常用信号的频谱分析及时域采样定理
- 格式:docx
- 大小:152.74 KB
- 文档页数:9
信号的谱分解定理
一、傅里叶分析
傅里叶分析是信号处理中的一种基本工具,它可以将复杂的信号分解为简单的正弦波和余弦波的组合。
通过傅里叶分析,我们可以了解信号的频率成分,进而对其性质和特征进行深入分析。
傅里叶分析的基本思想是将一个周期信号表示为无穷多个正弦波的叠加。
对于非周期信号,可以使用傅里叶变换将其转换为频域表示。
在频域中,信号的频率成分被表示为复数,其实部和虚部分别表示幅度和相位。
二、帕斯瓦尔定理
帕斯瓦尔定理是信号处理中的另一个重要定理,它指出一个信号的能量可以完全由其傅里叶变换的模的平方确定。
换句话说,一个信号的能量谱是其频谱的模的平方。
这个定理对于理解和分析信号的能量分布非常有用。
帕斯瓦尔定理的应用非常广泛,例如在音频处理中,可以使用该定理来计算语音信号的响度;在图像处理中,可以使用该定理来计算图像的亮度分布。
三、采样定理
采样定理是数字信号处理中的基本定理之一,它指出如果一个连续时间信号具有有限的带宽,那么我们可以通过对其足够密集的样本进行取样,来准确地重建该信号。
这个定理对于数字信号处理技术的发展和应用起到了至关重要的作用。
采样定理的应用非常广泛,例如在音频处理中,可以使用采样定理将模拟音频信号转换为数字信号;在图像处理中,可以使用采样定理将图像转换为数字格式进行处理。
在实际应用中,我们需要选择合适的采样率以确保信号的质量和精度。
采样频率、采样点数、分辨率、谱线数(line)(2011-02-23 20:38:35)转载标签:分类:matlab采样频率谱线分辨率采样定理数学计算400line杂谈1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。
根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。
2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即:M=Fm/ΔF所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。
例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(F m/ΔF)=2.56·(400Hz/1Hz)=1024谱线数M=N/2.56=1024/2.56=400条按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。
另外,采样点数也不是随便设置的,即不是越大越好,反之亦然对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样.不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
实验二时域采样与频域采样及MATLAB程序时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号以T进行时域等间隔采样,形成的采样信号的频谱会以采样角频率为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。
理想采样信号和模拟信号之间的关系为:对上式进行傅里叶变换,得到:在上式的积分号内只有当时,才有非零值,因此:上式中,在数值上,再将代入,得到:上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量用代替即可。
2频域采样定理对信号的频谱函数在[0, 2]上等间隔采样N点,得到则有:即N点得到的序列就是原序列以N为周期进行周期延拓后的主值序列,因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即)。
在满足频率域采样定理的条件下,就是原序列。
如果,则比原序列尾部多个零点,反之,时域发生混叠,与不等。
对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。
在数字信号处理中,都必须服从这二个定理。
三实验内容1时域采样定理的验证给定模拟信号,式中,A二444、128,,,其幅频特性曲线如下图示:选取三种采样频率,即,300Hz, 200Hz,对进行理想釆样,得到采样序列:。
观测时间长度为。
分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。
2频域采样定理的验证给定信号:,对的频谱函数在[0, 2]上分别等间隔采样16点和32点,得到和,再分别对和进行IDFT,得到和。
分别画出、和的幅度谱,并绘图显示、和的波形,进行对比和分析。
四思考题如果序列的长度为M,希望得到其频谱在[0, 2]上N点等间隔采样,当时,如何用一次最少点数的DFT得到该频谱采样?五实验报告及要求1编写程序,实现上述要求,打印要求显示的图形2分析比较实验结果,简述由实验得到的主要结论3简要回答思考题4附上程序清单和有关曲线%时域采样Tp二128/1000;%观测时间128ms Fs=1000; T=l/Fs;%采样频率lKIIz M=Tp*Fs;%取样点数128 点n=0:M-l; t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega=pi*50*2 0. 5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=128 点FFT[xnt] subplot(4,2,1);plot (n, xnt) ; xlabel (t) ; ylabel (xa(t)) ; title (原信号波形); k=0:M-l; wk=k/(Tp*Fs);%归一化处理subplot (4,2,2);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ;ylabel (幅度(III (jf)));Tp二64/1000;%观测时间64ms Fs二1000; T=l/Fs;%采样频率lKHz M=Tp*Fs;%取样点数64 点n=0:M-l;t=n*T; A=444、12&alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);%M=64 点FFT[xnt] subplot (4,2,3);stem(n,xnt,); xlabel (n) ; ylabel (xa(nT)) ; title(Fs=lKllz 采样序列);k=0:M~l; wk=k/(Tp*Fs);subplot(4,2,4);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=lKH z 幅频特性);xlabel (w/\pi) ; ylabel (幅度(III (jf)));Fs=300;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0. 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,5); stem(n,xnt,、); xlabel(n);ylabel(x2(n)); title(Fs=300Ilz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot (4,2,6); plot (wk, abs (Xk)) ;title (T*I?T[xa (r)T) ], Fs=300 Hz 幅频特性);xlabel(w/\pi) ; ylabel ((112 (jf)));Fs=200;T=l/Fs; M=Tp*Fs;n=0:M-l;t=n*T; A=444、128;alph=pi*50*2 0^ 5;omega二pi*50*2"0、5;xnt=A*exp(-alph*t)、*sin(omega*t);Xk=T*fft(xnt,M);subplot (4,2,7); stem(n,xnt,、); xlabel(n);ylabel(x3(n)); title(Fs=2001Iz 采样序列);k=0:M-l;wk=k/(Tp*Fs); subplot(4,2,8);plot(wk,abs(Xk));title(T*FT[xa(nT)],Fs=200 Hz 幅频特性);xlabel (w/\pi) ;ylabel ((H3 (jf))) ;%频域采样M=27;N=32;n=0:M;xn=(n>=0&n<=13)、*(n+1)+(n>=14&n<=26)、*(27-n);%产生x(n)Xk=fft(xn, 1024) ; %1024 点FFT[x(n)]X32k=fft(xn,32); %32 点FFT[x(n)]x32n=ifft(X32k); %32 点IFFT[X32(k)]得到x32(n)X16k=X32k(l:2:N);%隔点抽取X32(k)得到X16(k)xl6n=ifft (X16k,N/2) ;%16 点IFFT[X16(k)]得到xl6(n)k=0: 1023;wk=2*k/1024;%连续频谱图的横坐标取值subplot (3,2,1); plot (wk,abs(Xk));title(FT[x(n)]);xlabel('omega/'pi);ylabel( X(e j\omega)| );axis([0,1,0,200]);subplot(3,2,2);stem(n,xn,、);title(三角波序列x(n)) ; xlabel(n) ; ylabel(x(n));axis([0,32,0,20])k=0:N/2-1; %离散频谱图的横坐标取值subplot (3,2,3); stem(k, abs (X16k) ,、) ; title (16 点频域采样);xlabel(k);ylabel(|X_l_6(k)|);axis([0,8,0,200])n1=0:N/ 2-1;subplot (3,2,4);stem(nl,xl6n,. );title(16IDFT[X_1_6(k)]);x label (n) ; ylabel (x_l_6(n)) ;axis([0,32,0,20])k=0:NT ;%离散频谱图的横坐标取值subplot (3,2,5); stem(k, abs (X32k),、) ; title (32 点频域采样);xlabel(k);ylabel(|X_3_2(k)|);axis([0,16,0,200])nl=0:N1;subplot (3,2,6);stem(nl,x32n,、);title(32IDFT[X_3_2 (k)]);xlabel (n);ylabel (x_3_2(n));axis([0,32,0,20])。
常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。
二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。
四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。
实验二离散信号的频谱分析一、[实验目的](1)加深对采样定理的理解和掌握,以及对信号恢复的必要性;(2)掌握对连续信号在时域的采样与重构的方法(3)理解和加深傅里叶变换的概念及其性质。
(4)离散时间傅里叶变换(DTFT)的计算和基本性质。
(5)离散傅里叶变换(DFT)的计算和基本性质。
二、[实验内容]1.实验原理验证(一).采样定理及采样后信号的频谱对Sa(t)的采样后信号的频谱(二).信号重建对cos(t)的采样与重建信号cos(t) cos(t)重建信号与原信号的比较及误差(三).离散时间信号的傅立叶变换及频谱分析(1))离散时间傅里叶变换的概念及其性质。
有限长序列x(n)={1,2,3,4,5}(2)离散傅里叶变换的概念及其性质x(n)=sin(n*pi/8)+sin(n*pi/4),N=16的序列傅里叶变换。
2. 选取信号f(t)= cos(t)作为被采样信号(最高频率为f=8Hz),取理想低通的截止频率wc=1/2*ws。
实现对信号f(t)= cos(t)的采样及由该采样信号的恢复重建,按要求完成以下内容:(1) 分别令采样角频率ws=1.5*wm 及ws=3*wm,给出在欠采样及过采样条件下冲激取样后信号的频谱,从而观察频谱的混叠现象。
答:实验程序如下clc,cleardt=0.01;t=0:dt:1;cos(t)的3倍采样信号频谱ωF (j w )f=8; %信号频率wm=2*pi*f; %信号角频率 ft=cos(wm*t); %时域信号%bs=1.5; %采样角频率,欠采样 bs=3; %采样角频率,大于两倍采样ws=bs*wm;Ts=2*pi/ws; %采样时间间隔 wc=1/2*ws; %理想低通截止频率nTs=0:Ts:1;Tf=0.01;nTf=-10:Tf:10; f_nTs=cos(wm*nTs); %时域采样信号Fs=funexer4_1(f_nTs,nTs,Ts,nTf); figure(1); plot(nTf,Fs);title('cos(t)的3倍采样信号频谱'); xlabel('ω'); ylabel('F(jw)'); grid on%//////////////////1.5倍采样 figure(2)bs=1.5; %采样角频率,大于两倍采样ws=bs*wm;Ts=2*pi/ws; %采样时间间隔wc=1/2*ws; %理想低通截止频率nTs=0:Ts:1; Tf=0.01; nTf=-10:Tf:10;Fs=funexer4_1(f_nTs,nTs,Ts,nTf); plot(nTf,Fs); title('cos(t)的1.5倍采样信号频谱');xlabel('ω');ylabel('F(jw)'); grid on(2) 若采样角频率取为ws=3*wm ,欲使输出信号与输入信号一致为cos(t),试根据采样信号恢复信号的误差,确定理想低通滤波器H ( jw)的截止角频率Wc 的取值范围应为多大?cos(t)的1.5倍采样信号频谱ωF (j w )Sa(t)采样后的奈奎斯特采样频谱图(4倍)ωF (j ω)答:截止频率wc 应满足: wm<wc ≤ws/2。
常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。
二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。
四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。
程序:syms t w f; %定义符号变量f=(1-2*abs(t))*exp(-j*w*t); %计算被积函数F=int(f, t, -1/2, 1/2); %计算傅里叶系数F(w)F=simple(F);F %化简subplot(3, 1, 1), %绘制三角波的幅频特性曲线F(w)low=-26*pi;high=-low; %设置w的上界和下界ezplot(abs(F), [low:0.01:high]);axis([low high -0.1 0.5]); xlabel('');title('三角波的频谱');subplot(3, 1, 2), %绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w)ezplot(abs(F), [-4*pi:0.01:4*pi]);axis([low high -0.1 0.5]);title('低通滤波后的频谱');%采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts%利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现subplot(3, 1, 3); %绘制采样后的频谱Y(w)Ts=0.2; %采样信号的周期w0=(2*pi)/Ts; %延拓周期10*pifor k=-2:2ft=f*exp(-j*w0*k*t);FT=int(ft, t, -1/2, 1/2);ezplot((1/Ts)*abs(FT), [(-4*pi-k*w0):0.01:(4*pi-k*w0)]); hold onendaxis([low high -0.1 2.5]); xlabel('');title('采样后的频谱');F =(8*sin(w/4)^2)/w^2clc;close all;%原信号fa='sin(2.*pi.*60.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(3,2,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(322),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);%采样信号fs=200;%采样频率,当采样频率分别取80,150,200时,注意采样信号的区别Ts=1/fs;%采样周期t1=-tp:Ts:tp;%采样信号横坐标范围f1=[fs*k2/m2,fs*k1/m1];%频率范围fb='sin(2.*pi.*60.*t1)';%待采样信号fz=eval(fb);%引入信号FZ=fz*exp(-j*[1:length(fz)]'*w);%傅立叶变换subplot(323),stem(t1,fz,'.');%采样信号的时域波形图title('采样信号'); xlabel('时间t(s)');axis([min(t1),max(t1),min(fz),max(fz)]);subplot(324),plot(f1,abs(FZ),'r');%采样信号的频域波形图title('采样信号频谱');xlabel ('频率f(Hz)');axis([-100,100,0,max(abs(FZ))+5]);%采样信号的恢复T=1/fs;dt=T/10;tp=0.1;%采样周期、时间间隔、时间范围赋值t=-tp:dt:tp;%时间范围n=-tp/T:tp/T;TMN=ones(length(n),1)*t-n'*T*ones(1,length(t));%t-nTfh=fz*sinc(fs*TMN);%由取样信号恢复信号k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);w=[-2*pi*k2/m2,2*pi*k1/m1]; %频率变量FH=fh*exp(-j*[1:length(fh)]'*w);%傅立叶变换subplot(325),plot(t,fh,'g');%恢复后的时域波形图st1=sprintf('由取样频率fs=%d', fs);%标注采样频率st2='恢复后的信号';st=[st1,st2],title(st),xlabel('时间 t(s)');axis([min(t),max(t),min(fh),max(fh)]);line(min(t),max(t),[0,0]);f=[10*fs*k2/m2,10*fs*k1/m1]; %频率范围subplot(326),plot(f,abs(FH),'g');%恢复后的频域波形图title('恢复后信号的频谱'),xlabel('频率f(Hz)');axis([-100,100,0,max(abs(FH))+5]);总结:采样信号在一定条件下可以恢复为原来的信号,只需用截止频率等同于原信号频谱中最高频率fn的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号的频谱。
采样信号是指模拟信号由采样器按照一定时间间隔采样获得时间上离散的信号,要获取采样信号,最基本的方法是对其进行傅里叶变换。
具体方法为:如果信号xa(t)是实带限信号,且最高频谱不超过Ws/2,即基带频谱以及各次谐波调制频谱彼此不重叠,可以用带宽为Ws/2的理想低通滤波器将各次谐波调制频谱滤去,保留不失真的基带频谱,从而不失真地还原出原来的信号。