影响烧结的因素(新)
- 格式:ppt
- 大小:433.00 KB
- 文档页数:23
烧结的问题和解答第九章烧结1、解释下列名词(1)烧结:粉料受压成型后在高温作用下而致密化的物理过程。
烧成:坯体经过高温处理成为制品的过程,烧成包括多种物理变化和化学变化。
烧成的含义包括的范围广,烧结只是烧成过程中的一个重要部分。
(2)晶粒生长:无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程。
二次再结晶:少数巨大晶粒在细晶消耗时成核长大过程。
(3)固相烧结:固态粉末在适当的温度、压力、气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。
液相烧结:有液相参加的烧结过程。
2、详细说明外加剂对烧结的影响?答:(1)外加剂与烧结主体形成固溶体使主晶格畸变,缺陷增加,有利结构基元移动而促进烧结;(2)外加剂与烧结主体形成液相,促进烧结;(3)外加剂与烧结主体形成化合物,促进烧结;(4)外加剂阻止多晶转变,促进烧结;(5)外加剂起扩大烧结范围的作用。
3、简述烧结过程的推动力是什么?答:能量差,压力差,空位差。
4、说明影响烧结的因素?答:(1)粉末的粒度。
细颗粒增加了烧结推动力,缩短原子扩散距离,提高颗粒在液相中的溶解度,从而导致烧结过程的加速;(2)外加剂的作用。
在固相烧结中,有少量外加剂可与主晶相形成固溶体,促进缺陷增加,在液相烧结中,外加剂改变液相的性质(如粘度,组成等),促进烧结。
(3)烧结温度:晶体中晶格能越大,离子结合也越牢固,离子扩散也越困难,烧结温度越高。
(4)保温时间:高温段以体积扩散为主,以短时间为好,低温段为表面扩散为主,低温时间越长,不仅不引起致密化,反而会因表面扩散,改变了气孔的形状而给制品性能带来损害,要尽可能快地从低温升到高温,以创造体积扩散条件。
(5)气氛的影响:氧化,还原,中性。
(6)成形压力影响:一般说成型压力越大颗粒间接触越紧密,对烧结越有利。
5、在扩散传质的烧结过程中,使坯体致密的推动力是什么?哪些方法可促进烧结?说明原因。
1以SiC 为例,分析影响液相烧结的因素及解决措施。
答:在液相烧结过程中,影响液相烧结的因素主要为以下几个方面:1、颗粒粒度与形状细颗粒有利于提高烧结致密化速度,便于获得高的最终烧结密度。
在颗粒重排阶段提高毛细管力便于固相颗粒在液相中移动(尽管会增加颗粒之间的摩擦力和固相颗粒之间的接触机会)。
在溶解-再析出阶段强化固相颗粒之间和固相/液相间的物质迁移加快烧结速度。
另外,细小晶粒的烧结组织有利于获得性能优异的烧结材料。
此外,颗粒重排阶段初期,颗粒形状影响毛细管力大小,形状复杂导致颗粒重排阻力增加,球形颗粒有利于颗粒重排,形状复杂的固相颗粒降低烧结组织的均匀性,综合力学性能较低在溶解-再析出阶段,颗粒形状的影响较小。
2、液相的影响[1]液相的粘度、表面张力、润湿性、数量等对烧结的影响。
液相的粘度愈低, 它们对固相的浸润愈好, 愈有利于烧结。
同时, 在一般情况下, 由于物质在液相中的扩散速度比在固相中快, 人们通常认为液相存在总是能促进烧结的, 但事实并非完全为人们所想像的那样。
在许多情况下液相存在反而阻碍烧结, 液相粘度降低和对固体浸润性能的改善并不一定总是有利于烧结的。
液相对烧结过程的作用主耍为两部分:首先是在液相毛细管力和由于表面曲率不同而引起的压力差的作用下所发生的固体颗粒重排过程,在这部分作用中, 液相对固相的浸润性能起重要作用。
其次为通过液相的重结晶过程。
润湿性液相对固相颗粒的表面润湿性好是液相烧结的重要条件之一,对致密化、合金组织与性能的影响极大。
润湿性由固相、液相的表面张力(比表面能)S γ、L γ以及两相的界面张力(界面能) SL γ所决定。
如图5—47所示:当液相润湿固相时,在接触点A 用杨氏方程表示平衡的热力学条件为cos S SL L γγγθ=+式中θ——湿润角或接触角。
完全润湿时,0θ=,cos SSL L γγγθ=+式变为S SL L γγγ=+;完全不润湿时,θ>90,则S L L S γγγ≥+。
影响耐火材料烧结的因素指导老师:学院:能源科学与工程学院专业班级:热动姓名:学号:影响耐火材料烧结的因素耐火材料的烧结盟一个复杂的、受多种因素制约的过程。
影响烧结的主要因素包括原料的性质、添加剂、烧结温度和保温时间、烧成气氛以及坯体的成型方法和压力等。
一、原料的影响原料对烧结的影响分为内因和外因两个方面。
内因是物料的结晶化学特性,外因则主要体现为所用原料的颗粒组成。
物料晶体的晶格能是决定物料烧结和再结晶难易的重要参数。
晶格能大的晶体,结构较稳定,高温下质点的可移动性小,烧结困难。
晶体结构类型也是一个重要影响因素,物料阳离子的极性低,则其形成的化合物的晶体结构较稳定,必须在接近熔点的温度下才有显著缺陷,故该类化合物质点的可移动性小,不易烧结。
耐火材料中Al2O3 、MgO的晶格能高而极性低,故较难于烧结。
由微细晶粒组成的多晶体比单晶体易于烧结,因为在多晶体内含有许多晶界,此处是消除缺陷的主要地方,还可能是原子和离子扩散的快速通道。
离子晶体烧结时,正、负离子都必须扩散才能导致物质的传递和烧结。
其中扩散速率较慢的一种离子的扩散速率控制着烧结速度。
一般认为负离子的半径较大,扩散速率较慢,但对Al2O3 、Fe2O3的实验研究发现,O2-通过晶界提供的通道快速扩散,以致正离子Al3+、Fe3+的扩散比氧离子慢,成为烧结过程控速步骤。
晶体生长速度是影响烧结的另一个晶体化学特性。
例如MgO烧结时晶体生长很快,很容易长大至原始晶粒的1000~1500倍,但其密度只能达到理论值的60%~80%。
Al2O3 则不然,虽其晶粒长大仅50~100倍,却可达到理论密度的90%~95%,基本上达到充分烧结。
为使MgO材料密度提高,必须抑制晶粒长大的措施。
所用原料的粒度也是影响烧结致密化的重要因素,无论是固相烧结还是液相烧结,细颗粒均增加了烧结的推动力,缩短了粒子扩散的距离和提高了颗粒在液相中的溶解度而导致烧结过程的加速,有资料报道,MgO的原始粒度为20μm以上时,即使在1400℃长时间保温,仅能达到相对密度的70%而不能进一步致密化;当粒径在20μm以下时,温度为1400℃或粒径为1μm以下,在1000℃时,烧结速度很快;如果粒径在0.1μm以下时,其烧结速度与热压烧结相差无几。
催化剂烧结的原因
催化剂烧结是指在高温下,催化剂颗粒之间发生结合,形成更大颗粒的过程。
这种现象在工业生产过程中经常出现,对于催化剂的活性和稳定性都会产生影响。
那么,催化剂烧结的原因是什么呢?
催化剂烧结的原因之一是催化剂颗粒之间的相互作用力。
在高温条件下,催化剂表面的活性位点会发生变化,使得催化剂颗粒之间的相互作用力增强。
这种相互作用力会导致催化剂颗粒之间结合在一起,形成更大颗粒的现象。
这种结合会导致催化剂的比表面积减小,从而影响催化剂的活性。
催化剂烧结的原因还可能与催化剂的成分和结构有关。
一些催化剂的成分可能会在高温下发生化学反应,导致催化剂颗粒之间的结合。
此外,催化剂的结构也会影响烧结的程度。
如果催化剂的结构不稳定或者存在缺陷,那么在高温条件下就容易发生烧结现象。
催化剂烧结的原因还可能与反应条件有关。
例如,反应器内部的流动状况、温度梯度等因素都会影响催化剂的烧结情况。
如果反应条件不稳定或者不合适,就容易导致催化剂的烧结现象发生。
为了避免催化剂烧结,可以采取一些措施。
首先,可以优化催化剂的成分和结构,使其在高温条件下更加稳定。
其次,可以控制好反应条件,避免出现不利于催化剂稳定的情况。
另外,定期清洗和更换催化剂也是防止烧结的有效方法。
总的来说,催化剂烧结是由多种因素共同作用导致的现象。
要想有效地防止烧结,就需要综合考虑催化剂的成分、结构、反应条件等因素,采取适当的措施进行处理。
只有这样,才能保证催化剂的活性和稳定性,提高工业生产的效率和质量。
烧结生产工艺改进思考摘要:烧结生产的过程十分繁杂,且对技术具有较高要求,为了确保最终所呈现的工艺效果更加优质,且突出整体的作业品质,有关单位需要做好工艺的改进处理。
下面,主要分析影响烧结生产工艺的因素,并探索合理的改进技术,进而保证最终所呈现的烧结处理效果与新时期的发展需求更加契合。
关键词:烧结;生产工艺;改进前言:在全面开展烧结处理工艺期间,有关单位需要从技术改进与优化的视角展开深入的分析。
在掌握主要的影响因素之后,需要探寻更加合理的解决措施和方法。
进而保证最终所构建的工艺体系更加完整,且提高整体的实践效能,突出烧结工艺的综合质量。
一、影响烧结生产工艺的因素分析据了解,在烧结生产工艺过程当中,影响整体烧结质量的因素比较多样,其中焦炭产量的配比发挥着重要影响。
其次,在进行烧结作业的过程中,有关单位还需要进一步明确反料配比这一要素所发挥的影响,并结合实际的烧结作业要求,对反料配比的参数以及透气性的各项指标加以明确,否则的话将影响整体的消极实践质量。
同时,有关单位还需要从混合料的角度着手,就具体的影响加以分析,判定好具体的粒度关系,分析其与整个烧结工艺之间的相互关系,并探索合理的处理举措。
对混料中的水分含量加以优化,只有这样才能够保证最终所呈现的烧结处理效果更加的优质。
二、烧结生产工艺的改进分析(一)自动配料技术在烧结工艺方面,有关单位需要充分发挥自动配料这一技术工艺所具备的支撑作用[1]。
改变传统配料技术所存在的弊端和局限,进而保证最终所获得的配料结果更加精准,也能提高整体的配料实践效能。
一般在运用这一技术的过程中,需要根据具体的烧结工艺作业要求,备好一定数量的配合材料。
然后发挥先进技术设备的支撑作用,对其进行科学的配料处理。
在整个实践的过程中能够有效降低在人工方面的成本投入,也能够合理控制业为人工操作失误而造成的不良风险。
相较于以往的技术手段,该工艺所具备的时效性特征尤为显著,比较受到烧结工艺生产实践过程的推崇和应用,展现出独特的作用。
19影响氧化铝陶瓷烧结的因素分析刘国祥(214221江苏省陶瓷研究所7401314)摘要阐述了氧化铝陶瓷的烧结机理,分析了烧成气氛、物料分散度及添加熔剂等因素对氧化铝制品烧结程度的影响,总结出理想的升温制度、保温时间、绘制烧成曲线。
关键词氧化铝陶瓷烧结机理影响因素烧成制度1前言进入“九五”以来,工业特种陶瓷得到了迅猛发展。
其中氧化铝陶瓷以其优良的特性如耐酸碱性、耐磨性、耐电性、机械强度高等,在工业化生产中得到了广泛的应用。
因此,深入研究氧化铝陶瓷的生产技术及其发展,服务于生产和社会需要就显得相当重要。
在氧化铝陶瓷的生产过程中,无论是原料制备、成型、烧结还是冷加工,每个环节都是不容忽视的。
坯体烧结后,制品的显微结构及其内在性能发生了根本的改变,很难通过其它办法进行补救。
因此,深入研究氧化铝陶瓷的烧结技术,合理选择理想的烧结制度确保产品的性能,对氧化铝陶瓷生产极有帮助。
2烧结机理烧结是指坯体由低温到高温发生一系列的物理化学反应,从而得到致密的、坚硬的制品的过程。
其中物理化学变化包含坯体中残余的拌料水分的排溢、物料中化合物结合水和有机物的分解排除、Al2O3同质异晶的晶型转变以及固态物质颗粒间直接进行反应———固相反应等。
固相反应在氧化铝陶瓷烧结中占有极为重要的位置,它实质上是通过物质质点的迁移扩散作用而进行的,随着温度的升高,晶体的热缺陷不断增加,质点迁移扩散由内扩散形式到外扩散,并更加充分,从而发生反应,产生新的物质(见图1)。
如图1所示,假定颗粒是圆的,温度升高,颗粒界面相互融合,形成勃颈并不断扩大,颗粒径距缩短,气孔变小并逐渐排除,晶粒长大,体积收缩,最后形成致密体。
从以上的分析可以看出,固相反应的关键是迁移,提高质点的迁移速度和效率,就能有效地促进烧结和致密过程;反之,就起阻碍作用。
3影响烧结性能的因素影响氧化铝陶瓷烧结程度的因素较多,主要表现为以下几点:3.1晶体的结构化学键强的化合物(晶体)具有较高的晶格能量,晶格结构牢固:即使在较高温度下,质点的振动迁移也较弱。
影响粉末体烧结的因素
影响粉末体烧结的因素主要包括以下几个方面:
1. 粉末粒度:粉末的粒度大小直接影响烧结过程中的粒子间的相互作用力和表面扩散速率。
粉末的细度越高,粒子间的相互作用力越大,烧结速度越快。
2. 粉末成分:粉末的化学成分决定了其烧结温度和烧结过程中的相变行为。
不同成分的粉末在烧结过程中会发生不同的反应,从而影响烧结的结果。
3. 烧结温度:烧结温度是影响烧结过程的重要参数。
过低的烧结温度会导致烧结不完全,粉末颗粒之间的结合力不足;过高的烧结温度会使粉末过烧,颗粒聚结,从而影响材料的性能。
4. 烧结气氛:烧结气氛对烧结过程和烧结产物的影响较大。
不同气氛下的烧结过程会引起不同的物理、化学反应,从而影响烧结产物的组织结构和性能。
5. 烧结时间:烧结时间是指粉末在烧结过程中的暴露时间。
烧结时间过长会导致过度烧结,烧结颗粒之间的结合力过强,从而影响材料的性能;烧结时间过短会导致烧结不完全,颗粒之间结合力不足,影响材料的致密性和力学性能。
6. 烧结压力:烧结过程中施加的压力可以改变粉末的形变、流动和扩散行为,从而影响烧结过程中的粒子间的结合力和材料的微结构。
这些因素的综合作用决定了粉末体烧结的效果和最终材料的性能。
催化剂烧结的原因催化剂是一种能够加速化学反应速率的物质,广泛应用于许多工业和科学领域中。
然而,在使用催化剂的过程中,烧结现象经常会发生,这会导致催化剂活性下降、寿命缩短等问题。
本文将从催化剂烧结的原因、影响和预防措施三个方面进行详细介绍。
一、催化剂烧结的原因1.温度:高温是引起催化剂烧结的主要原因之一。
当温度超过某个临界值时,催化剂表面吸附物分子会发生解离并与其他吸附物分子相互作用形成较大的颗粒,从而导致烧结。
2.气体成分:气体成分对催化剂也有很大影响。
例如,一些气体成分可能会与催化剂表面上的活性位点发生反应,并形成不容易挥发的产物,这些产物可能会在表面上积累并导致烧结。
3.湿度:湿度也是引起催化剂烧结的一个重要因素。
在潮湿环境中,催化剂表面上的水分子可能会与吸附物分子相互作用并形成较大的颗粒,从而导致烧结。
4.催化剂本身:催化剂本身也可能导致烧结。
例如,催化剂中的金属颗粒可能会在高温下融合并形成较大的颗粒,从而导致烧结。
5.反应条件:反应条件也是影响催化剂烧结的一个因素。
例如,在高压下进行反应时,催化剂表面上的吸附物分子可能会形成较大的颗粒,并导致烧结。
二、催化剂烧结的影响1.降低活性:当催化剂发生烧结时,其活性会显著下降。
这是因为烧结会使得催化剂表面积减小、孔隙度变小、活性位点数量减少等因素都会影响其活性。
2.缩短寿命:由于烧结引起了活性位点数量减少等问题,因此使用寿命也会受到影响。
这意味着需要更频繁地更换催化剂,并增加生产成本。
3.增加能耗:由于催化剂活性下降,反应速率变慢,因此需要更高的温度和压力来维持反应速率。
这会导致能源消耗的增加。
三、催化剂烧结的预防措施1.降低温度:降低反应温度是避免催化剂烧结的有效方法之一。
通过控制反应温度,可以减少吸附物分子的解离和聚集,从而减缓烧结的发生。
2.改变气体成分:选择合适的气体成分也可以避免催化剂烧结。
例如,在某些情况下,增加氢气浓度可以减少催化剂表面上产生的碳沉积物并避免烧结。
第十二章烧结(Sinter)第一节基本概念一、烧结1、烧结的意义烧结是粉末冶金、陶瓷、耐火材料、超高温材料等部门的一个重要工序。
烧结的目的是把粉状物料转变为致密体。
这种烧结致密体是一种多晶材料,其显微结构由晶体、玻璃相和气孔组成,烧结过程直接影响显微结构中晶粒尺寸和分布,气孔尺寸和分布以及晶界体积分数….。
烧结过程可以通过控制晶界移动而抑制晶粒的异常生长或通过控制表面扩散、晶界扩散和晶格扩散而充填气孔,用改变显微结构方法使材料性能改善。
因此,当配方、原料粒度、成型等工序完成以后,烧结是使材料获得预期的显微结构以使材料性能充分发挥的关键工序。
2、烧结的定义宏观定义:一种或多种固体(金属、氧化物、氮化物等)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。
微观定义:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程。
由于烧结体宏观上出现体积收缩,致密度提高和强度增加,因此烧结程度可以用坯体收缩率、气孔率、吸水率或烧结体密度与理论密度之比(相对密度)等指标来衡量。
3、与烧结有关的一些概念A.烧结与烧成(firing):烧成:包括多种物理和化学变化。
例如脱水、坯体内气体分解、多相反应和熔融、溶解、烧结等。
而烧结仅仅指粉料经加热而致密化的简单物理过程,烧结仅仅是烧成过程的一个重要部分。
B.烧结和熔融(Melt):烧结是在远低于固态物质的熔融温度进行的。
泰曼发现烧结温度(T S)和熔融温度(T M)的关系有一定规律:金属粉末 T S=(0.3~0.4)T M盐类 T S=0.57T M硅酸盐 T S=(0.8~0.9)T M烧结和熔融这两个过程都是由原子热振动而引起的,但熔融时全部组元都为液相,而烧结时至少有一组元是处于固态。
C.烧结与固相反应:两个过程均在低于材料熔点或熔融温度之下进行的。