初等解析函数和多值函数.ppt
- 格式:ppt
- 大小:920.00 KB
- 文档页数:15
第二章 解析函数本章介绍复变函数中一个重要的概念:解析函数,并给出一个重要的判定方法:柯西黎曼条件。
最后分别介绍一些重要的单值初等解析函数及多值初等函数的分支解析。
第一节 解析函数的概念与柯西-黎曼条件1、复变函数的导数:设()w f z =是在区域D 内确定的单值函数,并且,0z D ∈。
如果极限()000()lim z z f z f z z z →-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0()f z ',或0z z dw dz =。
2、解析函数:定义:如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数。
解析函数的导(函)数一般记为)('z f 或z z f d )(d 。
注1、 此定义也用εδ-语言给出。
注2、 可导必连续注3、解析必可导性,在一个点的可导不一定解析,可导性是一个局部概念,而解析性是一个整体概念;解析函数的四则运算:()f z 和()g x 在区域D 内解析,那么)()(z g z f ±,)()(z g z f ,)(/)(z g z f (分母不为零)也在区域D 内解析,并且有下面的导数的四则运算法则:(()())()()f z g x f z g z '''±=±[()()])()()()()f zg x f z g z f z g z ''=+2()()()()()()(()0)()()f z f z g z f z g z g z g z g z ''-'=≠复合求导法则:设)(z f =ζ在z 平面上的区域D 内解析,)(ζF w =在ζ平面上的区域1D 内解析,而且当D z ∈时,1)(D z f ∈=ζ,那么复合函数)]([z f F w =在D 内解析,并且有z z f F z z f F d )(d d )(d d )]([d ζζ=求导的例子:(1)如果()f x a =(常数),那么;()0df z dz= (2)z 的任何多项式 n n z a z a a z P +++=...)(10在整个复平面解析,并且有 121...2)('-+++=n n z na z a a z P(4)、在复平面上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与z 是实变量时相同。
§2 初等解析函数及其基本性质一、基本初等函数1.指数函数()y i y e z x sin cos exp +=加法定理 ()2121exp exp exp z z z z +=⋅。
z e z =exp ,即()y i y e e e e e x yi x yi x z sin cos +=⋅==+。
周期性 ze 是周期为()Z ∈k i k π2的周期函数。
2.对数函数定义2 满足()0≠=z z e w 的函数()z f w =称为复变量z 的对数函数,记为Lnz w =。
关于Lnz w =的表达式:令θi re z iv u w =+=,,则πθθk v r e re e e eu i iv u ivu 2,+==⇒==+,即Argz v z r u ===,ln ln 。
从而注:Lnz 是多值函数,Argz 是多值函数。
当Argz 取主值z arg 时,Lnz 为单值函数,称其为Lnz 的主值,记为z ln ,即z i z z arg ln ln +=⇒i k z Lnz π2ln +=注:当0>=x z 时,x x i x z ln arg ln ln =+=——实对数函数。
例2 证明对数运算性质:⑴2121Lnz Lnz z Lnz +=⋅;⑵2121Lnz Lnz z z Ln -=。
证明⑴ 由对数定义表达式,212121ln z iArgz z z z Lnz +=⋅()2121ln Argz Argz i z z ++⋅=2211ln ln iArgz z iArgz z +++=21Lnz Lnz +=;同理可证⑵式。
例3 求()⎪⎪⎭⎫⎝⎛+--i Ln 2321,3ln 及主值。
解 ()()i i π+=-+-=-3ln 213arg 3ln 3ln ; i k i i i i Ln π22321arg 2321ln 2321+⎪⎪⎭⎫ ⎝⎛+-++-=⎪⎪⎭⎫ ⎝⎛+- i k i k i πππ⎪⎭⎫ ⎝⎛+=++=3122321ln ;主值:i i i ππ32321ln 2321ln =+=⎪⎪⎭⎫ ⎝⎛+-。
初等解析函数和多值函数的解析分⽀定义2.4.1 \ (多值函数的连续分⽀) Ω区域, F(z)为Ω上的多值函数, 若f(z)在Ω上连续, 且对于任意的z∈Ω, f(z)∈F(z), 则称f(z)为F(z)在区域Ω上的连续分⽀.定义2.4.2 \ (多值函数的解析分⽀) Ω区域, F(z)为Ω上的多值函数, 若f(z)在Ω上解析, 且对于任意的z∈Ω, f(z)∈F(z), 则称f(z)为F(z)在区域Ω上的解析分⽀.例2.4.3 指数函数的性质(1) ∀z=x+iy∈C,e z=e x(cos y+i sin y).(2) z=x∈R, e z与通常实指数函数的定义⼀致.(3) |e z|=e x>0.(4) e z在z平⾯上解析, 且(e z)′=e z.(5) e z1+z2=e z1e z2.(6) e z以2iπ为基本周期.定义2.4.4 规定对数函数是指数函数的反函数, 即若z≠0,∞,满⾜z=e w的复数w称为z的对数值, z的⼀切对数值的集合称为z的对数, 记作Lnz.具体地, Lnz={ln|z|+i arg z+i2kπ,k∈Z}.若把ln|z|+i arg z称为主值, 记作ln z, 则Lnz={ln z+i2kπ,k∈Z}.注:若把z看作⾮零复数, Lnz的定义域为C−{0}.Ln(z1z2)=Lnz1+Lnz2,Ln(z1z2)=Lnz1−Lnz2.定理2.4.5 \ (解析函数的对数解析分⽀) Ω单连通区域, f(z)在Ω中解析且处处⾮零, 则Lnf(z)在Ω上有解析分⽀g(z), 满⾜e g(z)=f(z),且Lnf(z)在Ω上的所有解析分⽀⼀定是g(z)+2ikπ,k∈Z,即Lnf(z)={g(z)+i2kπ,k∈Z}.从⽽Lnf(z)在Ω上有⽆穷多个解析分⽀, 且任意两个解析分⽀相差2π的整数倍.注:(1)定理2.4.5 表明, 若Lnf(z)在单连通区域Ω上的任意两个解析分⽀在z0∈Ω上的值相等, 则这两个解析分⽀恒相等.(2) 为⽅便, Lnf(z)在Ω上的解析分⽀g(z)有时简记为ln f(z), 若强调是特定的⼀⽀, 要给定z0∈Ω, 确定出ln f(z)在z0的值.例2.4.6 (对数函数的解析分⽀) \ Ω单连通区域, z0∉Ω,则Ln(z−z0)在Ω上有解析分⽀lnΩ(z−z0), 满⾜e lnΩ(z−z0)=z−z0, 且Ln(z−z0)在Ω上所有的解析分⽀⼀定是lnΩ(z−z0)+2kπi,k∈Z.证明:令f(z)=z−z0, 则f(z)在Ω上解析, 处处不为零, 由定理2.4.5, 成⽴.例2.4.7 (多值辐⾓函数的连续分⽀) Ω单连通区域, z0∉Ω, 则Arg(z−z0)在Ω内有连续分⽀argΩ(z−z0), 在Ω上, 对x,y有各阶偏导数, 且Arg(z−z0)={argΩ(z−z0)+2kπ,k∈z}.从⽽Arg(z−z0)在Ω中有⽆穷多连续分⽀, 任意两个相差2π的整数倍.注:arg(z−z0)不解析.注:设Γ:z=γ(t),t∈[a,b]是⼀条分段光滑的有向曲线(简称路径), 若0∉Γ, 即γ(t)在[a,b]上不取零值, 则存在ρ(t)=|γ(t)|,θ(t),t∈[a,b],分段光滑实函数, 使得γ(t)=ρ(t)e iθ(t).定理2.4.8 (解析函数的n⽅根的解析分⽀) 设n≥2, Ω单连通区域, f(z)在Ω内解析, 处处不为零, 则(f(z))1/n在区域D内有解析分⽀g(z), 且(f(z))1/n的所有解析分⽀是g(z)e2kπi/n,k=0,1,...,n−1的形式.定理2.4.9 (连续函数为n⽅根的解析分⽀的判定定理) n≥2是整数, Ω区域, f(z)在Ω中解析且处处不为零, g(z)为(f(z))1/n的连续分⽀,z∈Ω, 则g(z)为(f(z))1/n在Ω上的解析分⽀.例2.4.10 证明多值函数(z2(1−z)3)1/5在z-平⾯上割去线段[0,1]的区域D上可以分出5个解析分⽀. 求出在(0,1)的上沿取正值的那个单值解析分⽀g0(z)在点z=−1处的值g0(−1)以及g′0(−1),g0″.Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js。