时域抽样与频域抽样
- 格式:doc
- 大小:378.95 KB
- 文档页数:7
抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。
抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。
E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。
此外,V。
A. Kotelnikov也对该定理做出了重要贡献。
采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。
采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。
如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。
限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。
抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。
高于或处于奈奎斯特频率的频率分量将导致混叠。
大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。
采样过程中应遵循的定律也称为抽样定理和抽样定理。
抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。
抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。
1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。
1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。
抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。
抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。
时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。
时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。
该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。
简而言之,对于最高频率为f的信号,采样频率应该大于2f。
如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。
频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。
该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。
简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。
这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。
如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。
因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。
抽样定理词义就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值分类时域抽样定理、频域抽样定理基本定义所谓抽样,就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。
根据这一特性,可以完成信号的模-数转换和数-模转换过程。
意义介绍抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。
为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生噪声。
例如,话音信号的最高频率限制在3400HZ,这时满足抽样定理的最低的抽样频率应为fS=6800HZ,为了留有一定的防卫带,CCITT规定话音信号的抽样率fS=8000HZ,这样就留出了8000-6800=1200HZ作为滤波器的防卫带。
应当指出,抽样频率fS不是越高越好,太高时,将会降低信道的利用率(因为随着fS升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低。
)所以只要能满足fS≥2f h,并有一定频带的防卫带即可。
以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为f0~fh,带宽B=fh - f0.如果f0<B,称之为低通型信号,例如,话音信号就是低通型信号的,弱f0>B,则称之为带通信号,载波12路群信号(频率范围为60~108KHZ)就属于带通型信号。
一、采样定理简介采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。
另外,V. A. Kotelnikov 也对这个定理做了重要贡献。
采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。
采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。
如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。
带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。
采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。
高于或处于奈奎斯特频率的频率分量会导致混叠现象。
大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
采样过程所应遵循的规律,又称取样定理、抽样定理。
采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。
采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。
1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。
1948年信息论的创始人.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。
采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。
采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。
时域采样定理频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。
实验二 抽样定理一、实验目的:1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验原理:1、时域抽样与信号的重建 (1)对连续信号进行采样例5-1 已知一个连续时间信号sin sin(),1Hz 3ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。
程序清单如下:%分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; fm=5*f0; Tm=1/fm; t=-2:dt:2;f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2;f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end程序运行结果如图5-1所示:-0.500.5原连续信号和抽样信号图5-1(2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。
因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。
例5-2 编程求解例5-1中连续信号及其三种抽样频率(F s >2f m 、F s =2f m 、F s <2f m )下的抽样信号的幅度谱。
实验三 时域抽样与频域抽样一、 实验目的1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。
2.加深对时域取样后信号频谱变化的认识。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验原理1.时域抽样。
时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率 f s 大于等于2倍的信号最高频率f m ,即 f s ≥ 2f m 。
时域抽样先把连续信号x (t )变成适合数字系统处理的离散信号x [k ];然后根据抽样后的离散信号x [k ]恢复原始连续时间信号x (t )完成信号重建。
信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。
2.频域抽样。
非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数 N 大于等于序列长度 M ,即 N ≥ M 。
频域抽样把非周期离散信号x (n )的连续谱X (e j ω)变成适合数字系统处理的离散谱X (k );要求可由频域采样序列X (k )变换到时域后能够不失真地恢复原信号 x (n )。
三、实验内容1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。
(1)当T=0.01s 时,采样得到x(n),所用程序为:%产生连续信号x (t )t=0:0.001:1;x=sin(20*pi*t);subplot(4,1,1)plot(t,x,'r')()sin(20),01a x t t t =π≤≤hold ontitle('原信号及抽样信号')%信号最高频率fm为10 Hz%按100 Hz抽样得到序列fs=100;n=0:1/fs:1;y=sin(20*pi*n);subplot(4,1,2)stem(n,y) 对应的图形为:(2)将上述程序的fs修改为20Hz,得到抽样序列:(3)再将fs修改为10Hz,所得图形:为了对比,可将这三幅抽样图形和原图放在一起比较:对抽样结果的分析:根据奈奎斯特采样定理,抽样频率至少是信号最高频率的两倍。
第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.假设信号可以用确定性图形、曲线或数学表达式来准确描述,那么该信号为确定性信号假设信号不遵循确定性规律,具有某种不确定性,那么该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限频谱有两类:幅度谱,相位谱7.信号分析的根本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积◊傅里叶级数◊离散谱非周期信号:无限区间绝对可积◊傅里叶变换◊连续谱脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频〔基频f0〕为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,δ(t)称为微分器 f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性6.FFT 的计算工作量:FFT 算法对于N 点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法第三章 随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。
实验三时域抽样与频域抽样
一、实验目的
1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。
2.加深对时域取样后信号频谱变化的认识。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验原理
1.时域抽样。
时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。
时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。
信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。
2.频域抽样。
非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。
频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。
三、实验内容
1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。
(1)当T=0.01s 时,采样得到x(n),所用程序为:
%产生连续信号x (t )
t=0:0.001:1;
x=sin(20*pi*t);
subplot(4,1,1)
plot(t,x,'r')
hold on
title('原信号及抽样信号')
%信号最高频率fm 为10 Hz
%按100 Hz 抽样得到序列
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,2)
stem(n,y) 对应的图形为:
()sin(20),01a x t t t =π≤≤
(2)将上述程序的fs修改为20Hz,得到抽样序列:(3)再将fs修改为10Hz,所得图形:
为了对比,可将这三幅抽样图形和原图放在一起比较:
对抽样结果的分析:
根据奈奎斯特采样定理,抽样频率至少是信号最高频率的两倍。
对于实验样本而言,fmax=10Hz,所以fsam≥20Hz。
由上图可以清晰地看到,当fs较大时,采样的点越多,能够获取的信号的信息也就越多。
2.信号的重建
(1)对于以fs=100Hz的抽样信号的重建,程序为
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,1);
stem(n,y)
hold on
xi=0:1/100:1;
yi=interp1(n,y,xi)
结果为:
由图可见,当fs=100Hz>>10Hz时,由抽样信号能够很好地恢复出原始信号。
(2)将程序段的fs修改为20Hz,得到结果:
由图,fs恰好等于那奎斯特抽样频率,恢复出来的信号已经失真了。
(3)将fs再修改为10Hz,结果是:
由此明显的看到恢复出来的信号已经严重失真。
四、对思考题的回答:
1.将语音信号转换为数字信号时,抽样频率一般应是多少?
答:由抽样频率公式可,一般应选取2倍左右,人的听觉范围是20Hz—2kHz,所以抽样频率一般取为44.1kHz。
2. 在时域抽样过程中,会出现哪些误差?如何克服或改善?
答:由于取样器固有噪声及时基抖动等因素的影响,,取样信号在不同程度上会被嗓声污染。
对含嗓声的取样信号进行时频变换时必然引起频谱误差,影响频谱估计的精度。
3. 在实际应用中,为何一般选取抽样频率fs =(3~5)fm?
答:一般实际信号带有噪声,且不存在理想的低通滤波器,抽样频率会比2倍大些。
4. 如何选取被分析的连续信号的长度?
答:一般周期型号选取一个周期或两个周期的信号进行分析,而非周期信号则选取占据函数大部分功的部分进行分析。
5. 增加抽样序列x[k]的长度,能否改善重建信号的质量?
答:不能,增加抽样频率才能改善质量。
6. 在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅立叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?
答:不相同。
由Ω=Tω可见,当采样频率不同时,周期T不同,相应的数字频率Ω也不会相同。
但由于是同一信号,所以模拟频率是相同的。