时域抽样与频域抽样
- 格式:doc
- 大小:378.95 KB
- 文档页数:7
抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。
抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。
E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。
此外,V。
A. Kotelnikov也对该定理做出了重要贡献。
采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。
采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。
如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。
限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。
抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。
高于或处于奈奎斯特频率的频率分量将导致混叠。
大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。
采样过程中应遵循的定律也称为抽样定理和抽样定理。
抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。
抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。
1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。
1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。
抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。
抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。
时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。
时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。
该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。
简而言之,对于最高频率为f的信号,采样频率应该大于2f。
如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。
频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。
该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。
简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。
这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。
如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。
因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。
抽样定理词义就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值分类时域抽样定理、频域抽样定理基本定义所谓抽样,就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。
根据这一特性,可以完成信号的模-数转换和数-模转换过程。
意义介绍抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。
为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生噪声。
例如,话音信号的最高频率限制在3400HZ,这时满足抽样定理的最低的抽样频率应为fS=6800HZ,为了留有一定的防卫带,CCITT规定话音信号的抽样率fS=8000HZ,这样就留出了8000-6800=1200HZ作为滤波器的防卫带。
应当指出,抽样频率fS不是越高越好,太高时,将会降低信道的利用率(因为随着fS升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低。
)所以只要能满足fS≥2f h,并有一定频带的防卫带即可。
以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为f0~fh,带宽B=fh - f0.如果f0<B,称之为低通型信号,例如,话音信号就是低通型信号的,弱f0>B,则称之为带通信号,载波12路群信号(频率范围为60~108KHZ)就属于带通型信号。
实验三时域抽样与频域抽样
一、实验目的
1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。
2.加深对时域取样后信号频谱变化的认识。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验原理
1.时域抽样。
时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。
时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。
信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。
2.频域抽样。
非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。
频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。
三、实验内容
1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。
(1)当T=0.01s 时,采样得到x(n),所用程序为:
%产生连续信号x (t )
t=0:0.001:1;
x=sin(20*pi*t);
subplot(4,1,1)
plot(t,x,'r')
hold on
title('原信号及抽样信号')
%信号最高频率fm 为10 Hz
%按100 Hz 抽样得到序列
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,2)
stem(n,y) 对应的图形为:
()sin(20),01a x t t t =π≤≤
(2)将上述程序的fs修改为20Hz,得到抽样序列:(3)再将fs修改为10Hz,所得图形:
为了对比,可将这三幅抽样图形和原图放在一起比较:
对抽样结果的分析:
根据奈奎斯特采样定理,抽样频率至少是信号最高频率的两倍。
对于实验样本而言,fmax=10Hz,所以fsam≥20Hz。
由上图可以清晰地看到,当fs较大时,采样的点越多,能够获取的信号的信息也就越多。
2.信号的重建
(1)对于以fs=100Hz的抽样信号的重建,程序为
fs=100;
n=0:1/fs:1;
y=sin(20*pi*n);
subplot(4,1,1);
stem(n,y)
hold on
xi=0:1/100:1;
yi=interp1(n,y,xi)
结果为:
由图可见,当fs=100Hz>>10Hz时,由抽样信号能够很好地恢复出原始信号。
(2)将程序段的fs修改为20Hz,得到结果:
由图,fs恰好等于那奎斯特抽样频率,恢复出来的信号已经失真了。
(3)将fs再修改为10Hz,结果是:
由此明显的看到恢复出来的信号已经严重失真。
四、对思考题的回答:
1.将语音信号转换为数字信号时,抽样频率一般应是多少?
答:由抽样频率公式可,一般应选取2倍左右,人的听觉范围是20Hz—2kHz,所以抽样频率一般取为44.1kHz。
2. 在时域抽样过程中,会出现哪些误差?如何克服或改善?
答:由于取样器固有噪声及时基抖动等因素的影响,,取样信号在不同程度上会被嗓声污染。
对含嗓声的取样信号进行时频变换时必然引起频谱误差,影响频谱估计的精度。
3. 在实际应用中,为何一般选取抽样频率fs =(3~5)fm?
答:一般实际信号带有噪声,且不存在理想的低通滤波器,抽样频率会比2倍大些。
4. 如何选取被分析的连续信号的长度?
答:一般周期型号选取一个周期或两个周期的信号进行分析,而非周期信号则选取占据函数大部分功的部分进行分析。
5. 增加抽样序列x[k]的长度,能否改善重建信号的质量?
答:不能,增加抽样频率才能改善质量。
6. 在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅立叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?
答:不相同。
由Ω=Tω可见,当采样频率不同时,周期T不同,相应的数字频率Ω也不会相同。
但由于是同一信号,所以模拟频率是相同的。