椭圆的定义及其标准方程教学设计
- 格式:doc
- 大小:159.50 KB
- 文档页数:13
精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。
椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。
此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。
二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。
2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。
3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。
4.培养直观想象、数学建模和数学运算等数学学科素养。
三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。
四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。
五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。
根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。
2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。
3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。
4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。
5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。
椭圆的定义及其标准方程教学设计
一、教材分析
椭圆是选修2-1第二章《椭圆》第一节的内容,在这一节中主要学习椭圆的定义及其标准方程,它是本章也是整个解析几何中最重要的内容之一,这节课是在学生学习了坐标平面上圆的方程的基础上,运用曲线与方程理论解决具体的二次曲线的又一个实例,它是坐标法研究曲线的几何性质的又一次实际演练,同时也是进一步研究椭圆几何性质的基础,此外,它还为后面研究双曲线和抛物线这两种圆锥曲线提供打下基础,因此本节课具有承上启下的重要作用。
二、教学目标
目标:1)知识与技能:感受椭圆定义构建的过程,归纳出椭圆的定义;
2)过程与方法:经历从具体情境中抽象出椭圆模型的过程,依据椭圆的定义推导椭圆的标准方程;
3)情感、态度与价值观:进一步体会数形结合的数学思想方法。
三、教学重难点
重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。
难点:椭圆的标准方程的建立、推导和化简过程以及坐标法的应用。
四、学情分析
学情:在学习本节课之前,学生已经学习了直线与圆的方程,对曲线和方程的概念具备了一些了解和运用的经验,用坐标法研究几何问题也有了初步的认识,但由于学生对解析几何的学习程度还不够深,对坐标法解决几何问题掌握还不够,此外,对含有两个根式之和的等式化简的运算较为生疏,去根号的方法选择不当等会成为学生推导标准方程的“拦路虎”。
椭圆的定义与标准方程教案教案标题:椭圆的定义与标准方程教案目标:1. 理解椭圆的定义及其特征性质。
2. 掌握椭圆的标准方程及其相关参数。
3. 能够应用椭圆的定义和标准方程解决相关问题。
教学准备:1. 教师准备:椭圆的定义、标准方程及其相关性质的教学材料、白板、白板笔、投影仪等。
2. 学生准备:笔、纸、教材等。
教学过程:步骤一:导入新知识(5分钟)1. 教师通过引入一个生活中的例子(如椭圆形的运动轨迹)引起学生对椭圆的兴趣。
2. 引导学生思考并回答问题:“你们对椭圆有什么了解?你们知道椭圆的定义吗?”步骤二:椭圆的定义与特征性质(15分钟)1. 教师向学生介绍椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
2. 教师解释椭圆的特征性质:椭圆的离心率小于1,焦点到椭圆上任意一点的距离之和等于常数2a。
3. 教师通过图示和示例帮助学生理解椭圆的定义和特征性质。
步骤三:椭圆的标准方程(20分钟)1. 教师向学生介绍椭圆的标准方程:(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
2. 教师解释标准方程中各参数的含义,并通过示例演示如何确定椭圆的中心、长短半轴等参数。
3. 教师提供一些练习题,让学生通过给定的标准方程确定椭圆的相关参数。
步骤四:应用与解决问题(15分钟)1. 教师提供一些实际问题,引导学生运用椭圆的定义和标准方程解决问题。
2. 学生个别或小组合作完成问题,并展示解决过程和结果。
3. 教师对学生的解答进行点评和总结。
步骤五:课堂小结与作业布置(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要掌握的知识点。
2. 布置相关的课后作业,包括练习题和思考题。
教学反思:通过本节课的教学,学生能够了解椭圆的定义和特征性质,并能够应用椭圆的标准方程解决相关问题。
椭圆及其标准方程长治八中 李玲一、教学目标 1.知识与技能理解椭圆的定义,掌握椭圆的标准方程及推导过程. 2.过程与方法通过椭圆定义概念的引入与椭圆标准方程的推导过程,培养学生分析探索能力,熟练掌握解决解析几何问题的方法——坐标法. 3.情感、态度与价值观通过椭圆定义及标准方程的学习,渗透数形结合的思想,启发学生研究问题时,抓住问题本质,严谨细致思考,规范解答,体会运动变化、对立统一的思想. 二、教学重点难点1.重点:椭圆的定义和椭圆的标准方程.2.难点:椭圆标准方程的推导,椭圆定义中对常数加以限制的原因. 三、教学方法:启发引导,合作探究 四、教具:多媒体、三角板 五、教学过程(一)创设情境,引入概念由嫦娥二号绕月飞行的运动轨迹,太阳系中行星的运行轨道等及现实生活中的多幅椭圆图片引入,让学生从感性上认识椭圆。
(二)实验探究,形成概念动手实验:学生分组动手画出椭圆。
试验一:把一根长为a 2的细绳的两端用图钉分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的是什么图形? (1)在这个运动过程中,什么是不变的?(2)在上面过程中,你能说出移动的笔尖(动点)满足的几何条件吗?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点21,F F 距离的和等于常数的点的轨迹叫椭圆。
(三)归纳定义,完善定义试验二:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?(学生分组讨论)M 2F 1F当两定点间距离等于线段||AB 长度时的轨迹(为一条线段)和当两定点距离大于线段||AB 长度时的轨迹(不存在),由学生完善椭圆定义中常数的范围。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+定义的应用例1.已知定点F 1,F 2 ,且|F 1F 2 |=10,动点M 分别满足下列条件时的轨迹是什么? (1)|MF 1|+|MF 2| =10; (2)|MF 1|+|MF 2| =16; (3)|MF 1|+|MF 2|=6.(1)因为|MF 1|+|MF 2|=10= | F 1F 2 | ,所以动点M 的轨迹是线段F 1F 2.(2)因为|MF 1|+|MF 2| =16>10= | F 1F 2 | ,所以动点M 的轨迹是以F 1 , F 2为焦点的椭圆.(3)因为|MF 1|+|MF 2| =6<10= | F 1F 2 | ,所以动点M 的轨迹不存在. 变式练习1.若动点M 到定点F 1(-1,0), F 2 (1,0)的距离之和为2,则动点M 的轨迹是( ) A.椭圆 B.直线F 1F 2C.线段F 1F 2D.线段F 1F 2的垂直平分线 点拨:|MF 1|+|MF 2| =2= | F 1F 2 |,故M 的轨迹为线段F 1F 2(四)研讨探究,推导方程1、知识回顾:利用坐标法求圆的方程的一般方法和步骤是什么?(1)建系 (2)设点 (3)列式 (4) 化简2、研讨探究问题:如图已知焦点为21,F F 的椭圆,且21F F =2c,对椭圆上任一点M ,有a MF MF 221=+,尝试推导椭圆的方程。
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
椭圆的定义及其标准方程说课稿及教案一、说课稿1. 椭圆的定义椭圆是一种平面内到两个固定点(焦点)距离之和为常数的点的轨迹。
这两个固定点称为椭圆的焦点,常数称为椭圆的长轴。
椭圆的焦点可以在平面上任意位置,但椭圆的对称轴必须通过焦点。
2. 椭圆的标准方程椭圆的标准方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,a是椭圆的长轴的一半,b是椭圆的短轴的一半。
椭圆的长轴和短轴分别与x轴和y轴平行。
3. 焦点与椭圆的关系椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴的长度。
即\[ 2a = |PF_1| + |PF_2| \]其中,\( PF_1 \)和\( PF_2 \)分别是椭圆的两个焦点。
4. 椭圆的性质(1)椭圆的长轴和短轴互相垂直,且通过椭圆的中心点。
(2)椭圆的焦点在长轴上,且距离中心点的距离分别为\( c \)和\( -c \),其中\( c \)满足\( c^2 = a^2 b^2 \)。
(3)椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴的长度。
(4)椭圆的面积为\( S = \pi ab \)。
二、教学目标1. 了解椭圆的定义及其性质。
2. 掌握椭圆的标准方程及其求法。
3. 能够应用椭圆的知识解决实际问题。
三、教学内容1. 椭圆的定义及其性质。
2. 椭圆的标准方程及其求法。
3. 椭圆在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习相结合的方法进行教学。
2. 使用多媒体课件辅助教学,增强学生的直观感受。
3. 设置实例分析,引导学生运用椭圆知识解决实际问题。
五、教学步骤1. 导入:通过展示生活中常见的椭圆形状物体,引导学生关注椭圆的形状特征。
2. 讲解椭圆的定义及其性质,引导学生理解椭圆的基本概念。
3. 推导椭圆的标准方程,让学生掌握椭圆方程的求法。
4. 结合实际问题,让学生运用椭圆知识进行分析。
5. 课堂练习:设置相关练习题,让学生巩固所学知识。
椭圆及其标准方程教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆的标准方程解决相关问题。
2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)利用数形结合,提高学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 椭圆的性质:(1)椭圆的两个焦点在x轴上,且距离为2c;(2)椭圆的长轴为2a,短轴为2b,其中a>b>0;(3)椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1。
3. 椭圆的标准方程求法:(1)已知椭圆的两个焦点坐标和长轴、短轴长度,求椭圆的标准方程;(2)已知椭圆的离心率e和长轴、短轴长度,求椭圆的标准方程;(3)已知椭圆上的三点坐标,求椭圆的标准方程。
三、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法。
2. 教学难点:(1)椭圆标准方程的求法;(2)椭圆性质的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究椭圆的定义、性质和标准方程;2. 利用数形结合,让学生直观地理解椭圆的性质和标准方程;3. 设计具有针对性的练习题,巩固所学知识。
五、教学过程1. 引入:通过展示椭圆的实际应用场景,激发学生的兴趣,引出椭圆的定义;2. 讲解:讲解椭圆的性质和标准方程,引导学生理解并掌握;3. 例题:讲解椭圆标准方程的求法,分析解题思路,让学生跟随解题过程;4. 练习:布置练习题,让学生独立完成,巩固所学知识;六、教学策略1. 采用互动式教学,鼓励学生提问和发表见解,提高学生的参与度;2. 利用多媒体课件,直观展示椭圆的性质和标准方程,增强学生的理解;3. 注重个体差异,针对不同学生的学习水平,给予适当的指导和帮助;4. 创设情境,引导学生运用椭圆的知识解决实际问题,提高学生的应用能力。
椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。
课题:§椭圆的定义及其标准方程
鹿城中学田光海
一、教案背景:
1.面向对象:高中二年级学生
2.学科:数学
3.课时:2课时
4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§椭圆及其标准方程
二. 教材分析
本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章的重点内容之一。
1. 教法分析
结合生活经验观察发现、启发引导、探究合作。
在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。
利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。
主要采用探究实践、启发与讲练相结合。
2. 学法分析
从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。
从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。
从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。
他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。
3.教学目标
知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。
过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。
情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。
4.教学重点与难点
重点:椭圆的定义和椭圆标准方程的两种形式
难点:椭圆的标准方程的建立和推导教学方法
5.教学准备
通过百度搜索与椭圆有关的图片资料,利用百度搜索相关的教学资料制作多媒体课件,自制教具:绘图板、图钉、细绳。
三、教学过程
方程
方程22221x y a b
+=(0a b >>)(☆)叫做椭圆的标
准方程。
它表示焦点在x 轴上,焦点坐标为
1(,0)F c -,2(,0)F c ,其中2
2
2
c a b =-.
2222
1y x a b +=(0a b >>),它也是椭圆的标准方程。
此时,椭圆的焦点在y 轴上,
焦点坐标为1(0,)F c 2(0,)F c -,其中222c a b =- 我们可以发现,以上两种方案是最好的。
问:观察一下焦点分别在x 轴、y 轴上的椭圆
的标准方程,如何根据方程判断其焦点在x 轴
上还是在y 轴上?(看分母大小,哪个分母大
焦点就在哪一条轴上)
说明:
学生思考后主动发言回答。
以上三条,尽量由学生总结出
解曲线与
方程的关
系,感受恰
当选择坐
标系的优越性,感受标准方程的简洁、对称、和谐之美,并在实践中通过对比提高决策能力、计算能力、培养学生简约的思维能力。
培养学生
的观察、分
六、板书设计
七、教学反思
本节课整个教学过程为:提出问题——探索——解决问题——归纳反思——提高。
在问题的设计中,从多角度探究,纵向挖掘知识深度,横向加强知识间的联系,这样的设计不但突出了重点,更使难点的突破水到渠成。
本节课以问题为纽带,以探究活动为载体,学生在自觉进入问题情境后,在问题的指引下和老师的指导下,通过实践、探索、体验、反思等活动把探究活动层层展开、步步深入,亲身经历知识的产生过程。
使学生在知识的形成过程中,获得数学的情感体验,享受到成功的乐趣,同时在思想方法运用、思维能力等方面得到提高和发展。
课堂进行中通过实际操作、多媒体课件演示等,激发学生的学习兴趣,使学生让学生在生生互动、师生互动中把学生的学习过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用。
本节课学生活动较多,知识拓展较深,运算较困难,因此本节课不能按预计完成,剩余问题下节课解决。