ANSYS耦合场分析_热应力
- 格式:ppt
- 大小:928.50 KB
- 文档页数:32
ANSYS是一种广泛应用于工程领域的仿真软件,它提供了多物理场耦合分析的能力,用于模拟和解决多个物理现象相互作用的问题。
以下是ANSYS多物理场耦合技术和方法的一些常见应用:1. 结构-热耦合(Thermo-Structural Coupling):这种耦合方法用于分析结构在热载荷下的变形和应力响应。
它可以考虑热传导、热辐射、温度梯度等对结构性能的影响,并通过结构和热传导方程之间的相互作用来解决这些问题。
2. 结构-电磁耦合(Electromagnetic-Structural Coupling):这种耦合方法用于研究结构在电磁场作用下的响应。
它可以考虑电磁场的电流、磁场、电磁感应等对结构的影响,并通过结构和电磁场方程之间的相互作用来解决这些问题。
3. 流体-结构耦合(Fluid-Structure Interaction, FSI):这种耦合方法用于模拟流体和结构之间的相互作用。
它可以考虑流体力学中的压力、速度、湍流、流体-固体界面等对结构的影响,以及结构对流体的阻力、振动等反馈作用。
4. 流体-热耦合(Fluid-Thermal Coupling):这种耦合方法用于模拟流体和热传导之间的相互作用。
它可以考虑流体在流动过程中的热对流、辐射等对热传导的影响,以及热传导对流体温度分布的影响。
5. 电磁-热耦合(Electromagnetic-Thermal Coupling):这种耦合方法用于模拟电磁场和热传导之间的相互作用。
它可以考虑电磁能量的吸收、热产生和热扩散等对系统温度分布的影响,以及温度对电磁特性的影响。
以上只是ANSYS多物理场耦合技术和方法的一些例子,实际中还有其他类型的耦合分析,如声-结构耦合、声-流体耦合等。
通过使用这些耦合技术和方法,工程师可以更准确地模拟和分析不同物理场之间的相互作用,从而更好地优化设计和解决实际问题。
ANSYS 工程应用教程_热与电磁学篇随着ANSYS 版本的不断更新,ANSYS 的应用领域也日益广泛。
作为融结构、热、流体、电磁、声学为一体的大型通用有限元分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电、等一般工业及科学研究领域。
热分析包括稳态热分析、瞬态热分析、热辐射、相变、热应力等,电磁场分析包括二维静态、谐性、瞬态磁场分析,三维静态、谐性、瞬态磁场分析,高频电磁场分析和电场分析等。
ANSYS 热分析简介:图形用户界面方式(GUI )或命令流方式进行计算。
ANSYS 如何进行热分析:实际上,其基本原理是先将所处理的对象划分成有限个单元(包含若干节点),然后根据能量守恒原理求解一定边界条件和初始条件下每一节点处的热平衡方程,由此计算出各节点温度,继而进一步求解出其他相关量。
耦合场分析:这类涉及两个和多个物理场相互作用的问题为耦合场分析。
主要方法有直接耦合和间接耦合。
直接耦合解法的耦合单元包含所有的自由度,仅仅通过一次求解就能得出耦合场分析结果。
这种方法实际上是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
间接耦合法又称为序贯耦合法,通过把第一磁场分析的结果作为第二次场分析的载荷来实现良种场的耦合。
三种基本传热方式:传导:当物理内部存在温度差时,热量将从高温部分传递到低温部分;而且不同温度的物体相互接触时热量会从高温物体传递到低温物体。
傅立叶定律,又称导热基本定律hot cold A(T T )t dQ κ-=,Q 为时间t 内的传热量,κ为热传导率,T 为温度,A 为面积,d 为两平面之间的距离。
对流:温度不同的各部分流体之间发生相对运动所引起的热量传递方式。
流体被加热时:w f q h(t t )=-流体被冷却时:f w q h(t t )=-,w t 和f t 分别为壁面温度和流体温度,h 为对流热系数。
ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。
在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。
下面将详细介绍ANSYS热分析的原理与流程。
首先,在进行ANSYS热分析前,需要进行前期准备工作。
包括建立几何模型,定义边界条件和导入材料参数等。
在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。
然后,需要定义材料参数,如热导率、比热等。
最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。
接下来,进行热传导分析。
热传导分析是热分析的基础,用于计算物体内部的温度分布。
在ANSYS中,可以选择稳态或者瞬态分析。
对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。
对于瞬态分析,需要设置时间步长和总的仿真时间。
在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。
在得到物体内部的温度分布后,可以进行热应力分析。
热应力分析是在热传导分析的基础上引入力学应力计算的过程。
在ANSYS中,可以通过多物理场耦合分析的功能来实现。
首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。
然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。
除了热应力分析,还可以进行热辐射分析。
热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。
在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。
常用的辐射模型包括黑体辐射模型和灰体辐射模型等。
通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。
最后,进行结果分析和后处理。
在ANSYS中,可以对热分析的结果进行可视化和数据分析。
可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。
此外,还可以导出计算结果,并进行后续的工程设计和优化。
ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。
2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。
3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。
4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。
1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。
对流:在物体和周围介质之间发⽣的热交换。
由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。
对流⼀般作为⾯边界条件施加。
热对流⽤⽜顿冷却⽅程来描述。
辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。
热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。
物体温度越⾼,单位时间辐射的热量越多。
热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。
可以看出辐射分析是⾼度⾮线性的。
1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。
1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。
由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。
稳态热平衡满⾜热⼒学第⼀定律。
通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。
对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。
1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。
在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。
ANSYSapdl命令流笔记16-------耦合场分析基础耦合场分析概述前⾔耦合场分析,也称为多物理场分析,分析不同的物理场的相互作⽤以解决⼀个全局性的⼯程问题。
例如,当⼀个场分析的输⼊依赖于从另⼀个分析的结果,那么分析就会被耦合。
耦合⽅式有:单向耦合:前⼀个分析的结果作为载荷施加给下⼀个分析,⽽下⼀个分析的结果不会影响前⼀个场的分析结果。
例如,在热应⼒问题中,温度场会在结构场中引⼊热应变,但是结构应变通常不会影响温度分布。
因此,⽆需在两个现场解决⽅案之间进⾏迭代。
双向耦合:两个物理场的结果会相互影响。
例如,⾮线性材料的感应加热中,谐波电磁分析计算出焦⽿热,该热在瞬态热分析中⽤于随时间变化的温度解,⽽温度的变化会反过来影响电磁场材料属性的变化,从⽽改变电磁分析结果。
⼀、耦合场分析类型1.直接耦合场分析直接⽅法通常只包含⼀个分析,它使⽤⼀个包含所有必需⾃由度的耦合单元类型,通过计算包含所需物理量的单元矩阵或单元载荷向量的⽅式进⾏耦合。
具有直接耦合功能的单元有:SOLID5 ---------3-D 耦合场实体单元 (电磁矩阵的推导,耦合效应)PLANE13---------⼆维耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID29 ---------⼆维声学流体 单元(声学矩阵的推导)FLUID30 ---------3-D 8 节点声学流体单元 (声学矩阵的推导)LINK68------------热电耦合杆单元SOLID98----------四⾯体耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID116---------热流体耦合管单元CIRCU124--------电路单元TRANS126-------机电转换器单元(电容计算,耦合机电⽅法)SHELL157--------热电耦合壳单元FLUID220---------3-D 20 节点声学流体单元FLUID221---------3-D 10 节点声学流体单元PLANE222--------⼆维 4 节点耦合场实体单元PLANE223--------⼆维 8 节点耦合场实体单元SOLID226---------3-D 20 节点耦合场实体单元SOLID227---------3-D 10 节点耦合场实体单元PLANE233--------⼆维 8 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID236--------3-D 20 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID237--------3-D 10 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)优点:1.允许解决通常的有限元⽆法解决的问题。
第四章耦合场分析耦合场分析的定义耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。
例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。
其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。
耦合场分析的类型耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。
序贯耦合解法序贯耦合解法是按照顺序进行两次或更多次的相关场分析。
它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场1的耦合的。
例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。
直接耦合解法直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。
在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。
何时运用直接耦合解法或序贯耦合解法对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。
例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。
而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。
这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。
直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。
直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁2场耦合分析。
求解这类耦合场相互作用问题都有专门的单元供直接选用。
3。
ansys热耦合计算
热耦合计算是指在工程领域中使用ANSYS软件进行热传导和结
构力学之间相互影响的计算。
在进行热耦合计算时,需要考虑热量
对结构件的影响以及结构变形对温度场的影响,这种相互作用在许
多工程领域中都是非常重要的。
首先,在进行热耦合计算时,需要建立一个合适的模型。
这包
括定义材料属性、边界条件和载荷,以及确定模型的几何形状和尺寸。
在ANSYS中,可以使用各种建模工具和预处理器来完成这些任务,确保模型准确地反映了实际工程情况。
其次,进行热耦合计算时需要定义热传导方程和结构力学方程。
热传导方程描述了热量在材料中的传播方式,而结构力学方程描述
了结构件在受力作用下的变形情况。
在ANSYS中,可以使用热传导
模块和结构力学模块来设置这些方程,并进行求解。
另外,热耦合计算还需要考虑热应力和热变形。
当材料受热膨
胀或收缩时,会产生热应力和热变形,这对结构件的性能和稳定性
都会产生影响。
在ANSYS中,可以通过设置热应力和热变形的边界
条件来模拟这些效应,并进行分析和评估。
最后,在完成热耦合计算后,需要对结果进行后处理和分析。
这包括对温度场、热应力、结构变形等进行可视化和评估,以便工程师能够了解结构件在热载荷下的响应情况,并进行进一步的优化和改进。
总之,热耦合计算是一项复杂而重要的工程分析任务,通过使用ANSYS软件进行热耦合计算,工程师能够更好地理解和预测热载荷对结构件性能的影响,从而指导工程设计和优化。
A N S Y S热分析详解解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT kq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
1 热力耦合分析简介
热应力问题实际上是热和应力两个物理场之间的相互作用,故属于耦合场分析问题。
与其他耦合场得分析方法类似,ANSYS提供了两种分析热应力的方法:直接法和间接法。
直接法是指直接采用具有温度和位移自由度的耦合单元,同时得到热分析和结构应力分析结果;间接法则是先进行热分析,然后将求得的节点温度作为体载荷施加到结构应力分析中。
2 直接法进行热应力分析单元
ANSYS运用直接法进行热应力分析主要采用耦合单元,其中包括热—应力耦合单元、热—应力—电和热—应力—磁耦合单元,表1显示了不同类型的热—应力耦合单元。
表1 ANSYS12.1常用的热耦合单元
3 间接法进行热应力分析单元
间接法一般是先采用常规热单元进行热分析,然后将热单元转换为响应的结构单元,并将求得的节点温度作为体载荷施加到模型上再进行结构应力分析,因此在整个分析过程中存在热单元与结构单元的转换问题,表2列出了热单元与响应的结构单元的对应关系。
表2 热单元与结构单元的转换表。