高考物理二轮复习:带电粒子在有界磁场中运动的临界问题
- 格式:doc
- 大小:822.00 KB
- 文档页数:12
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
带电粒子在有界磁场中的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有自身的一些特点。
一、解题方法解决磁场的问题关键是三找,即“找圆心”、“找半径”、“找时间”,在临界问题中又需要遵循思路:画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图T动态分析T找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。
)二、常见题型(B为磁场的磁感应强度,V。
为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率V。
垂直匀强磁场射入,入射方向与CD边界夹角为9。
已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。
的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。
【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。
解决带电粒子在有界磁场中运动的临界问题的两种方法此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.(多选)如图1所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点。
一个带正电的粒子仅在磁场力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场。
带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。
在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(25C ),并可归并为6大类型。
所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一..定顺序...尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。
类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。
【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。
轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。
【解答】 AB粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L2)2 ,得 r 1=5L 4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.类型已知参量类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦入射方向、出射方向类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向图乙图甲 ①②入射点入射方向 入射速度大出射点出射方向 ①② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。
带电粒子在有界磁场中运动的临界问题的解题技巧所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。
类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。
【例1】如图所示,长为L的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L,板不带电.现有质量为m、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A.使粒子的速度v <\f(Bq L,4m) ﻩ B.使粒子的速度v >错误! C.使粒子的速度v >错误!ﻩ ﻩD.使粒子的速度错误!<v <错误!【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。
轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。
【解答】 AB类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙图甲①②入射点 入射方向入射速度大出射点出射方向 ① ② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着板从右边穿出时,圆心在O点,有 r 12=L 2+(r 1-错误!)2 , 得 r1=错误!由 r1=mv 1Bq,得 v 1=\f(5BqL,4m ) ,所以v >错误!时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O′点,有 r 2=错误!由 r 2=错误! ,得 v 2=错误! ,所以v<错误!时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。
【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y 轴,交点O 为原点,如图所示。
在y >0,0<x<a 的区域有垂直于纸面向里的匀强磁场,在y >0,x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。
在O 点处有一小孔,一束质量为m、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。
入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x <a 的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T 为该粒子在磁感应强度为B 的匀强磁场中作圆周运动的周期。
试求两个荧光屏上亮线的范围(不计重力的影响)。
【分析】粒子在0<x <a 的区域中的运动属于初速度方向已知、大小不确定的情况,在垂直初速度的直线(即y 轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆①与直线x =a 相切,为能打到y 轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆①,粒子将进入x >a 的区域,由对称性可知,粒子在x>a 的区域内的轨迹圆圆心均在在x =2a 直线上,在x =2a 直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如图乙),其中轨迹圆①'为半径最小的情况,轨迹圆②为题目所要求的速度最大的粒子的轨迹。
【答案】竖直屏上发亮的范围从0到2a ,水平屏上发亮的范围从2a到2323x a a =+ 【解答】 粒子在磁感应强度为B的匀强磁场中运动半径为:mvr qB=① 速度小的粒子将在x <a 的区域走完半圆,射到竖直屏上。
半圆的直径在y 轴上,半径的范围从0到a ,屏上发亮的范围从0到2a 。
轨道半径大于a 的粒子开始进入右侧磁场,考虑r=a 的极限情况,这种粒子在右侧的圆轨迹与x 轴在D 点相切(虚线),O D=2a ,这是水平屏上发亮范围的左边界。
速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和'C ,C 在y轴上,有对称性可知'C 在x =2a 直线上。
设t 1为粒子在0<x <a的区域中运动的时间,t 2为在x >a 的区域中运动的时间,由题意可知② ①'①图乙 图甲 a 2a 2a a x1225t t =,12712T t t +=由此解得:16T t = ② 1512T t = ③ 由②③式和对称性可得 60OCM ∠= '60MC N ∠= ⑤5'36015012MC P ∠=⨯= ⑥ 所以'1506090NC P ∠=︒-︒=︒ ⑦ 即弧长NP 为1/4圆周。
因此,圆心'C 在x 轴上。
设速度为最大值粒子的轨道半径为R ,有直角'COC 可得2sin602R a ︒= 233R a = ⑧由图可知OP =2a +R ,因此水平荧光屏发亮范围的右边界的坐标 2323x a a =+ ⑨【易错提醒】本题容易把握不住隐含条件——所有在x >a的区域内的轨迹圆圆心均在在x=2a 直线上,从而造成在x >a 的区域内的作图困难;另一方面,在x >a 的区域内作轨迹圆时,半径未从轨迹圆①半径开始取值,致使轨迹圆①'未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x =a 。
类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定 这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mvr qB=为半径的圆。
【例2】如图所示,在0≤x≤a 、0≤y≤2a范围内有垂直手xy 平面向外的匀强磁场,磁感应强度大小为B 。
坐标原点O 处有一个粒子源,在某时刻发射大量质量为m、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在x Oy 平面内,与y 轴正方向的夹角分布在0~090范围内。
己知粒子在磁场中做圆周运动的半径介于a /2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。
求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;(2)速度方向与y 轴正方向夹角的正弦。
【分析】本题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O ,入射点O 到任一圆心的距离均为r ,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O为圆心、r 为半径的圆周上(如图甲)。
考虑到粒子是向右偏转,我们从最左边的轨迹圆画起——取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长——故轨迹①对应圆心角为90°。
【答案】66(2)(2)22aqB R a v m α=-=-6-6,,sin =10图乙图甲 ① ②【解答】设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力得:2v qvB m R =,ﻩ解得:mvR qB=当a/2<R <a时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,t =T /4时,∠OC A=π/2设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得:sin sin cos 2aR R R a R ααα=-=-,,且 22sin cos 1αα+=解得:(2(2)22aqB R a v m α=-=-,,sin =10【易错提醒】由于作图不仔细而把握不住“轨迹①角都较小时(均小于180°),弦长越长,对应粒子在磁场中运动时间最长。
这类题作图要讲一个小技巧——按粒子偏转方向移动圆心作图。
【分析】以L 为半径、O 点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开图甲 图乙始画起(轨迹①),在“圆心圆”取不同点为圆心、以L 为半径作出一系列圆(如图乙);其中轨迹①与轨迹④对称,在磁场中运动时间相同;轨迹②并不经过c点,轨迹②对应弦长短于轨迹③对应弦长——即沿轨迹③运动的粒子最后离开磁场。
【答案】06Bt m q π=,5/6 ,0)45arcsin 12(t t π=【解答】(1)初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图,其园心为n,由几何关系有:6Onp π∠=, 120Tt =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,TRv π2=得ﻩﻩ6Bt m q π=(2)依题意,同一时刻仍在磁场中的粒子到O 点距离相等。
在t0时刻仍在磁场中的粒子应位于以O为园心,O p为半径的弧pw 上。
由图知 56pOw π∠=ﻩﻩ 此时刻仍在磁场中的粒子数与总粒子数之比为5/6(3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b 点相交,设此粒子运动轨迹对应的圆心角为θ,则ﻩﻩ452sin=θ在磁场中运动的最长时间 045arcsin 122t T t ππθ== 所以从粒子发射到全部离开所用时间为 0)45arcsin 12(t t π=。
【易错提醒】本题因作图不认真易错误地认为轨迹②经过c 点,认为轨迹②对应弦长等于轨迹③对应弦长,于是将轨迹②对应粒子作为在磁场中运动时间最长的粒子进行计算;虽然计算出来结果正确,但依据错误。
类型三:已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向这类问题的特点是:所有轨迹圆圆心均在入射点和出射点连线的中垂线上。
【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xO y平面向外,大小为B,沿x 轴放置一个垂直于xOy 平面的较大的荧光屏,P 点位于荧光屏上,在y 轴上的A 点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为m、电荷量+q 的同种粒子,这些粒子打到荧光屏上能在屏上形成一条亮线,P 点处在亮线上,已知OA =OP=l ,求:(1)若能打到P 点,则粒子速度的最小值为多少?(2)若能打到P 点,则粒子在磁场中运动的最长时间为多少?【分析】粒子既经过A 点又经过P 点,因此AP连线为粒子轨迹圆的一条弦,圆心必在该弦的中垂线OM 上(如图甲)。