场论与张量初步(2)
- 格式:ppt
- 大小:342.00 KB
- 文档页数:21
张量分析与场论 第一章 张量代数任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。
但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。
无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。
由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。
在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。
张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。
张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。
第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。
1.1点积、矢量分量及记号ij δ我们在以前的学习中已熟悉了用箭头表示的矢量,如位移u ρ,力F ρ等。
这些量满足平行四边形运算的矢量加法法则,即设u ρ,v ρ为矢量,则v u w ρρρ+=的运算如右图所示。
在理论力学中我们还知道,如u ρ表示某一点的位移,F ρ表示作用在该点上的力,则该力对物体质点所做的功为 其中F ρ、|u ρ|分别表示矢量F ρ、u ρ的大小,θ表示矢量F ρ与矢量u ρ之间的夹角,这就定义了一种称为点积的运算。
点积的定义:设u ρ,v ρ为两个任意矢量,设|u ρ|,|v ρ|分别为其大小(也称为模)。
θ为这两个矢量之间的夹角,则u ρ与v ρ的点积为由点积定义可知,点积具有交换律,即u ρ•v ρ=v ρ•u ρ。
可以用几何的方法证明点积也具有分配率,即如w ρ=u ρ+v ρ,则或可写为如果0v u =⋅ρρ则称u ρ垂直于v ρ,记为u ρ⊥v ρ。
由点积的定义可知,2u u u ρρρ=⋅。
§2 场论初步一、 场论的基本概念及梯度、散度与旋度[标量场] 空间区域D 的每点M (x ,y ,z )对应一个数量值ϕ(x,y ,z ),它在此空间区域D 上就构成一个标量场,用点M (x,y,z )的标函数ϕ(x ,y ,z )表示.若M 的位置用矢径r确定,则标量ϕ可以看作变矢r 的函数ϕ=ϕ(r ).例如温度场u (x ,y,z ),密度场),,(z y x ρ,电位场e(x ,y ,z )都是标量场.[矢量场] 空间区域D 的每点M (x ,y,z )对应一个矢量值R (x ,y,z),它在此空间区域D 上就构成一个矢量场,用点M (x ,y ,z )的矢量函数R(x ,y,z)表示.若M 的位置用矢径r 确定,则矢量R 可以看作变矢r的矢函数R (r):R (r )=X(x ,y,z )i +Y(x ,y ,z )j +Z (x ,y,z )k例如流速场 υ(x ,y ,z ),电场E (x,y,z ),磁场H (x ,y ,z )都是矢量场.与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义.[梯度]grad ϕ=(x ∂∂ϕ,y ∂∂ϕ,z ∂∂ϕ)=∇ϕ=x ∂∂ϕi +y ∂∂ϕj+z∂∂ϕk 式中∇=ix ∂∂+jy ∂∂+kz∂∂称为哈密顿算子,也称为耐普拉算子.gr ad ϕ有的书刊中记作de lϕ.grad ϕ的方向与过点(x ,y ,z )的等量面ϕ=C的法线方向N重合,并指向ϕ增加的一方,是函数ϕ变化率最大的方向,它的长度等于N∂∂ϕ. 梯度具有性质:grad(λϕ+μψ)=λ gr ad ϕ+μgrad ψ (λ、μ为常数)grad(ϕψ)=ϕ grad ψ+ψ gr ad ϕ gra dF (ϕ)=()ϕϕgrad F ' [方向导数]l ∂∂ϕ=l·g ra dϕ=x ∂∂ϕcos α+y ∂∂ϕcos β+z∂∂ϕc os γ式中l =(cos α,c os β,cos γ)为方向l 的单位矢量,α,β,γ为其方向角.方向导数为ϕ在方向l 上的变化律,它等于梯度在方向l 上的投影. [散度]d iv R =x X ∂∂+y Y ∂∂+zZ ∂∂=∇·R =div (X , Y , Z) 式中∇为哈密顿算子. 散度具有性质:d iv (λa +μb)=λ div a +μdi vb (λ、μ为常数) div(ϕa )=ϕdiv a+a g rad ϕ div(a ×b )=b·ro t a-a ·rot b[旋度]rot R =(z Y y Z ∂∂-∂∂)i +(xZ z X ∂∂-∂∂)j +(y X x Y ∂∂-∂∂)k =∇×R=ZYXz y x ∂∂∂∂∂∂k j i式中∇为哈密顿算子,旋度也称涡度,rot R有的书刊中记作cu rl R .旋度具有性质:r ot(λa +μb )=λ rot a +μro t b (λ、μ为常数) rot(ϕa )=ϕrot a +a ×grad ϕro t(a ×b )=(b ·∇)a -(a ·∇)b +(div b )a -(di v a)b[梯度、散度、旋度混合运算] 运算g rad 作用到一个标量场ϕ产生矢量场grad ϕ,运算d iv 作用到一个矢量场 R产生标量场d iv R,运算rot 作用到一个矢量场R 产生新的矢量场r ot R .这三种运算的混合运算公式如下:d iv rot R =0 rot gr ad ϕ=0div gr adϕ=22x ∂∂ϕ +22y∂∂ϕ+22z ∂∂ϕ=∆ϕg rad di v R=∇(∇R ) ro t rot R =∇×(∇×R )div gra d(λϕ+μψ)=λ d iv g rad ϕ+μdiv gra dψ (λ、μ为常数)d iv grad(ϕψ)=ϕd iv g rad ψ+ψdiv grad ϕ+2gra dϕ·grad ψg rad div R-ro t ro t R =∆R式中 ∇为哈密顿算子,∆=∇·∇=∇2为拉普拉斯算子.[势量场(守恒场)] 若矢量场R (x,y ,z )是某一标函数ϕ(x ,y ,z )的梯度,即R =gra dϕ 或 X=x ∂∂ϕ,Y =y ∂∂ϕ,Z =z∂∂ϕ则R称为势量场,标函数ϕ称为R 的势函数.矢量场R 为势量场的充分必要条件是:rot R =0,或y X ∂∂ =x Y ∂∂,z Y ∂∂=y Z ∂∂,x Z ∂∂=zX∂∂ 势函数计算公式ϕ(x,y ,z )=ϕ(x0,y 0,z 0)+()⎰xx x z y x X 0d ,,00+()⎰yy y z y x Y 0d ,,0+()⎰zz z z y x Z 0d ,,[无散场(管形场)] 若矢量场R 的散度为零,即div R =0,则R 称为无散场.这时必存在一个无散场T,使R=r ot T,对任意点M有T =14π⎰V r d rot R式中r为d V到M的距离,积分是对整个空间进行的.[无旋场] 若矢量场R 的旋度为零,即r ot R =0,则R 称为无旋场.势量场总是一个无旋场,这时必存在一个标函数ϕ,使R =grad ϕ,而对任意点M 有ϕ=-14π ⎰V r d div R式中r 为d V 到M 的距离,积分是对整个空间进行的.二、 梯度、散度、旋度在不同坐标系中的表达式1.单位矢量的变换[一般公式] 假定x =f(ξηζ,,),y =g (ξηζ,,),z =h (ξηζ,,)把(ξηζ,,)空间的一个区域 一对一地连续映射为(x,y ,z )空间的一个区域D ,并假定f ,g ,h 都有连续偏导数,因为对应是一对一的,所以有ξ=ϕ(x ,y ,z ),()()ηψζχ==x y z x y z ,,,,,再假定ϕψχ,,也有连续偏导数,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=ζζηηξξζζηηξξζζηηξξd d d d d d d d d d d d z z z z y y y y x x x x 或逆变换⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=z z y y x x z z y y x x z z y y x x d d d d d d d d d d d d ζζζζηηηηξξξξ沿d x,dy ,d z 方向的单位矢量记作i ,j ,k ,沿ζηξd ,d ,d 方向的单位矢量记作ζηξe e e ,,,则有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=222222222ζζζζζζηηηηηηξξξξξξζηξz y x z y x z y x zy x z y x z y x k j i e k j i e kj i e [圆柱面坐标系的单位矢量] 对于圆柱面坐标系(图8.11)⎪⎩⎪⎨⎧===z z y x ϕρϕρsin cos ()002≤≤∞≤<-∞<<∞ρϕπ,,z 单位矢量为⎪⎩⎪⎨⎧=+-=+=k e j i e j i e zϕϕϕϕϕρcos sin sin cos 它们的偏导数为000=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂zz z zzze e e e e e e e e e e ϕρϕρρϕϕρρρρϕϕϕ,,[球面坐标系的单位矢量] 对于球面坐标系(图8.12)⎪⎩⎪⎨⎧===θϕθϕθcos sin sin cos sin r z r y r x ()0020≤<∞≤<≤≤r ,,ϕπθπ单位矢量为⎪⎩⎪⎨⎧+-=-+=++=j i e k j i e k j i e ϕϕθϕθϕθθϕθϕθϕθcos sin sin sin cos cos cos cos sin sin cos sin r它们的偏导数为θϕϕθϕϕθθϕθθθϕθϕθϕθθθe e e e e e e 0e e e e e 0e e e cos sin ,cos ,sin ,,--=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂=∂∂=∂∂=∂∂r rr rr rr r 2.矢量的坐标变换[一般公式] 一个由(x ,y ,z)坐标系所表达的矢量可以用(ξηζ,,)坐标系来表达:υ=(x υ,υy,υz)=x υi+υy j +υz k=ζζηηξξυυυe e e ++式中⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=222222222222222222222222222ζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζηξζηξζηξz y x z z y x z z y x z z y x yz y x y z y x y z y x x z y x x z y x x z y x[圆柱面坐标系与直角坐标系的互换] 由圆柱面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧=+=-=z zy x υυϕυϕυυϕυϕυυϕρϕρcos sin sin cos 由直角坐标系到圆柱面坐标系的变换公式⎪⎩⎪⎨⎧=+-=+=z zy x y x υυϕυϕυυϕυϕυυϕρcos sin sin cos [球面坐标系与直角坐标系的互换] 由球面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧-=++=-+=θυθυυϕυϕθυϕθυυϕυϕθυϕθυυθϕθϕθsin cos cos sin cos sin sin sin cos cos cos sin r zr y r x 由直角坐标系到球面坐标系的变换公式⎪⎩⎪⎨⎧+-=-+=++=ϕυϕυυθυϕθυϕθυυθυϕθυϕθυυϕθγcos sin sin sin cos cos cos cos sin sin cos sin y x z y x z y x 3.各种算子在不同坐标系中的表达式设U =U (x,y ,z )是一个标函数,V =V (x ,y ,z )是一个矢函数. [在圆柱面坐标系中各种算子的表达式]哈密顿算子 ~∇=ρρ∂∂e +ϕρϕ∂∂1e +zz ∂∂e梯 度 grad U = ~∇U=ρρ∂∂U e +ϕρϕ∂∂U 1e +z U z ∂∂e散 度 di vV = ~∇·V =()zz ∂∂+∂∂+∂∂υϕυρρυρρϕρ11 旋 度 ro tV= ~∇×V =ρϕυϕυρe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z 1+ϕρρυυe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z +()z e ⎪⎪⎭⎫⎝⎛∂∂-∂∂ϕυρρρυρρϕ11拉普拉斯算子 ∆U =d iv grad U =2222211z UU U ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂ϕρρρρρ [在球面坐标系中各种算子的表达式]哈密顿算子 ~~∇=r r ∂∂e +θθ∂∂r 1e +ϕθϕ∂∂sin r 1e梯 度 grad U= ~~∇U =r U r ∂∂e +θθ∂∂U r 1e +ϕθϕ∂∂U r sin 1e散 度 di v V=~~∇·V =()()ϕυθθυθθυϕθ∂∂+⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂sin sin sin r r r r r r 11122 旋 度 rot V = ~~∇×V=()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ϕυθυθθθϕsin sin r 1r e +()⎥⎦⎤⎢⎣⎡∂∂-∂∂ϕυϕυθr r r r r 11sin θe +()⎥⎦⎤⎢⎣⎡∂∂-∂∂θυυθr r rr r 11ϕe 拉普拉斯算子 ∆U =d iv g rad U=2222221111ϕθθθθθ∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂U r U r r r U r r rsin sin sin三、 曲线积分、曲面积分与体积导数[矢量的曲线积分及其计算公式] 矢量场R (r )沿曲线Γ的曲线积分定义为⎰ΓR (r )·d r =∑=∞→→ni n r 1lim∆R(i r ~)·∆ri-1 式中∆ri -1=ri -r i -1,右边极限与i r ~的选择无关,曲线 Γ由A 到B (图8.13)若矢函数R (r )是连续的(就是它的三个分量是 连续函数), 曲线Γ也是连续的, 且有连续转动的切线, 则曲线积分()⎰⋅Γr r R d存在.若R (r)为一力场,则P=()⎰⋅Γr r R d 就等于把一质点沿着Γ 移动时力R 所作的功. 矢量曲线积分的计算公式如下: ()⎰Γ⋅r r R d =()⎰++z Z y Y x X d d d Γ()⎰+⋅21ΓΓr r R d =()⎰⋅1Γr r R d +()⎰⋅2Γr r R d (图8.14)()⎰⋅Γr r R d =-()⎰-⋅Γr r R d()()[]⎰⋅+Γr r T r R d =()⎰⋅Γr r R d +()⎰⋅Γr r T d()⎰⋅Γr r R d k =k ()⎰⋅Γr r R d(k 为常数)[矢量的环流] 如果Γ为一闭曲线,则沿曲线Γ 的曲线积分()⎰⋅Γr r R d =()⎰++Γz Z y Y x X d d d 称为矢量场R (r )沿闭曲线Γ 的环流.势量场沿任何闭曲线的环流都等于零.如果R(r)为一势量场,且它的势函数为ϕ时,则曲线积分()⎰⋅Γr r R d =()⎰⋅B Ar r R d =ϕ(B )-ϕ(A )与连接A ,B 两点的路径无关,只依赖于A,B 两点的 位置(图8.15).[矢量的曲面积分] 设S 为一曲面,令N =()cos ,cos ,cos αβγ表示在曲面S 上一点的法线单位矢量, 而dS =N d S表示面积矢量元素.又设ϕ(r)=ϕ(x , y ,z )是定义在曲面S 上的连续标函数,R (r )=(X(x , y,z),Y (x , y ,z ), Z (x, y ,z ))是定义在曲面S上的连续矢函数,这里规定法线单位矢量与曲面分布在切面的两侧.则曲面积分有如下的三种形式:1标量场的通量(或流量)ϕS⎰⎰dS =ϕS yz⎰⎰d y d z i +ϕS zx ⎰⎰d z d x j +ϕS xy⎰⎰d x d y k式中S yz ,S zx ,Sxy 分别表示曲面S 在Oyz 平面,Oz x平面, O xy平面上的投影.Sx y的正负号规定如下:当从z轴正方 向看去时,看到的是曲面S 的正面,认为S xy 为正,如果 看到的是曲面的反面,则认为S xy 为负(图8.16).2矢量场的标通量S⎰⎰R ·d S =S yz⎰⎰X d yd z +S zx ⎰⎰Y d z d x+S xy⎰⎰Z d xd y式中S yz 等的意义同1.3矢量场的矢通量S⎰⎰R ×d S=S yz⎰⎰(Z j-Yk )dy d z +S zx ⎰⎰(X k-Z i)dz d x +S xy⎰⎰(Y i -Xj )d x d y式中S y z等的意义同1.[矢量的体积导数] 如果S 是包围体积V 的闭曲面,并包含点r,则沿闭曲面S 的曲面积分(S⎰ϕd S ,S⎰R ·dS,S⎰R ×d S )与体积V之比,当V 趋于零时(即它的直径→0)的极限称为标量场ϕ(或矢量场R )在点r 处的体积导数(或空间导数). 1标量场ϕ的体积导数就是它的梯度:grad ϕ=VSV ⎰→Sd limϕ02矢量场R的体积导数之一是它的散度:div R=VSV ⎰⋅→SR d lim3矢量场R 的另一个体积导数是它的旋度: rot R=-V S V ⎰⨯→S R d lim四、 矢量的积分定理[高斯公式]⎰⎰⎰V div R dV =S ⎰⎰R ·d S=S⎰⎰R ·N d S 即()⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SS Z Y X z y x z Z y Y x X d cos cos cos d d d γβα 式中S 为空间区域V 的边界曲面,N =()cos ,cos ,cos αβγ为在S 上一点的法线单位矢量,R(r)=(X (x , y,z ),Y (x , y,z ),Z (x , y ,z ))在V +S上有连续偏导数.[斯托克斯公式] S ⎰⎰r ot R ·dS=S ⎰⎰rot R ·N d S =L⎰R ·d r 即y x y X x Y x z x Z z X z y z Y y Z S d d d d d d ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ = ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S S y X x Y x Z z X z Y y Z d cos cos cos γβα = ⎰++L z Z y Y x X d d d式中S 为一定曲面的一侧,L 为曲面S 的闭边界曲线(L 的正向与N 构成右手系).S的每点有切面,其方向连续地依赖于曲面上的点,而边界曲线L上的每点都有切线(图8.17). R (r )=(X (x , y ,z ),Y (x , y ,z ),Z (x , y,z ))在曲面的所有点单值,并在与S 足够靠近的点处有连续偏导数.[格林公式]⎰⎰S ψϕgrad ·dS =()⎰⎰⎰⋅+VV d grad grad Δψϕψϕ ()⎰⎰-S ϕψψϕgrad grad ·d S =()⎰⎰⎰∆-∆VV d ϕψψϕ式中S 为空间区域V 的边界曲面,ϕψ,为两个标函数,在S上具有连续偏导数,且在V 上具有二阶连续偏导数,∆为拉普拉斯算子,特别⎰⎰S ϕgrad ·d S =⎰⎰⎰∆V V d ϕ 即⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂S V V z y x y x z x z y z y x d d d d d d d 222222ϕϕϕϕϕϕ。