第五章_二次曲线的一般理论
- 格式:ppt
- 大小:1.89 MB
- 文档页数:44
唐山师范学院本科教学大纲数学与应用数学数学与信息科学系目录《几何学》课程教学大纲3《数学分析》课程教学大纲10《高等代数》课程教学大纲31《大学物理》理论课程教学大纲43《概率论》课程教学大纲54《数学建模》课程教学大纲61《近世代数》课程教学大纲67《常微分方程》课程教学大纲71《C++程序设计(上)》课程教学大纲76《C++程序设计(下)》课程教学大纲88《复变函数》课程教学大纲96《微分几何》课程教学大纲103《数理统计》课程教学大纲109《实变函数》课程教学大纲116《泛函分析》课程教学大纲121《高等几何》课程教学大纲126《数学史》课程教学大纲132《组合数学》课程教学大纲136《数学英语》课程教学大纲142《分析方法》课程教学大纲145《代数方法》课程教学大纲154《点集拓扑学》课程教学大纲161《数值分析》课程教学大纲169《模糊数学》课程教学大纲180《数学物理方程》课程教学大纲188《数学实验》课程教学大纲194《运筹学》课程教学大纲199《差分方程》课程教学大纲206《应用随机过程》课程教学大纲212《数据库原理与应用》课程教学大纲219《Flash动画制作》课程教学大纲230《网页制作》课程教学大纲250《Photoshop》课程教学大纲270《C-Sharp程序设计》课程教学大纲279《信息与编码》课程教学大纲284《图形与图像处理》课程教学大纲290《小波分析》课程教学大纲298《密码学》课程教学大纲302《数学教学论》课程教学大纲308《教学指导与教学技能训练》课程教学大纲316数学与信息科学系教育实习教学大纲319《毕业论文》教学大纲 323《几何学》课程教学大纲课程编码:171100020课程性质:学科基础必修课程适用专业:数学与应用数学专业学时学分:60学时4.5学分所需先修课:高中数学编写单位:数信系编写人:杨景飞审定人:樊丽丽编写时间:2014年6月一、课程说明1、课程简介解析几何是大学本科数学与应用数学及信息与计算科学专业的一门重要基础课,它是数学分析、代数等许多数学分支产生和发展的基础和背景。
第五章 二次曲线的一般理论 主要问题:(1)几何性质 (2)化简 (3)分类5.1 二次曲线与直线的相关位置(x y y x y xy x 240256102222==+--+-与) 一、预备知识1、在平面上由)1(0222),(33231322212211=+++++=a y a x a y a xy a x a y x F 所表示的曲线,叫做二次曲线(系数都为常数)2、关于虚点⎩⎨⎧+==b kx y y x F 0),( ⎪⎪⎩⎪⎪⎨⎧+-=+-+=+)222,222(2)222,222(122i i y x i i y x平面上建立笛卡尔坐标系后,一对有序常数),(y x 表示平面上一个点,如果y x ,中至少有一个是虚数,我们仍认为),(y x 表示平面上一个点。
(一对共轭虚点的中点是实点)3、记号33231322212211222),(a y a x a y a xy a x a y x F +++++='131211121),(x F a y a x a y x F =++= '232212221),(y F a y a x a y x F =++=3323133),(a y a x a y x F ++= 222122112),(y a xy a x a y x ++=φ容易验证:),(),(),(),(321y x F y x yF y x xF y x F ++=⎪⎪⎪⎭⎫ ⎝⎛=332313232212131211a a a a a a a a a A 二次曲线)(I 的矩阵 ⎪⎪⎭⎫⎝⎛=*22121211a aa a A ),(y x φ的矩阵 A I a a a a I a a I ==+=322121211222111,,33232322331313111a a a a a a a a k +=例:写出下列二次曲线的矩阵321,,F F F A 及04762)3(2)2(1)1(2222222=-+-+-==+y x y xy x x y by a x二、相关位置二次曲线0),(=y x F 与过点 且具有方向Y X :的直线⎩⎨⎧+=+=Yt y y Xt x x 00联立,0),(]),(),([2),(000020012=+++⇒y x F t Y y x F X y x F t Y X φ1、),(),(]),(),([,0),(002002001y x F Y X Y y x F X y x F Y X φφ-+=∆≠ 010>∆ 方程有两个不等实根⇒21,t t 有两个不同的实交点 020=∆ 方程有两个相等实根⇒21,t t 有两个相互重合的实交点 030<∆ 方程有两个共轭虚根⇒交于两个共轭的虚点2、0),(=Y X φ0),(),(10020010≠+Y y x F X y x F ,有唯一实根⇒有唯一实交点 ⇒≠=+0),(0),(),(2000020010y x F Y y x F X y x F 而没有交点⇒==+0),(0),(),(3000020010y x F Y y x F X y x F 且直线全部在二次曲线上 eg1、试确定的值k 使直线05=+-y x 与二次曲线032=++-k y x x 交于两个不同实点,043122=--+⎩⎨⎧+=+=y xy y x t k y ktx 与二次曲线交于一点注:平面直线方程:Yy y X x x 00-=- b kx y +=⎩⎨⎧+=+=Yt y y Xtx x 005.2、二次曲线的渐近方向、中心、渐近线一、渐近方向1、定义:满足Y X Y X :0),(的方向=φ叫做二次曲线的渐近方向,否则叫做非渐近方向)1(02),(22212211=++=Y a XY a X a Y X φ 渐近方向Y X :总有确定的点 2、按渐近方向分类 若112122212211110)(2)()1(,0a I a Y X a Y X a Y X a a -±-=⇒=++≠改写成 若22212220a I a X Y a -±-=⇒≠ 若,02211==a a 则一定有10:1012或=⇒≠Y X a 此时00021212122<-==a a a I故02>I 二次曲线的渐近方向是一对共轭的虚方向 02=I 二次曲线有一个渐近的实方向 02<I 二次曲线有两个渐近的实方向显然:二次曲线的渐近方向最多有两个,而非渐近方向有无穷个按渐近方向可分为三种类型(1) 02>I 椭圆形曲线 122=+y x (2) 02=I 抛物线曲线 2x y = (3) 02<I 双曲型曲线 122=-y x二、二次曲线的中心与渐近线 定义:如果点c 是二次曲线通过它的所有弦的中点,称点c 是二次曲线的中心),(00y x c 是二次曲线的中心⎩⎨⎧==⇒0),(0),(002001y x F y x F推论:)0,0(是二次曲线的中心⇒曲线方程不含y x 与的一次项 证:将直线方程代入,得:0),(]),(),([2),(000020012=+++y x F t Y y x F X y x F t Y X φ由于),(000y x M 是两交点的中心021=+⇒t t 0),(),(002001=+⇒Y y x F X y x F由于Y X :为任意非渐近方向⎩⎨⎧==⇒0),(0),(002001y x F y x F⎩⎨⎧=++=++003302201213012011a y a x a a y a x a(1) 若有唯一中心方程有唯一解⇒⇒≠=0221212112a a a a I(2) 若⎪⎪⎪⎩⎪⎪⎪⎨⎧=++⇒==⇒≠===—中心直线—中心上所有点都是二次曲线直线有无穷解)(无中心无解)(即0210131211231322121211231322121211221212112a y a x a a a a a a a a a a a a a a a a a I二次曲线⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧==≠==≠2313221212112313221212112200a a a a a a a a a a a a I I 线心曲线无心曲线非中心曲线中心曲线: 定义:通过二次曲线的中心,而且以渐近方向为方向的直线叫做二次曲线的渐近线。
《解析几何》教学大纲课程编码:1512100803课程名称:解析几何学时/学分:48/3先修课程:适用专业:信息与计算科学开课教研室:代数与几何教研室一、课程性质与任务1.课程性质:本课程是信息与计算科学专业的一门重要的专业基础课。
2.课程任务:通过学习,使学生初步掌握解析几何的基本思想、基本理论和研究方法,积累必要的数学知识,培养学生抽象思维能力、建立数学模型的能力、推理和演算能力,提高学生利用解析几何知识分析问题和解决问题的能力。
二、课程教学基本要求要求学生熟练掌握本课程的基本概念、基本理论及其推导过程。
通过课程教学及习题训练等教学环节,使学生做到概念清晰、推理严密。
本课程的教学,一方面要注意培养学生从几何直观方面分析和洞察问题的能力,另一方面要使学生注意掌握必要的代数方法和计算技巧,能准确地进行计算。
成绩考核形式:期终成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章 向量与坐标1.教学基本要求使学生掌握向量及其运算的概念,空间坐标系的建立。
2.要求学生掌握的基本概念、理论、技能通过本章学习,使学生理解建立空间坐标系的基本思想,会利用向量法解决一些几何问题。
掌握向量的各种运算及其运算规律。
3.教学重点和难点本章教学重点是向量的线性关系与向量的分解、两向量的数量积、两向量的向量积、三向量的混合积;教学难点是坐标系的建立,利用向量解决几何问题的基本方法。
4.教学内容第一节 向量的概念1.向量的定义2.自由向量的定义3.共线向量的定义4.共面向量的定义第二节 向量的加法1.向量加法的定义2.向量加法的运算规律3.向量减法的定义4.向量加法和减法的互换第三节 数量乘向量1.数乘的定义2.数乘的运算规律第四节 向量的线性关系与向量的分解 1.向量的线性分解定理2.向量线性相关、相性无关的定义3.向量线性相关的判定定理4.向量线性相关与两向量共线、三向量共面的关系第五节 标架与坐标1.标架的定义2.坐标的定义3.用坐标进行向量的运算4.用坐标判定两向量共线、三向量共面5.线段的定比分点坐标第六节 向量在轴上的射影1.向量在轴上的射影的定义2.向量在轴上的射影的计算公式第七节 两向量的数量积1.两向量的数量积的定义2.两向量的数量积的运算规律3.用数量积为零来判断两向量垂直4.直角坐标系下用向量的坐标来表示数量积5.两点间的距离6.向量的方向余弦7.两向量的交角第八节 两向量的向量积1.两向量的向量积的定义2.两向量的向量积的运算规律3.用向量积来判断两向量共线4.用向量积的模来计算平行四边形的面积5.直角坐标系下用向量的坐标来表示向量积第九节 三向量的混合积1.三向量的混合积的定义2.利用三向量的混合积计算平行六面体的体积3.三向量的混合积的运算规律4.利用混合积为零来判断三向量共面5.直角坐标系下用向量的坐标来表示三向量的混合积★第十节 三向量的双重向量积1.三向量的双重向量积的定义2.三向量的双重向量积的运算公式第二章 轨迹与方程1.教学基本要求使学生掌握空间曲面方程与曲线方程的基本概念,能通过曲面或曲线上点的性质,建立曲面或曲线的方程。
第五章二次曲线的一般理论§ 5.1 二次曲线与直线的相关位置1. 求直线x-y-1=0与二次曲线2x2 xy y2 x 2y 1 0的交点.解:将y=x-1代入曲线方程,得2 22x x x 1 x 1 x 2 x 1 1 0,即0 0故直线在二次曲线上•2. 试决定k的值,使得(1) 直线x y 5 0与二次曲线x23x y k 0交于两不同实点;⑵直线x 1 kt与二次曲线x23y24xy y 0交于一点;y k t⑶直线x ky 1 0与二次曲线y22xy (k 1)y 1 0交于两个相互重合的实点x 1 t⑷已知直线与二次曲线2x2 4xy ky2 x 2y 0有两个共轭虚点,求ky 1 t的值解:(1). 将y=x+5代入二次曲线方程,得2x 2x k 5 02Q 2 4 k 5 04k 16 0k 4时,直线与二次曲线有两个不同的实交点•1 2 0(2).二次曲线的矩阵为 2 3 1/20 1/2 0且v X,丫k,1 •, X o, y o 1,kk 1,3时,原直线与二次曲线交于一个实点k 49时,直线与二次曲线有两个共轭虚交点。
24§ 5.2 二次曲线的渐进方向、中心、渐进线1. 求下列二次曲线的渐进方向,并指出曲线是属于何种类型的.1 x2 2xy y 2 3x y 0; 222 3x 4xy 2y 6x 2y 5 0;3 2xy 4x 2y 30.11 解:(1) Q X,Y X2 2XY Y 2 0时,X : Y1:1,同时 I ?0,11曲线有一个实渐进方向,是抛物型的k,1 k 2 4k 3 0,则 k 1 1,k 2 3,1)当 k . 1 时,F , X o y o X F 2 X o ,y o Y 0, 2).当 k 23时,F1X 0, y 0 X F 2X 0, y 0 Y1513 0,2(3). 二次曲线的矩阵为(1 11 (1 k)/20 k)/2 1解之, v X,Yk,1 , X o ,y o1 0,即―4k 1 1,k 25,2k0,即 k 2 6k 50,1)当 1时, X,Y k,1 2k 0, 2)当5时, 1,5 时, X,Y直线与二次曲线有二重合实交点.k,12k 0,(4).二次曲线的系数矩阵为22 1/21/ 2 1 01:( 1)取(X 0,y0)(“),令V0,即[2(1k)(1)]2 (k 2)(3 k) 0 解得k24,且此时(1,1) 24( 1) k28282 Q X,Y 3X 2 4XY 2Y 2 0时,X :Y且i 23 2 2 o, 22曲线有两个共轭的虚渐进方向,是椭圆型的.•••曲线有两个渐进方向,是双曲型的•2. 判断下列二次曲线是中心曲线,无心曲线还是线心曲线1 1解:(1) QI 21 0 ,故为中心曲线;1 21 2 1 2 Q A24 1711 1有I 21 2 0,且 9113]2a 1324a 12a 22a 23曲线为无心曲线;an a 12 a 13 1 ,且有 一一 一 3,-312a 22 a 23•••曲线为线心曲线. 3. 求下列二次曲线的中心 2 21 5x 2xy 3y 2x 3y 6 0;2 22 2x 5xy 2y 6x 3y 5 0;3 9x 2 30xy 25y 2 8x 15y 0;2 24 4x 4xy y 4x 2y 0.X;Y 0:1 或 1:0,且 *〈0,5x y 1解1由解得x13 2 2 1 x 2xy 2y 22 2 x 4xy 4y223 9x 6xy y4x 6y 3 0; 2x 2y 1 0;6x 2y 0.••中心为3 (, 13 )28 282x5 y 3 0 2 由 2解得x 1, y 2 5 2y 3 x2 2--中心为1,2 J3an ai 2 3 a134 Q ———a i2 a225 ^23 15 '2曲线没有中心.曲线为线心曲线,中心直线方程为2x-y+仁0.y y 。
高中数学二次曲线的一般方程解析及应用实例二次曲线是高中数学中的重要内容,它在几何形状、函数图像以及实际问题中都有广泛的应用。
本文将从一般方程的解析入手,通过具体的应用实例,深入讲解二次曲线的相关知识点和解题技巧。
一、二次曲线的一般方程解析二次曲线的一般方程为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为常数,且A、B、C不全为0。
根据系数B^2 - 4AC的正负,可以将二次曲线分为椭圆、双曲线和抛物线三种情况。
1. 椭圆:当B^2 - 4AC < 0时,二次曲线为椭圆。
椭圆是一个闭合曲线,具有两个轴,分别为长轴和短轴。
解析中,我们可以通过平移坐标轴的方法,将椭圆的一般方程化为标准方程。
例如,考虑方程2x^2 + 3xy + 4y^2 - 8x - 10y + 5 = 0,根据系数B^2 - 4AC =3^2 - 4(2)(4) = -23 < 0,可知该方程表示一个椭圆。
我们可以通过配方的方法将其化为标准方程,进而求得椭圆的焦点、离心率等重要参数。
2. 双曲线:当B^2 - 4AC > 0时,二次曲线为双曲线。
双曲线是一个开口的曲线,具有两个分支。
解析中,我们可以通过平移坐标轴的方法,将双曲线的一般方程化为标准方程。
例如,考虑方程3x^2 - 4xy + 2y^2 + 6x - 8y - 1 = 0,根据系数B^2 - 4AC = (-4)^2 - 4(3)(2) = 16 - 24 = -8 < 0,可知该方程表示一个双曲线。
我们可以通过配方的方法将其化为标准方程,进而求得双曲线的渐近线、焦点等重要参数。
3. 抛物线:当B^2 - 4AC = 0时,二次曲线为抛物线。
抛物线是一个开口向上或向下的曲线。
解析中,我们可以通过平移坐标轴的方法,将抛物线的一般方程化为标准方程。
例如,考虑方程x^2 + 4xy + 4y^2 - 6x - 10y + 9 = 0,根据系数B^2 - 4AC = (4)^2 - 4(1)(4) = 0,可知该方程表示一个抛物线。
二次曲线的一般式-概述说明以及解释1.引言1.1 概述二次曲线是数学中重要的曲线类型之一。
它由二次方程所表示,是平面上的曲线。
在二次曲线上,点到定点的距离与点到定直线的距离的比值恒定,这是二次曲线独特的性质之一。
二次曲线广泛应用于几何学、物理学、工程学和计算机图形学等领域。
在几何学中,二次曲线的性质和特点被用于解决许多关于曲线的问题,如焦点、直径、切线和法线等。
在物理学中,二次曲线的运动方程被用于描述抛物线运动或者椭圆轨道等运动问题。
在工程学中,二次曲线常用于设计道路、桥梁和建筑物的曲线部分,以达到美观和结构稳定的目的。
在计算机图形学中,二次曲线被广泛应用于绘制曲线和曲面,用于创建平滑的图形效果。
本文将深入探讨二次曲线的一般式,包括其定义、性质和特点。
我们将介绍二次曲线的一般形式,并重点讨论其中的关键概念和公式。
通过学习二次曲线的一般式,读者能够更好地理解二次曲线的特性,并能够应用这些知识解决相关问题。
接下来的章节将按照以下结构展开:首先,我们将介绍二次曲线的定义和一般形式,包括其方程和基本图形。
然后,我们将深入研究二次曲线的性质和特点,例如焦点、直径和切线等。
最后,我们将总结二次曲线的一般式,并探讨其应用和意义。
在本文的剩余部分,读者将逐步了解二次曲线的复杂性和多样性,以及它们在数学和实际应用中的作用。
无论读者是初学者还是对二次曲线较为熟悉的人,本文都将为他们提供全面而深入的知识,帮助他们更好地理解和运用二次曲线的一般式。
文章1.2文章结构部分的内容可以如下编写:文章结构是指文章的整体组织和布局方式,在本文中分为引言、正文和结论三个部分。
引言部分是文章的开端,概述了二次曲线的一般式的主题和背景,引起读者的兴趣。
其中,1.1小节对二次曲线的概念和定义进行解释,确保读者了解文章所涉及的数学概念。
1.2小节则介绍了本文的文章结构,提供了整篇文章的脉络,为读者理解文章内容奠定基础。
最后,1.3小节明确了本文的目的,即探究二次曲线的一般式,并说明了相关探究的意义。
《解析几何》课程教学大纲课程代号:21090010总学时:讲授/理论52学时,实验/技术/技能20学时,上机/课外实践0 学时适用专业:数学与应用数学、信息与计算科学先修课程:本课程是建立在中学《平面解析几何》与《立体几何》的基础上, 引进向量代数这个工具,在立体空间建立起空间坐标系,从而建立代数与空间几何的内在联系,达到用代数方法解决几何问题的目的。
一、本课程地位、性质和任务本课程为高等院校数学系各专业的一门必修的专业基础课程。
它为学习数学系的其它课程(诸如《数学分析》、《高等代数》及《微分几何》等打好基础,同时,它在自然科学与工程技术中,也有广泛的应用。
通过本课程的教学,应使学生系统地掌握空间解析几何的基础知识和基本理论;正确地理解和使用向量;在掌握几何图形性质的同时,提高运用代数方法,解决几何问题的能力;进一步培养学生的空间想象能力;能在较高的理论水平基础上,处理教学或工程技术中的有关问题。
二、课程教学的基本要求能够以向量代数为工具,用标架法建立空间直线、平面方程;掌握直线、平面的位置关系及几何量计算;掌握特殊曲面方程的推导并能利用平面截割法刻划曲面的几何性质;二次曲线(曲面)的一般理论。
三、课程学时分配、教学要求及主要内容(一)课程学时分配一览表早主要内容总学学时分配讲授讨论习题实验其他1向量与坐标181442轨迹与方程443平面与空间直线161244特殊曲面与二次曲16106面181265二次曲线的一般理论(二)课程教学要求及主要内容第一章向量与坐标教学目的和要求:向量代数及坐标法在自然科学和工程技术中有着广泛的应用。
本章是工具性的知识,是学习后面各章的基础。
本章通过向量代数与空间坐标系基本知识的教学,使学生能以向量为工具,研究并简单地解决某些几何问题。
教学重点和难点:1、透彻理解向量的有关基本概念。
2、牢固掌握向量的各种运算及其对应的几何意义与算律。
3、理解坐标系建立的依据以及向量与点坐标的意义,熟练地利用向量的坐标进行运算。
二次曲线的基本概念与性质二次曲线作为数学中的重要概念之一,具有广泛的应用和深入的理论研究。
它在几何学、物理学、经济学等学科中发挥着重要作用。
本文将介绍二次曲线的基本概念和性质,以帮助读者更好地理解和应用二次曲线。
一、二次曲线的定义二次曲线是由二次方程所表示的曲线,其一般形式可以写成:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F是实数,且至少有一个系数不为零。
二、二次曲线的分类根据二次曲线的方程,我们可以将其分类为三种常见形式:椭圆、双曲线和抛物线。
1. 椭圆:椭圆是由平面上到两个定点的距离之和等于常数的点的轨迹所形成的曲线。
椭圆的方程可以写成标准形式:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)是椭圆的中心坐标,a和b 分别是椭圆的长半轴和短半轴。
2. 双曲线:双曲线是由平面上到两个定点的距离之差等于常数的点的轨迹所形成的曲线。
双曲线的方程可以写成标准形式:(x-h)^2/a^2 - (y-k)^2/b^2 = 1,其中(h, k)是双曲线的中心坐标,a和b 分别是双曲线的长半轴和短半轴。
3. 抛物线:抛物线是由平面上到定点的距离等于定直线的距离所形成的曲线。
抛物线的方程可以写成标准形式:y = a(x-h)^2 + k,其中(h, k)是抛物线的顶点坐标,a是抛物线的参数。
三、二次曲线的性质1. 对称性:椭圆、双曲线和抛物线都具有对称性。
椭圆具有关于x轴和y轴的对称性,双曲线具有关于坐标轴和原点的对称性,抛物线具有关于y轴的对称性。
2. 焦点和准线:椭圆和双曲线都有焦点和准线。
焦点是离心率所确定的两个定点之一,准线是离心率的长度倍的直线。
焦点和准线在二次曲线的性质中起着重要作用。
3. 弦和切线:二次曲线可以通过弦和切线来研究。
弦是连接曲线上两点的线段,切线是曲线上某点的斜率与曲线相切的直线。
4. 集中度和离心率:二次曲线的集中度和离心率是描述曲线形状的重要参数。