表2-3 正态分布表
- 格式:doc
- 大小:69.00 KB
- 文档页数:1
2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
在Excel中创建正态分布图表时,并没有直接的“正态分布模板”,因为正态分布
图通常基于用户输入的数据参数(均值和标准差)来模拟或拟合正态分布曲线。
但你可以手动构建这样的图表,以下是简化的步骤:
1.计算正态分布函数值:
o使用Excel内置函数NORM.DIST(x, mean, standard_dev,
cumulative)来计算不同x值下的正态分布概率密度函数值。
其
中,
▪x是你想要计算分布概率的位置,
▪mean是正态分布的均值,
▪standard_dev是标准差,
▪cumulative如果是TRUE,则返回累积分布函数值,如果是
FALSE,则返回概率密度函数值。
2.生成数据系列:
o在Excel工作表中选择一列,输入一系列的x值(例如从-3到+3标准差范围内的等间距数值)。
o在相邻列中使用上述函数计算出对应的正态分布概率密度值。
3.绘制图表:
o选择包含x值和对应正态分布概率密度值的两列数据。
o在Excel中点击“插入”选项卡,然后选择“图表”>“散点图”或者“XY 散点图”类型。
o根据需要调整图表样式和标签,包括X轴标题(例如“变量
X”)、Y轴标题(例如“概率密度”)以及图表标题(例如“正态分
布曲线”)。
若你已经有了实际的数据并且想检查它们是否符合正态分布,可以计算数据的描述性统计量(如平均值、标准差),并利用直方图与理论正态曲线进行对
比,这可以通过Excel的数据分析工具包中的相关功能实现。
不过,展示一个理论上的正态分布曲线通常就是通过上述步骤来完成的。
标准正态分布分位数表正态分布这个概念在统计学中很常见,在做与正态分布有关计算的时候经常会用到标准正态分布表。
如果知道一个数值的标准分数即z-score ,就可以非常便捷地在标准正态分布表中查到该标准分数对应的概率值。
任何数值,只要符合正态分布的规律,均可使用标准正态分布表查询其发生的概率。
下表就是标准正态分布表,在使用的时候,第一步是先计算数值的标准分数,然后将标准分数四舍五入到小数点后第二位第二步是在标准正态分布表中的左侧查到直到标准分数的小数点后第一位,然后用顶部的数值查到所对应的标准分数的小数点后第二位。
市川新田三丁貝比如标准分数为1.16 ,在表左侧可以查到1.1所在的行,然后再找到0.06所在的列,最后对应的概率值为0.877。
这就意味看在正态分布的情况下,如果一个数值的标准分数为1.16 ,那么该数值所代表的情况出现的概率为87.7%。
以下通过案例来看标准正态分布表的应用。
假设某地成年男性的身高数据呈正态分布,平均身高为1.70米,标准差为4厘米。
问题:1.男性身高超过1.75米的占比为多少?2.男性身高在1.74-1.75米之间的占比为多少?3.如果有20%的男性身高高于某个数值,该数值所对应的身高数据是多少?4.如果有20%的男性身高低于某个数值,该数值所对应的身高数据是多少? 解题:1、先用标准分数即z-score计算公式将1.75米的身高数据转换成标准分数,结果为(1.75- 1.70) / 0.04 =1.25 ,这样问题就成了:在标准正态分布曲线中标准分数大于1.25的概率是多少?查询标准正态分布表,可以看到1.25的标准分数对应的概率值为0.894二89.4%,也就是有89.4%的男性身高数据的标准分数不超过1.25 ,因此有100%-89.4%二10.6%的男性身高超过1.75米。
■<厉丿」隔曰三丁目2、在问题1中已知身高为1.75米的标准分数为1.25 ,那么身高为1.74米的标准分数=(1.74 -170)/4 = 1.00,因此只需找到l.OOv标准分数<1.25所对应的概率即可,1.00的标准分数所对应的概率值为0.841 ,也就是有84.1%的男性身高数据的标准分数不超过1.00,因此身高在1.74-1.75米之间的男性占比为0.894-0.841 二0.853二5.3%3、如果说有20%的男性身高高于某个数值,那就意味看80%的男性身高不超过该数值,因此在标准正态分布表看到概率值为0.800所对应的标准分数为 0.84 ,现在将这个标准分数转换成身高数据,带入z-score的计算公式为0.84二(x-1.70)/0.04 ,结果为1.7336米,即在全部成年男性中有20%的男性身高高于1.7336米。
正态分布标准表
正态分布标准表是一种用于表示正态分布概率分布的表格,其中标准正态分布是其中的一种特例。
标准正态分布的概率密度函数为:
f(x) = 1/√(2π) * exp(-x^2/2)
其中,x是随机变量,π是圆周率,e是自然对数的底数。
在标准正态分布中,平均值为0,标准差为1。
标准正态分布表通常用于快速查找和计算正态分布下的概率值。
在表中,横轴表示标准正态分布下的取值范围,纵轴表示对应的概率值。
根据需要查找的x值,可以在表中查找到对应的概率值。
例如,如果需要查找z=1时的概率值,可以在标准正态分布表中查找到z=1对应的概率值。
由于标准正态分布中,z值是x值与平均值之差除以标准差得到的,因此当z=1时,对应的x值大约为1个标准差的位置。
在标准正φ(x)表中可以查找到此时的概率值为0.8413。