线性相关与线性回归方程
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。
两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。
协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。
协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。
协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。
相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。
(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。
因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。
当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。
第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52)(t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
回归分析与相关性分析的基本原理与应用数据分析是现代社会中非常重要的一个领域,在各个行业和领域中都有广泛的应用。
而回归分析和相关性分析是数据分析中经常使用的两种方法,本文将探讨回归分析和相关性分析的基本原理和应用。
一、回归分析的基本原理与应用回归分析是用来研究变量之间关系的一种统计方法,主要用于预测一个变量(因变量)与其他变量(自变量)之间的关系。
具体来说,回归分析可以帮助我们确定自变量对因变量的影响程度以及预测因变量的取值。
回归分析的基本原理是基于线性回归模型,即通过建立一个线性方程来描述因变量和自变量之间的关系。
简单线性回归模型的表达式为:Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β为回归系数,ε为误差项。
在应用回归分析时,我们需要确定自变量与因变量之间的关系强度以及回归系数的显著性。
这可以通过计算相关系数、拟合优度等统计指标来实现。
此外,回归分析还可以通过预测因变量的取值来进行决策和规划,例如销量预测、市场需求预测等。
二、相关性分析的基本原理与应用相关性分析是用来研究变量之间线性相关关系的一种统计方法,主要用于衡量变量之间的相关性程度。
相关性分析可以帮助我们理解变量之间的相互关系,以及在研究和预测中的应用。
相关系数是用来衡量两个变量之间相关性的指标,最常用的是皮尔逊相关系数。
皮尔逊相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。
通过计算相关系数可以判断两个变量之间是否存在线性关系,以及线性关系的强弱程度。
在应用相关性分析时,我们可以利用相关系数来进行综合评价和比较。
例如,在市场研究中,我们可以通过相关性分析来确定产品特性与客户购买意愿之间的关系,以指导产品开发和市场推广策略。
三、回归分析与相关性分析的比较回归分析和相关性分析都是研究变量之间关系的统计方法,但它们在方法和应用上存在一些区别。
首先,回归分析主要关注自变量对因变量的影响程度和预测,而相关性分析主要关注变量之间的相关程度。
相关系数与线性回归分析相关系数和线性回归分析是统计学中常用的方法,用于研究变量之间的关系和进行预测分析。
本文将介绍相关系数和线性回归分析的概念、计算方法和应用场景。
一、相关系数相关系数是用来衡量两个变量之间的相关性强弱的统计指标。
它的取值范围是-1到1之间,值越接近于1或-1,表示两个变量之间的相关性越强;值越接近于0,则表示两个变量之间的相关性越弱。
计算相关系数的方法有多种,常见的是皮尔逊相关系数。
它可以通过协方差和两个变量的标准差来计算。
具体公式如下:r = Cov(X,Y) / (σX *σY)其中,r表示相关系数,Cov(X,Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。
相关系数的应用非常广泛。
例如,在金融领域,相关系数可以用来研究股票之间的关联程度,有助于投资者进行风险分析和资产配置;在医学领域,相关系数可以用来研究疾病因素之间的关系,帮助医生进行诊断和治疗决策。
二、线性回归分析线性回归分析是一种用来研究自变量与因变量之间关系的统计方法。
它通过建立一个线性方程,来描述自变量对因变量的影响程度和方向。
线性回归模型可以通过最小二乘法来估计模型参数。
最小二乘法的基本思想是通过使模型预测值与实际观测值的残差平方和最小化来确定模型参数。
具体公式如下:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。
线性回归分析常用于预测和解释变量之间的关系。
例如,在市场营销中,可以通过线性回归分析来预测产品销售量与价格、广告投入等因素的关系;在经济学中,可以利用线性回归模型来研究GDP与就业率、通货膨胀率等经济指标之间的关系。
三、相关系数与线性回归分析的关系相关系数和线性回归分析常常一起使用,因为它们有着密切的关联。
相关系数可以用来衡量两个变量之间的相关性强弱,而线性回归分析则可以进一步分析两个变量之间的因果关系。
在线性回归分析中,相关系数经常作为检验模型是否适用的依据之一。
线性相关和线性回归的异同
线性相关和线性回归的主要区别有三点:
1.线性相关分析涉及到变量之间的呈线性关系的密切程度,线性回归分析是在变量存在线性相关关系的基础上建立变量之间的线性模型;
2.线性回归分析可以通过回归方程进行控制和预测,而线性相关分析则无法完成;
3.线性相关分析中的变量地位平等,都是随机变量,线性回归分析中的变量有自变量和因变量之分,而自变量一般属确定性变量,因变量是随机变量。
线性相关和线性回归的相同之处:
所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
Stata 软件基本操作和数据分析入门第六讲 线性相关和回归在实际研究中,经常要考察两个指标之间的关系,即:相关性。
现以体重与身高的关系为例,分析两个变量之间的相关性。
要求身高和体重呈双正态分布,即:在身高和体重平均数的附近的频数较多,远离身高和体重平均数的频数较少。
样本相关系数计算公式(称为Pearson 相关系数):)()())((22YYXXXY L L L Y Y X X Y Y X X r =----=∑∑∑(1)1. 考察随机模拟相关的情况。
显示两个变量相关的散点图程序simur.ado (本教材配套程序,使用见前言)。
命令为simur 样本量 总体相关系数 如显示样本量为100,ρ=0的散点图 本例命令为simur 100 0如显示样本量为200,ρ=0.8的散点图本例命令为simur 200 0.8如显示样本量为200,ρ=0.99的散点图本例命令为simur 200 0.99如显示样本量为200,ρ=-0.99的散点图本例命令为simur 200 -0.99例1. 测得某地15名正常成年男子的身高x(cm)、体重y(kg)如试计算x和y之间的相关系数r并检验H0:ρ=0 vs H1: ρ≠0。
α=0.05数据格式为Stata命令pwcorr 变量1 变量2 …变量m,sig 本例命令pwcorr x y,sigpwcorr x y,sigPearson相关系数=0.5994,P值=0.0182<0.05,因此可以认为身高与体重呈正线性相关。
注意:Pearson相关系数又称为线性相关系数并且要求X和Y双正态分布,通常在检查中要求X服从正态分布并且Y服从正态分布。
如果不满足双正态分布时,可以计算Spearman相关系数又称为非参数相关系数。
Spearman相关系数的计算基本思想为:用X和Y的秩代替它们的原始数据,然后代入Pearson相关系数的计算公式并且检验与Pearson 相关系数类同。
时间:2018年3月20日必修3第二章统计
第9课时线性相关与线性回归方程
学习目标:能在散点图中作出线性回归直线,能用线性回归方程进行预测
了解最小二乘法的含义及思想
理解数形结合、数学模型化的数学思想与方法
学习过程:
一、最小二乘法是什么?怎样得到线性回归直线方程?
1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据。
人体的脂肪百分比和年龄:
根据上述数据,人体的脂肪含量y与年龄x之间有怎样的关系?
(1)回归直线方程可不可以象前节一样取其中两个点得到?
(2)可不可以考虑选择不同的几组点求出相应的直线的斜率与截距,再求这些斜率、截距的平均值得到回归直线方程?
(3)你认为回归直线相对于样本数据的各点而言应具备什么特点才可靠?
(4)怎样刻画“样本数据的各点到回归直线的距离最小”?
(5)将表中的年龄作为x代入所求回归方程,得出的数值与真实值之间有什么关系?你怎样看待这种情况?
2.当两个变量线性相关时,这两个变量的线性回归直线方程(简称回归方程)如何求?
其中系数可直接由公式求之:
回归直线方程表明回归直线过点(称之为样本点的中心)
二、问题分析
1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,
则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重为58.79kg
2.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
摄氏温度/℃-5 0 4 7 12 15 19 23 27 31 36
热饮杯数156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天气温是2℃,预测这天卖出的热饮杯数。
三、总结性思考
1.最小二乘法是什么意思?
2.怎样根据样本数据求线性回归直线方程?
四、课后作业
P94 A3
五、再思考。