常用信号地频谱分析报告及时域采样定理
- 格式:doc
- 大小:185.21 KB
- 文档页数:8
实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。
连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。
(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。
(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。
实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。
用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。
选取三种采样频率,即1kHz,300Hz 200Hz s F =,。
观测时间选64p T ms =。
采样点数用公式p s N T F =⨯计算。
设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。
(2)计算时域采样点数。
(3)生成时域抽样信号。
(4)用fft 函数计算频谱。
(5)计算频域采样点上的频率,绘制频谱图。
程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。
常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。
二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。
四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。
常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。
二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。
四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。
(一)时域采样及其频谱一.实验目的:1.熟悉Matable的实验环境,并学会如何利用其进行对信号处理进行图形分析.2.编程计算于模拟信号的连续频谱和离散采样信号的连续频谱,实现时域采样及其频谱分析,充分理解时域采样的特点及定理,并在实验过程中体会奈奎斯定理. 二.实验环境: MA TABE软件平台三.实验步骤:(一)进入MA TABE编程1.启动MATABLE,进入命令窗口,点击File-New-M-File,进入M文件的编辑窗口,进行M文件的编程和调试.2.利用系统提供的各种函数或自编函数进行编程.3.学会使用Help在线查询.(二)Sa2的编程及上机运行观察并分析结果.编程思路:(1)原模拟信号为Xa(t)=A*exps(-at)*sin(*O. t)*u (t).当fs足够大时可以逼近模拟信号.同样对于模拟信号的连续频谱和离散采样信号的连续频谱也要自编计算离散傅立叶级数的子程序dtft()函数来计算连续频谱.(2)采样间隔直接用赋值语句设定.(3)绘图时先用supplot()函数进行多个子图的布局规划,再分别用stem()函数画离散信号的杆状图和用plot()函数画连续频谱波形的曲线图.(三)实验内容及程序分析:sa2%时域采样及其频谱clear;close all; %内部命题语句:清除内存,关闭所有窗口fs=10000;fs1=1000;fs2=300;fs3=200; %fs20倍高速逼近,fs1不混逆正常逼近,fs2,3混逆逼近t=0:1/fs:0.1; %采样时间为0到0.1s,长度为0.1s,间隔1/fs即1/10000n1=0:1/fs1:0.1;n2=0:1/fs2:0.1;n3=0:1/fs3:0.1;%长度0.1,间隔分别为1/1000,1/300,1/200。
A=444.128;a=50*sqrt(2)*pi; b=a; %A为模拟信号弧度,a角频率xa=exp(-a*t).*sin(b*t); %正弦振荡模拟信号高速数字逼近采样,xa为运算对象.k=0:511;f=fs*k/512; %频谱分点长度为512.Xa=dtft(xa,2*pi*k/512); % dtft为高速采样,计算连续采样序列的连续频率. 512 个划度划分,数字角频率为2*pi*k/512.T1=1/fs1;t1=0:T1:0.1; %T1第一个采样信号的间隔,是频率fs1的倒数;t1为采样时间从0到0.1s间隔为T1.x1=A*exp(-a*t1).*sin(b*t1); % 离散采样X1=dtft(x1,2*pi*k/512); %计算x1的离散采样序列的连续频谱T2=1/fs2;t2=0:T2:0.1;x2=A*exp(-a*t2).*sin(b*t2);X2=dtft(x2,2*pi*k/512);T3=1/fs3;t3=0:T3:0.1;x3=A*exp(-a*t3).*sin(b*t3);X3=dtft(x3,2*pi*k/512);figure(1); %另开窗口subplot(4,2,1);第一个图象,,4行2列.plot(t,xa); %画出原始波形axis([0,max(t),min(xa),max(xa)]); %时间坐标设定语句,X轴起点为0终点为max(t);Y轴的起点为min(xa),终点为max(xa).title('模拟信号');xlabel('t');ylabel('Xa(t)'); %横坐标标t,纵坐标标Xa(t).line([0,max(t)],[0,0]); %行排列最小为0最大为max(t),纵坐标不变.subplot(4,2,2);plot(f,abs(Xa)/max(abs(Xa)));%第二个图.画规划频谱图axis([0,500,0,1]);title('模拟信号的幅度谱');xlabel('f(Hz)');ylabel('|Xa(jf)|');subplot(4,2,3);stem(n1,x1,'.');%第三个图,stem画棒状图,顶端是".",如果不注明则是"。
四川大学电气信息学院数字信号处理实验报告实验二 时域采样与频域采样1. 实验结果和分析 (1)时域采样204060(a)Fs=1000Hznx 1(n )51015(b)Fs=300Hznx 2(n)510(c)Fs=200Hznx 3(n)500100005001000(a) FT[xa(nT)],Fs=1000Hzf(Hz)幅度1002003000200400(b) FT[xa(nT)],Fs=300Hzf(Hz)幅度501001502000100200(c) FT[xa(nT)],Fs=200Hzf(Hz)幅度分析:时域采样定理:1、对模拟信号以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率为周期进行周期延拓。
2、采样频率必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。
由图可见,左边在时域上的采样频率逐渐降低,右边所对应的频域图样的混叠情况由微弱变得越来越大。
(2)频域采样102030(b) 三角波序列x(n)nx (n )0.510100200(a)FT[x(n)]ω/π|X (e j ω)|(c) 16点频域采样k|X 16(k )|102030(d) 16点IDFT[X 16(k)]nx 16(n )(e) 32点频域采样k|X 32(k )|(f) 32点IDFT[X 32(k)]nx 32(n )分析:频域采样定理:如果序列x(n)的长度为M ,则只有当频域采样的点数N>=M 时,才可由频域采样X (k )回复原序列x(n),否则产生时域混叠现象。
由图可见N=16点和N=32点采样所得图样不一样,N=16点时混叠严重,而N=32点时没有发生混叠。
2. 思考题如果序列x(n)的长度为M ,希望得到其频谱X(e j ω)在]2,0[π上的N 点等间隔采样, 当N<M 时,如何用一次最少点数的DFT 得到该频谱采样?先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,x N (n)=[∑x(n+iN)]R N (n)再计算N 点DFT 则得到N 点频域采样实验三用FFT对信号作频谱分析1.实验结果和分析(1)(2)(3)2.思考题(1)对于周期序列。
2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.
(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms t
x=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);
ezplot(x,[-2,2]); subplot(212);
ezplot(F,[-10,10]);
程序:令tao=1,a=4
syms t
x=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);
subplot(211);
ezplot(x,[-2,2]);
axis([-2,2,-1,2])
subplot(212);
ezplot(F);
axis([-5,5,-0.5,0.5]);
分析:
经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了
3.时域采样及其恢复
运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。
程序:
syms t w f; %定义符号变量
f=(1-2*abs(t))*exp(-j*w*t); %计算被积函数
F=int(f, t, -1/2, 1/2); %计算傅里叶系数F(w)
F=simple(F);F %化简
subplot(3, 1, 1), %绘制三角波的幅频特性曲线F(w)
low=-26*pi;high=-low; %设置w的上界和下界
ezplot(abs(F), [low:0.01:high]);
axis([low high -0.1 0.5]); xlabel('');
title('三角波的频谱');
subplot(3, 1, 2), %绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w)
ezplot(abs(F), [-4*pi:0.01:4*pi]);
axis([low high -0.1 0.5]);
title('低通滤波后的频谱');
%采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts
%利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现
subplot(3, 1, 3); %绘制采样后的频谱Y(w)
Ts=0.2; %采样信号的周期
w0=(2*pi)/Ts; %延拓周期10*pi
for k=-2:2
ft=f*exp(-j*w0*k*t);
FT=int(ft, t, -1/2, 1/2);
ezplot((1/Ts)*abs(FT), [(-4*pi-k*w0):0.01:(4*pi-k*w0)]); hold on
end
axis([low high -0.1 2.5]); xlabel('');
title('采样后的频谱');
F =
(8*sin(w/4)^2)/w^2
clc;
close all;
%原信号
fa='sin(2.*pi.*60.*t)';%原信号
fs0=10000; %采样频率
tp=0.1;%时间范围
t=[-tp:1/fs0:tp];%信号持续时间范围
k1=0:999;k2=-999:-1;
m1=length(k1);m2=length(k2);
axis([-100,100,0,max(abs(FH))+5]);
总结:采样信号在一定条件下可以恢复为原来的信号,只需用截止频率等同于原信号频谱中最高频率fn的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号的频谱。
采样信号是指模拟信号由采样器按照一定时间间隔采样获得时间上离散的信号,要获取采样信号,最基本的方法是对其进行傅里叶变换。
具体方法为:如果信号xa(t)是实带限信号,且最高频谱不超过Ws/2,即基带频谱以及各次谐波调制频谱彼此不重叠,可以用带宽为Ws/2的理想低通滤波器将各次谐波调制频谱滤去,保留不失真的基带频谱,从而不失真地还原出原来的信号。