点对称的两点,得B (-x 1,-y 1),则x 213-y 21m =1,x 223-y 22m =1.两式相减,得x 21-x 223=y 21-y 22m ,所以y 21-y 22x 21-x 22=m 3.又直线P A ,PB 的斜率分别为k 1,k 2,所以k 1k 2=y 1-y 2x 1-x 2×-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=m3.所以|k 1|+|k 2|≥2|k 1||k 2|=2m3,当且仅当|k 1|=|k 2|时取等号.又|k 1|+|k 2|≥t 恒成立,且实数t 的最大值为233,所以2m 3=233,解得m =1.因此双曲线C 的方程为x 23-y 2=1,则A 项正确.因为a =3,b =1,所以c =a 2+b 2=2,所以双曲线C 的离心率e =c a =23=233,则B 项不正确.双曲线C 的左、右焦点分别为(-2,0),(2,0),而当x =2时,y =log a (2-1)=log a 1=0,所以函数y =log a (x -1)(a >0,a ≠1)的图象恒过双曲线C 的一个焦点(2,0),则C 项正确.由⎩⎪⎨⎪⎧2x -3y =0,x 23-y 2=1消去y ,得x 2=-9,此方程无实数解,所以直线2x -3y =0与双曲线C 没有交点,则D 项不正确.故选AC. 答案 AC三、填空题:本题共4小题,每小题5分,共20分.请把正确的答案填写在各小题的横线上.13.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析 设等差数列{a n }的公差为d (d ≠0),则由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即(2a 3-3d )2=(a 3-2d )·(4a 3-2d ).又a 3=5,所以(10-3d )2=(5-2d )(20-2d ),解得d =2.所以数列{a n }的通项公式为a n =a 3+(n -3)d =2n -1. 答案 a n =2n -114.已知点E 在y 轴上,点F 是抛物线y 2=2px (p >0)的焦点,直线EF 与抛物线交于M ,N 两点,若点M 为线段EF 的中点,且|NF |=12,则p =________. 解析 由题意知,直线EF 的斜率存在且不为0,故设直线EF 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,与抛物线方程y 2=2px 联立,得k 2x 2-p (k 2+2)x +p 2k 24=0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=p 24.又F ⎝ ⎛⎭⎪⎫p 2,0,点M 为线段EF 的中点,得x 1=p 22=p 4.由|NF |=x 2+p 2=12,得x 2=12-p2.由x 1x 2=p 4⎝ ⎛⎭⎪⎫12-p 2=p 24,得p =8或p =0(舍去).答案 815.(2020·长郡中学适应性考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在面ABB 1A 1和面ABCD 内作弧MN 和NE ,并将两弧各五等分,分点依次为M ,P 1,P 2,P 3,P 4,N 以及N ,Q 1,Q 2,Q 3,Q 4,E .一只蚂蚁欲从点P 1出发,沿正方体的表面爬行至点Q 4,则其爬行的最短距离为________.(参考数据:cos 9°≈0.987 7,cos 18°≈0.951 1,cos 27°≈0.891 0)解析 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,E 分别为棱AA 1,AB ,AD 的中点,以A 为圆心,1为半径,分别在平面ABB 1A 1和平面ABCD 内作弧MN 和NE .将平面ABCD 绕AB 旋转至与平面ABB 1A 1共面的位置,如图(1),则∠P 1AQ 4=180°10×8=144°,所以P 1Q 4=2sin 72°.将平面ABCD 绕AD 旋转至与平面ADD 1A 1共面的位置,将ABB 1A 1绕AA 1旋转至与平面ADD 1A 1共面的位置,如图(2),则∠P 1AQ 4=90°5×2+90°=126°,所以P 1Q 4=2sin 63°.因为sin 63°<sin 72°,且由诱导公式可得sin 63°=cos 27°,所以最短距离为|P 1Q 4|=2sin 63°≈2×0.891 0=1.782 0.图(1)图(2)答案 1.782 016.已知函数f (x )=⎩⎨⎧x +2,x <a ,x 2,x ≥a ,若函数f (x )在R 上是单调的,则实数a 的取值范围是________;若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,则实数a 的取值范围是________(本小题第一空2分,第二空3分).解析 令x +2=x 2,得x =-1或x =2.作出函数y =f (x )的图象如图所示,若函数f (x )在R 上单调,只需a ≥2.若对任意的实数x 1<a ,总存在实数x 2≥a ,使得f (x 1)+f (x 2)=0,可得x 1+2+x 22=0,即-x 22=x 1+2,即有a +2≤0,解得a ≤-2.答案 [2,+∞) (-∞,-2]限时练(五)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =i1+i(i 是虚数单位)的虚部是( ) A.12B.-12C.12iD.-12i解析 z =i 1+i =i (1-i )(1+i )(1-i )=i 2+12,∴z 的虚部为12.答案 A 2.已知集合A ={-1,0,1,2,3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x +1≥0,则A ∩B 中元素的个数为( )A.1B.2C.3D.4解析 由x -2x +1≥0,得x ≥2或x <-1,则B ={x |x ≥2,或x <-1},∴A ∩B ={2,3},A ∩B 中有2个元素.答案 B3.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x ≤0,2x +1,x >0,则f (-2)+f (1)=( )A.6+32B.6-32C.72D.52解析 f (-2)=sin ⎝ ⎛⎭⎪⎫-2π+π6=12,f (1)=21+1=3.∴f (-2)+f (1)=3+12=72. 答案 C4.在某项检测中,测量结果服从正态分布N (2,1),若P (X <1)=P (X >1+λ),则λ=( ) A.0B.2C.3D.5解析 依题意,正态曲线关于x =2对称,又P (X <1)=P (X >1+λ),因此1+λ=3,∴λ=2. 答案 B5.(2020·天津适应性测试)如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A.3B.4C.6D.12解析 ∵CE =2EC 1,∴V E -BCD =13×12×23×V ABCD -A 1B 1C 1D 1=19×36=4.故选B. 答案 B6.函数f (x )=x 2-2ln|x |的图象大致是( )。
(限时:分钟)一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.) .已知集合={--≤},={(-)>},则∩=( ).(,) .(,].(-,-) .[-,-)解析∵--≤,∴-≤≤,∴=[-,].又∵(-)>,∴-->,∴<-或>,∴=(-∞,-)∪(,+∞).∴∩=(,].故选.答案.若复数满足(-)=,则的虚部为( ).-.-解析依题意得===+,因此复数的虚部为.故选.答案.在等比数列{}中,若、是方程-+=的两根,则的值是( ).±.-.±解析由题意可知=,=,或=,=.当=,=时,设公比为,则==,∴=,∴==;同理可求当=,=时,=.答案.将函数()=的图象向右平移φ个单位长度后得到函数()的图象,若对于满足()-()=的,,有-=,则φ=( )解析由题意知,()=(-φ),-≤()≤,又-≤()≤,若,满足()-()=,则,分别是函数(),()的最值点,不妨设()=-,()=,则=+π(∈),=+π(∈),-=(,∈),又-=,<φ<,所以-φ=,得φ=,故选.答案.如图,多面体-的底面为正方形,==,其俯视图如下,则其正视图和侧视图正确的是( )解析注意,在平面上的投影为实线,且由已知长度关系确定投影位置,排除,选项,观察,选项,侧视图是指光线从几何体的左面向右面正投影,则,的投影为虚线,故选.答案.已知直线++-=(>)经过圆+--=的圆心,则+的最小值是( )解析依题意得,圆心坐标是(,),于是有+=,+=(+)=++≥+=,当且仅当即==时取等号,因此+的最小值是.故选.答案.已知四面体-的四个顶点都在球的球面上,若⊥平面,⊥,且=,==,则球的表面积为( )π ππ π解析依题意记题中的球的半径是,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是、、,于是有()=++=,π=π,∴球的表面积为π.。
(限时:分钟)一、选择题(本大题共个小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.) .设全集=,集合={≤≤},={≤≤},则(∁)∪=( ).(,] .(-∞,]∪(,+∞).[,) .(-∞,)∪[,+∞)解析因为∁={>,或<} ,={≤≤},所以(∁)∪=(-∞,)∪[,+∞).答案.双曲线-=(>,>)与椭圆+=的焦点相同,若过右焦点且倾斜角为°的直线与双曲线的右支有两个不同交点,则此双曲线实半轴长的取值范围是( ).(,) .(,].[,) .(,+∞)解析椭圆+=的半焦距=.要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即<°=,即<,∴-<.整理得<.∴>,又<=,则此双曲线实半轴长的取值范围是(,).故选.答案.若数列{}满足-=(∈*,为常数),则称数列{}为调和数列.已知数列为调和数列,且++…+=,则+=( )-=,∴{}是等差数列.解析∵数列为调和数列,∴-=+又∵++…+==,∴+=,又∵+=+,∴+=.故选.答案.已知实数,满足约束条件则++的最小值是( )-解析满足约束条件件的平面区域如图中阴影部分所示:∵++=(+)+-,表示(-,)点到可行域内任一点距离的平方再减,由图可知当=,=时,++取最小值,故选.答案.已知函数()=(+φ),其中<φ<π,若()≤对∈恒成立,且>(π),则φ等于( )解析若()≤对∈恒成立,则等于函数的最大值或最小值,即×+φ=π+,∈,则φ=π+,∈又>(π),即φ<,<φ<π,当=时,此时φ=,满足条件,故选.答案.设数列{}的前项和为,且满足+=,则的取值范围是( ).(,) .(,+∞)解析已知+=,当=时,得=;当≥时,-+-=,两式相减,得--+=,=-,由题意知,-≠,∴=(≥),∴数列{}是首项为,公比为的等比数列,∴==-,∴∈.答案.过抛物线=(>)的焦点的直线交抛物线于,,交其准线于点,若=-,=,则抛物线的方程为( )====解析分别过,点作准线的垂线,垂足分别为,,过作⊥轴.∴=,=.又∵=,∴=,∴∠=°,∴∠=∠=°,又=,∴=,∴=+=,∴=,∴抛物线方程为=.答案.如图,在三棱锥-中,,,两两互相垂直,且=,=,=,设是底面三角形内一动点,定义:()=(,,),其中,,分别表示三棱锥-,-,-的体积,若()=(,,),且+。
专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。
2017届高考数学二轮复习 小题综合限时练(八)(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥n C.n ⊥lD.m ⊥n解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C. 答案 C2.设a =log 314,b =⎝ ⎛⎭⎪⎫130.3,c =log 2(log 22),则( )A.b <c <aB.a <b <cC.c <a <bD.a <c <b解析 ∵c =log 212=-1=log 313>log 314=a ,b >0,∴b >c >a .故选D. 答案 D3.要得到函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π4的图象,只需将函数g (x )=32cos 3x +12sin 3x 的图象( )A.向左平移5π12个单位B.向左平移5π36个单位C.向左平移π12个单位D.向左平移π36个单位解析 依题意知g (x )=cosπ6cos 3x +sin π6sin 3x =cos ⎝⎛⎭⎪⎫3x -π6,∵cos ⎣⎢⎡⎦⎥⎤3⎝⎛⎭⎪⎫x +5π36-π6=cos ⎝ ⎛⎭⎪⎫3x +π4,∴要想得到函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π4的图象,只需将函数g (x )的函数图象向左平移5π36个单位即可.故选B. 答案 B4.一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是( ) A.12+25 B.14+25 C.16+25 D.18+25解析 依题意,该几何体是一个直四棱柱,其中底面是一个上底长为1、下底长为2、高为2的梯形,侧棱长为2,因此其表面积等于2×12×(1+2)×2+(1+2+2+5)×2=16+2 5.故选C. 答案 C5.在6道题中有3道理综题和3道文综题,如果不放回地依次抽取2道题,则“在第1次抽到理综题的条件下,第2次抽到文综题”的概率为( ) A.12 B.13 C.25D.35解析 法一 第1次抽到理综题的条件下,依次抽取2道题,共有C 13C 15=15种抽法,其中第2次抽取文综题的情况共有C 13C 13=9种,因此,所求概率P =915=35.故选D.法二 第一次抽到理综题的概率P (A )=A 13A 15A 26=12,第一次抽到理综题和第二次抽到文综题的概率P (AB )=A 13A 13A 26=310,∴P (B |A )=P (AB )P (A )=31012=35.故选D.答案 D6.过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则|AF ||BF |的值等于( )A.13B.23C.34D.43解析 记抛物线y 2=2px 的准线为l ,作AA 1⊥l ,BB 1⊥l ,AC ⊥BB 1,垂足分别是A 1、B 1、C ,则有cos∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,∴cos 60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13.故选A.7.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥x3-2,y ≤2x +4,2x +3y -12≤0,直线(2+λ)x -(3+λ)y +(1-2λ)=0(λ∈R )过定点A (x 0,y 0),则z =y -y 0x -x 0的取值范围为( ) A.⎣⎢⎡⎦⎥⎤15,7 B.⎣⎢⎡⎦⎥⎤17,5C.⎝⎛⎦⎥⎤-∞,15∩[7,+∞) D.⎝⎛⎦⎥⎤-∞,17∩[5,+∞) 解析 依题意知,直线(2+λ)x -(3+λ)y +(1-2λ)=0(λ∈R )可以转化为2x -3y +1+λ(x -y -2)=0,联立⎩⎪⎨⎪⎧2x -3y +1=0,x -y -2=0,解得⎩⎪⎨⎪⎧x =7,y =5,∴z =y -5x -7,作出二元一次不等式组所表示的平面区域如图阴影部分所示,点B ⎝ ⎛⎭⎪⎫-185,-165,点C (6,0),点D (0,4),观察可知z =y -5x -7表示阴影区域内的点与A (7,5)两点连线的斜率,∴k AD ≤z =y -5x -7≤k AC ,即17≤z =y -5x -7≤5.∴z =y -y 0x -x 0的取值范围为⎣⎢⎡⎦⎥⎤17,5.故选B. 答案 B8.已知函数f (x )=2ax 3+3,g (x )=3x 2+2,若关于x 的方程f (x )=g (x )有唯一解x 0,且x 0∈(0,+∞),则实数a 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)解析 依题意得,2ax 3+3=3x 2+2,即2ax 3-3x 2+1=0(*).若a =0,则(*)式化为-3x2+1=0,该方程有两解,不合题意,舍去;若a >0,令h (x )=2ax 3-3x 2+1,则h ′(x )=6ax ⎝⎛⎭⎪⎫x -1a ,可知函数h (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在(-∞,0)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,∴极大值为h (0)=1,结合函数图象可知,h (x )还存在一个小于0的零点,不合题意,舍去;若a <0,则函数h (x )在⎝ ⎛⎭⎪⎫1a ,0上单调递增,在⎝ ⎛⎭⎪⎫-∞,1a 和(0,+∞)上单调递减,要使零点唯一,则h ⎝ ⎛⎭⎪⎫1a >0,即2a ⎝ ⎛⎭⎪⎫1a 3-3⎝ ⎛⎭⎪⎫1a 2+1>0,∵a <0,解得a <-1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.在△ABC 中,AB =1,AC =3,B =60°,则cos C =______.解析 ∵AC >AB ,∴C <B =60°,又由正弦定理得1sin C =3sin 60°,∴sin C =13sin 60°=36,∴cos C =336.答案33610.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平分圆C :(x -1)2+(y -2)2=1的周长,此双曲线的离心率等于________.解析 依题意得,双曲线的渐近线过圆心(1,2),于是有b a=2,∴双曲线的离心率为1+⎝ ⎛⎭⎪⎫b a 2= 5. 答案511.已知直线l :mx -y =1,若直线l 与直线x +m (m -1)y =2垂直,则m 的值为________,动直线l :mx -y =1被圆C :x 2-2x +y 2-8=0截得的最短弦长为________.解析 若两直线垂直,则有m -m (m -1)=0,解得m =0或m =2;把圆C 的方程化为标准方程为(x -1)2+y 2=9,所以圆C 的圆心为C (1,0),半径为3.因为直线l 过定点P (0,-1),所以最短弦长为过定点P 且与PC 垂直的弦,此时L =2r 2-|PC |2=232-(12+12)2=27. 答案 0或2 2712.已知等比数列{a n }的公比q >0,前n 项和为S n .若2a 3,a 5,3a 4成等差数列,a 2a 4a 6=64,则q =________,S n =________.解析 由a 2a 4a 6=64得a 34=64,解得a 4=4.由2a 3,a 5,3a 4成等差数列得2a 4q =3a 4+2a 4q,即8q =12+8q ,解得q =2或q =-12(舍).又a 1q 3=4,所以a 1=12,所以S n =12(1-2n )1-2=2n-12. 答案 2 2n-1213.设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1(x ≥1),log 2(1-x )(x <1),则f (f (4))=________.若f (a )=-1,则a =________.解析 因为f (4)=-2×42+1=-31,所以f (f (4))=log 2[1-(-31)]=5;当a ≥1时,由-2a 2+1=-1,解得a =1,当a <1时,由log 2(1-a )=-1,解得a =12.答案 5 1或1214.已知某几何体的三视图如图所示,则这个几何体的体积为________,表面积为________.解析 由三视图可知该几何体为一个直三棱柱削掉一个角后得到的四棱锥,其体积为V =13×4×2=83,该四棱锥的五个面由四个直角三角形,一个矩形组成,所以其表面积为S =2+2+22+22+4=8+4 2. 答案 838+4215.已知函数f (x )=x 3-3a 2x -6a 2+3a (a >0)有且仅有一个零点x 0,若x 0>0,则a 的取值范围是________.解析 已知f (x )=x 3-3a 2x -6a 2+3a (a >0), 则f ′(x )=3x 2-3a 2,①若f ′(x )≥0恒成立,则a =0,这与a >0矛盾. ②若f ′(x )≤0恒成立,显然不可能.③若f ′(x )=0有两个根a ,-a ,而a >0,则f (x )在区间(-∞,-a )上单调递增,在区间(-a ,a )上单调递减,在区间(a ,+∞)上单调递增.故f (-a )<0,即2a 2-6a +3<0,解得3-32<a <3+32.答案 ⎝⎛⎭⎪⎫3-32,3+32。