电子感应加速器
- 格式:ppt
- 大小:1.43 MB
- 文档页数:16
电子感应加速器电子感应加速器是应用感生电场加速电子的装置。
在电磁铁的两极之间安置一个环形真空室,当用交变电流激励电磁铁时,在环形室内就会感生出很强的、同心环状的感生电场。
用电子枪将电子注入环形室,电子在有旋电场的作用下被加速,并在洛仑兹力的作用下,沿圆形轨道运动。
电子感应加速器设在以r为半径的圆形区域中的磁场的空间平均值为,则所在处的感生电场强度大小为电子受切向电场力而加速,在圆环内的运动方程为电子还受到指向环心的磁场洛仑兹力将上式微分并与电子运动方程比较,得到这是使电子维持在恒定的圆形轨道上加速磁场必须满足的条件。
在电子感应加速器的设计中,两极间的空隙从中心向外逐渐增加,为的是使磁场的分布能满足这一要求。
由于电子感应加速器的电磁铁是用交流电激励,所以磁场是交变的,从而导致有旋电场的方向也是交变的,而且电子受到的洛仑兹力也并非总是指向圆心。
因此,在电流交变的一个周期中,不是所有的时间内电子都可以得到加速。
左图表示了一个周期内磁场、感生电场及电子受到的洛仑兹力的变化。
我们可以看到,只有在第一个四分之一周期内,电子才受到感生电场的加速,并且洛仑兹力的方向指向圆心。
实际上,若交流电的周期为50Hz,则在磁场变化的第一个四分之一周期(约5ms的时间)内,电子就能在感生电场的作用下,在圆形轨道上经历回旋数十万圈的持续加速,从而获得足够高的能量,并在第一个四分之一周期结束时被引出加速器至靶室。
加速器的种类很多,用途也不同,有静电加速器、电子回旋加速器、电子感应加速器、同步辐射加速器……等等。
电子感应加速器主要用于核物理的研究,用被加速的电子轰击各种靶时,将发出穿透力很强的电磁辐射。
另外电子感应加速器还应用于工业探伤或医疗癌症。
目前,我国最大的三个加速器是北京的高能粒子加速器、合肥的同步辐射加速器、兰州的重离子加速器。
北京正负电子对撞机的储存环直径2km的美国费米国立加速器鸟瞰图应用加速器的种类很多,用途也不同,静电加速器、电子回旋加速器、器、同步辐射加速器……等等。
流量传感器及其仪表的应用—电子感应加速器1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电子感应加速器课程案例编号0505301CE 关键词电子感应加速器对应知识点法拉第电磁感应定律2.课程案例图1是电子感应加速器。
在现代科学研究中,经常用到一种设备——电子感应加速器。
电子感应加速器是利用感生电场使电子得以加速的设备。
它的基本工作原理如图1所示,S 和N 分别为电磁铁的两个磁极,两磁极之间有一个环形真空室,电子在真空室中做圆周运动。
依据电磁铁线圈电流的大小、方向的变化,产生的感生电场使电子得以加速。
图1电子感应加速器的工作原理流量传感器及其仪表的应用—电磁式流量计1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电磁式流量计课程案例编号0505302CE 关键词电磁式流量计对应知识点电磁式流量计测量导电液体体积流量2.课程案例电磁式流量计是一种测量导电液体体积流量的仪表,通常由传感器、转换器和显示仪表组成,其结构如图2所示。
根据传感器和转换器是否连接在一体,电磁式流量计分为一体型电磁式流量计和分离型电磁式流量计。
传感器一般安装在被测管道上,分离型的电磁流量计的转换器安装在离传感器30—100米的地方,两者之间用屏蔽电缆连接。
测量管道通过不导电的内衬(橡胶、特氟隆等)实现与流体和测量电极的电磁隔离。
图2电磁式流量计流量传感器及其仪表的应用—电磁式流量计在油田中的应用1.课程案例基本信息课程案例名称流量传感器及其仪表的应用—电磁式流量计在油田中的应用课程案例编号0505303CE 关键词电磁式流量计井下对应知识点电磁式流量计测井2.课程案例在油田中,对于注水井的分层测试采用的是井下存储式电磁流量计测井技术。
电磁流量计测井技术主要包括井下流量计、测量数据地面回放、处理设备、测试井口密封装置和绞车。
流量计从井口下入,通过注水管柱到达测量段。
在保持注入压力不变的情况下,通过改变仪器的位置完成对各个测量点的测试。
电子感应加速器高中物理
电子感应加速器是一种电子器件,其主要功能是以感应方式测量物体的加速度。
它利用电磁原理,将目标物体表面上磁场中对电流加速度的变化变成电信号,然后将该信号送入电子计算机,进而计算出物体的加速度。
电子感应加速器是由一个有两个芯子的电感元件和一个加速度计连接组成。
当目标物体表面的磁场与加速计中的磁场相互作用时,它会产生一个电信号,这个信号就是物体的加速度。
这个电信号能够被电子计算机精确捕捉出来,从而可以用来测量物体的加速度。
电子感应加速器在日常生活中应用较为广泛,比如在制造高速转轮的时候,此类电子器件可以用来实时测量转轮的转速,从而将其调节到特定值。
此外,它还可以用来检测安全带的紧固度,为空中机器的安全操作提供依据;或者用于汽车中的安全系统,实时检测汽车的行车状态,决定开关灯等。
电子感应加速器简介电子感应加速器是一种物理实验装置,用于研究和测量带电粒子的运动和相互作用。
它利用电磁感应的原理将带电粒子加速到高速,并将其引导到特定的目标或探测器上。
原理电子感应加速器的工作原理基于洛伦兹力和电磁感应的相互作用。
当带电粒子穿过磁场或电场时,会受到洛伦兹力的作用,从而改变其运动方向和速度。
根据这个原理,电子感应加速器利用磁场和电场的组合来加速和引导带电粒子。
组成电子感应加速器一般由以下几个主要部分组成:1.加速区(Acceleration Region):加速区是电子感应加速器的核心部分,它由一组电磁铁和电极组成。
这些电磁铁和电极产生的磁场和电场可以加速和引导带电粒子。
2.控制系统(Control System):控制系统用于调节和控制加速器中的电场和磁场,以确保带电粒子获得适当的加速和引导。
3.目标/探测器(Target/Detector):目标或探测器用于接收和测量带电粒子在加速器中的运动和相互作用。
根据实验的需要,目标或探测器可能具有不同的结构和功能。
工作流程电子感应加速器的工作流程可以简单概括为以下几个步骤:1.初始状态:带电粒子进入加速区之前,控制系统将设置电场和磁场的初始值。
这些初始值将决定带电粒子的加速和引导路径。
2.加速:一旦带电粒子进入加速区,控制系统将调节电场和磁场的强度,以使带电粒子获得适当的加速。
带电粒子将沿着预定的轨道加速并改变其速度和方向。
3.目标/探测器:当带电粒子达到所需的速度或能量时,它们将进入目标或探测器。
目标或探测器将接收和测量带电粒子的性质和相互作用。
4.数据分析:通过对目标或探测器上得到的数据进行分析,研究人员可以了解带电粒子经过加速器时的运动和相互作用。
这些数据有助于理解粒子物理学和相关研究。
应用领域电子感应加速器在科学研究和工业应用中具有广泛的应用。
以下是一些常见的应用领域:•粒子物理学:电子感应加速器可以用来研究原子核和基本粒子的结构和相互作用。