【ANSYS分析】耦合场分析
- 格式:docx
- 大小:27.63 KB
- 文档页数:2
ANSYSapdl命令流笔记16-------耦合场分析基础耦合场分析概述前⾔耦合场分析,也称为多物理场分析,分析不同的物理场的相互作⽤以解决⼀个全局性的⼯程问题。
例如,当⼀个场分析的输⼊依赖于从另⼀个分析的结果,那么分析就会被耦合。
耦合⽅式有:单向耦合:前⼀个分析的结果作为载荷施加给下⼀个分析,⽽下⼀个分析的结果不会影响前⼀个场的分析结果。
例如,在热应⼒问题中,温度场会在结构场中引⼊热应变,但是结构应变通常不会影响温度分布。
因此,⽆需在两个现场解决⽅案之间进⾏迭代。
双向耦合:两个物理场的结果会相互影响。
例如,⾮线性材料的感应加热中,谐波电磁分析计算出焦⽿热,该热在瞬态热分析中⽤于随时间变化的温度解,⽽温度的变化会反过来影响电磁场材料属性的变化,从⽽改变电磁分析结果。
⼀、耦合场分析类型1.直接耦合场分析直接⽅法通常只包含⼀个分析,它使⽤⼀个包含所有必需⾃由度的耦合单元类型,通过计算包含所需物理量的单元矩阵或单元载荷向量的⽅式进⾏耦合。
具有直接耦合功能的单元有:SOLID5 ---------3-D 耦合场实体单元 (电磁矩阵的推导,耦合效应)PLANE13---------⼆维耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID29 ---------⼆维声学流体 单元(声学矩阵的推导)FLUID30 ---------3-D 8 节点声学流体单元 (声学矩阵的推导)LINK68------------热电耦合杆单元SOLID98----------四⾯体耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID116---------热流体耦合管单元CIRCU124--------电路单元TRANS126-------机电转换器单元(电容计算,耦合机电⽅法)SHELL157--------热电耦合壳单元FLUID220---------3-D 20 节点声学流体单元FLUID221---------3-D 10 节点声学流体单元PLANE222--------⼆维 4 节点耦合场实体单元PLANE223--------⼆维 8 节点耦合场实体单元SOLID226---------3-D 20 节点耦合场实体单元SOLID227---------3-D 10 节点耦合场实体单元PLANE233--------⼆维 8 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID236--------3-D 20 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID237--------3-D 10 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)优点:1.允许解决通常的有限元⽆法解决的问题。
ANSYS非线形分析指南基本过程第四章耦合场分析耦合场分析的定义耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科物理场的交叉作用和相互影响耦合例如压电分析考虑了结构和电场的相互作用它主要解决由于所施加的位移载荷引起的电压分布问题反之亦然其他的耦合场分析还有热-应力耦合分析热-电耦合分析流体-结构耦合分析磁-热耦合分析和磁-结构耦合分析等等耦合场分析的类型耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用但是耦合场的分析最终可归结为两种不同的方法序贯耦合方法和直接耦合方法序贯耦合解法序贯耦合解法是按照顺序进行两次或更多次的相关场分析它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的例如序贯热-应力耦合分析是将热分析得到的节点温度作为体力载荷施加在后序的应力分析中来实现耦合的直接耦合解法直接耦合解法利用包含所有必须自由度的耦合单元类型仅仅通过一次求解就能得出耦合场分析结果在这种情形下耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的例如利用单元SOLID5PLANE13或SOLID98可直接进行压电分析何时运用直接耦合解法或序贯耦合解法对于不存在高度非线性相互作用的情形序贯耦合解法更为有效和方便因为我们可以独立的进行两种场的分析例如对于序贯热-应力耦合分析可以先进行非线性瞬态热分析再进行线性静态应力分析而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析这里耦合是一个循环过程其中迭代在两个物理场之间进行直到结果收敛到所需要的精度直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势并且可利用耦合公式一次性得到最好的计算结果直接耦合解法的例子包括压电分析伴随流体流动的热传导问题以及电路-电磁场耦合分析求解这类耦合场相互作用问题都有专门的单元供直接选用第1页。
第四章耦合场分析耦合场分析的定义耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。
例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。
其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。
耦合场分析的类型耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。
序贯耦合解法序贯耦合解法是按照顺序进行两次或更多次的相关场分析。
它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场1的耦合的。
例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。
直接耦合解法直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。
在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。
何时运用直接耦合解法或序贯耦合解法对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。
例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。
而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。
这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。
直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。
直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁2场耦合分析。
求解这类耦合场相互作用问题都有专门的单元供直接选用。
3。
ANSYS耦合场分析指南第一章耦合场分析1.1耦合场分析的定义耦合场分析是指考虑了两个或多个工程物理场之间相互作用的分析。
例如压电分析,考虑结构和电场间的相互作用:求解由施加位移造成的电压分布或相反过程。
其它耦合场分析的例子有热-应力分析,热-电分析,流体-结构分析。
需要进行耦合场分析的工程应用有压力容器(热-应力分析),流体流动的压缩(流体结构分析),感应加热(磁-热分析),超声波换能器(压电分析)以及磁体成形(磁-结构分析),以及微电机械系统(MEMS)等。
1.2耦合场分析的类型耦合场分析的过程依赖于所耦合的物理场,但明显可以可分为两类:顺序耦合和直接耦合。
1.2.1 顺序耦合方法顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于不同物理场的分析。
通过将前一个分析的结果作为载荷施加到第二个分析中的方式进行耦合。
典型的例子是热-应力顺序耦合分析,热分析中得到节点温度作为“体载荷”施加到随后的应力分析中去。
1.2.2 直接耦合方法直接耦合方法一般只涉及到一次分析,利用包括所有必要自由度的耦合场类型单元。
通过计算包含所需物理量的单元矩阵或载荷向量的方式进行耦合。
例如使用了SOLID5、PLANE13或SOLID98单元的压电分析。
另外的例子如利用TRANS126单元的MEMS分析。
1.2.3 直接法与顺序法的应用场合对于耦合情况的相互作用非线性程度不是很高的情况,顺序耦合法更有效,也更灵活。
因为两个分析之间是相对独立的。
例如在热应力顺序耦合分析中,可以先进行非线性瞬态热分析,然后再进行线性静力分析。
可以将瞬态热分析中任一载荷步或时间点的节点温度作为载荷施加到应力分析中。
顺序耦合可以是不同物理场之间交替进行执行,直到收敛到一定精度为止。
当耦合场之间的相互作用是高度非线性的,直接耦合具有优势。
它使用耦合变量一次求解得到结果。
直接耦合的例子有压电分析,流体流动的共轭传热分析,电路-电磁分析。
这些分析中使用了特殊的耦合单元直接求解耦合场间的相互作用。
ANSYS--热力耦合分析单元简介挑选了部分常用的,希望能方便大家的使用,其中自己翻译了一部分,不准确之处还望见谅,大家还可以继续补充哦!:SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
第四章耦合场分析
耦合场分析的定义
耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程(物理场)的交叉作用和相互影响(耦合)。
例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。
其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。
耦合场分析的类型
耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。
序贯耦合解法
序贯耦合解法是按照顺序进行两次或更多次的相关场分析。
它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。
例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。
直接耦合解法
1
直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。
在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。
何时运用直接耦合解法或序贯耦合解法
对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。
例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。
而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。
这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。
直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。
直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。
求解这类耦合场相互作用问题都有专门的单元供直接选用。
1。