2020八年级数学测试卷
- 格式:doc
- 大小:225.99 KB
- 文档页数:3
人教版数学八年级上册第十一章达标测试卷3分,共30 分)(每题一、选择题1.下列长度的三条线段,能组成三角形的是( )A.3,7,2 B.4,9,6C.21,13,6 D.9,15,52.下列说法正确的是( )A.等腰三角形都是锐角三角形B.等腰三角形是等边三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.三角形中至少有一个角不小于60°3.下面的图中能表示△ABC 的BC 边上的高的是( )4.如图,在△ABC 中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=( ) A.145°B.150°C.155°D.160°(第4题)(第6题)(第7题)5.等腰三角形的一边长等于4,另一边长等于10,则它的周长是( ) A.18 B.24 C.18或24 D.14 6.如图,在△ABC 中,∠C=90°,D,E 是AC 上两点,且AE=DE,BD 平分∠EBC,那么下列说法中不正确的是( )A.BE 是△ABD 的中线B.BD 是△BCE 的角平分线C.∠1=∠2=∠3 D.BC 是△ABE 的高7.小明把一副三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为( ) A.4 B.5 C.6 D.7(第9题)(第10题)9.如图,在△ABC 中,以点B 为圆心,以BA长为半径画弧交边BC 于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的度数是( )A.70°B.44°C.34°D.24°10.如图,过正五边形ABCDE 的顶点A 作直线l∥BE,则∠1 的度数为( ) A.30°B.36°C.38°D.45°3分,共30 分)二、填空题(每题11.在△ABC 中,∠A :∠B :∠C=2 :3 :4,则∠A 的度数为________.12.起重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做是利用了__________________.13.在△ABC 中,若AB=4,BC=5,则△ABC 的周长l 的取值范围是________________.14.如图,在Rt△ABC 中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD 是AC 边上的高,则BD 的长为________cm.(第14题)(第15题)(第17题)15.如图,AD 是△ABC 的角平分线,BE 是△ABC 的高,∠BAC=40°,且∠ABC 与∠ACB 的度数之比为,则∠ADC=________,∠CBE=________.16.如果一个多边形的内角和为其外角和的 4 倍,那么从这个多边形的一个顶点________条对角线.出发共有17.如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=135°,则∠3=________°.(第18 题) (第20 题)18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.已知a,b,c为△ABC 的三边长,则|a+b+c|-|a-b-c|-|a-b+c|-|a+b -c|=________.20.如图,D,E,F 分别是△ABC 的边AB,BC,AC 的中点,连接A E,BF,CD△BDG 的面积为S1,△CGF为6,设交于点G,AG GE=,△ABC 的面积S1+S2=________.为S2,则的面积题6分,23,24 题每题8 分,25,26题每题10分,27 三、解答题(21,22题每题12 分,共60 分)21.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD,若∠A=60°,∠B=40°,求∠ECD 的度数.(第21 题)22.如图,B 处在A处的南偏西45°方向,C 处在A处的南偏东30°方向,C 处在B 处的北偏东60°方向,求∠ACB 的度数.(第22 题)23.如图.(1)在△ABC 中,BC 边上的高是________;(2)在△AEC 中,AE 边上的高是________;(3)若AB=CD=2 cm,AE=3 cm,求△AEC 的面积及C E 的长.(第23题)24.如图,六边形A BCDEF 的内角都相等,CF∥AB.(1)求∠FCD 的度数;(2)求证:A F∥CD.(第24题)25.如图,在△ABC 中,BD 是AC 边上的高,∠A=70°.(1)求∠ABD 的度数;(2)若CE 平分∠ACB 交BD 于点E,∠BEC=118°,求∠ABC 的度数.(第25题)26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE 平分∠MON,点A,B,C 分别是射线O M,OE,ONO E 于点D.设∠OAC=x°.上的动点(A,B,C 不与点O 重合),连接A C 交射线(1)如图①,若AB∥ON,则①∠ABO 的度数是________;②当∠BAD=∠ABD 时,x=________;当∠BAD=∠BDA 时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的.角?若存在,求出x 的值;若不存在,说明理由(第27题)答案一、1.B 2.D 3.D4.B 点拨:在△ABC 中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,解得x=30°.∵∠BAD=∠B+∠C=5x,∴∠BAD=150°.故选B.5.B 6.C7.B 点拨:如图,∵∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1 +∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°.故选B.(第7 题)8.C 点拨:由题意得这个多边形的内角和是360°×2=720°.设这个多边形的边数为n,根据题意得(n-2)×180°=720°,解得n=6.故选C.9.C 点拨:∵AB=BD,∠B=40°,∴∠ADB=70°.又∵∠C=36°,∴∠DAC =∠ADB-∠C=34°.故选C.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE=(5-2) ×180°÷5=108°,AB=AE.∴∠AEB=(180 °-108°) ÷2=36°.又∵l∥BE,∴∠1=∠AEB=36°.故选B.二、11.40°12.三角形的稳定性13.10<l<18 点拨:设△ABC 的AC边的长为x,则1<x<9,故△ABC 的周长l的取值范围是4+5+1<l<4+5+9,即10<l<18.60 14.13AB·BC点拨:由等面积法可知A B·BC=BD·AC,所以BD==AC12×5=136013(cm).15.80°;10°16.7 17.1518.360°点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7 +∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.0 点拨:∵a,b,c 为△ABC 的三边长,∴a+b+c>0,a<b+c,a+c >b,a+b>c,∴|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|=(a+b+c)-(-a+b+c)-(a-b+c)-(a+b-c)=a+b+c+a-b-c-a+b-c-a-b+c=0.120.2 点拨:∵E 为BC 的中点,∴S△ABE=S△ACE=△ABC=3.∵A E=2S,△BGA 与△BEG 为同高三角形,∴S△BGA S△BEG=,∴S△BGA =2.又∵D 为AB 的中点,∴S1=12S△BG A=1.同理得S2=1.∴S1+S2=2.三、21.解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°.∵CE 平分∠ACD,∴∠ECD=1∠ACD=50°. 222.解:∵AE∥BD,∴∠EAB=45°=∠DBA.∵∠DBC=60°,∴∠ABC=15°,∴∠ACB=180°-∠ABC-∠BAC=180°-15°-45°-30°=90°.23.解:(1)AB (2)CD (3)∵AE=3 cm,CD=2 cm,∴S△AEC=1 1 2AE·C D=×3×2212).∴S 2,又∵AB=2 cm,∴CE=3 cm.=3(cm 2CE·A B=3 cm△AEC=24.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2) ×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.25.解:(1)在△ABC 中,∵BD 是AC 边上的高,∴∠ADB=∠BDC=90°.又∵∠A=70°,∴∠ABD=180°-∠ADB-∠A=20°.(2)∵∠BEC=∠BDC+∠DCE,∠BEC=118°,∠BDC=90°,∴∠DCE=28°.又∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.2 2 1 1 26.解:当底边长为a 时,2a-1=5a-3,即a=,则三边长为,,,3 3 3 3不满足三角形三边关系,不能构成三角形;3 1 当底边长为2a-1 时,a=5a-3,即a=,则三边长为,4 2 3 3,,4 41 3 3满足三角形三边关系,能构成三角形,此时三角形的周长为++2 4 4=2;当底边长为5a-3 时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D 在线段O B 上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x=35.若∠ADB=∠ABD,则x=50.②当点 D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20,35,50 或125.卷试第十二章达标测3分,共30 分)(每题一、选择题1.在下列每组图形中,是全等形的是( )2.如图所示,△ACE≌△DBF,AD=8,BC=2,则AC=( ) A.2 B.8 C.5 D.3(第2题)(第3题)(第4题)(第5题)3.如图,已知AC=DB,AB=DC,你认为证明△ABC≌△DCB 应该用() A.“边边边”B.“边角边”C.“角边角”D.“角角边”4.如图,在△ABC 中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF 的度数是( )A.40°B.50°C.60°D.30°5.如图,在△ABC 中,AB=AC,点E,F 是中线AD 上的两点,则图中可证明为全等三角形的有( )A.3 对B.4 对C.5 对D.6 对6.如图,点P 是∠AOB 平分线OC 上一点,PD⊥OB,垂足为D,若PD=2,则点P 到边OA 的距离是( )A.1 B.2 C. 3 D.4(第6题)(第8题)(第9题)(第10题)7.在△ABC 中,∠B=∠C,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B 或∠C8.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为27 和16,则△EDF 的面积为()A.11 B.5.5 C.7 D.3.59.如图,直线a,b,c 表示三条公路,现要建一个货物中转站,要求它到三条公有( )路的距离相等,则可供选择的地址A.一处B.两处C.三处D.四处10.如图所示,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC (每题3分,共30 分)二、填空题11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.(第11题)(第12题)(第13题)(第16题) 12.如图,CE⊥AB,DF⊥AB,垂足分别为E,F,若CE=DF ,AE=BF,则△ADF≌△BCE,根据是________.13.如图,点O 在△ABC 内,且到三边的距离相等.若∠A=60°,则∠BOC=________°.14.在△ABC 中,AB=4,AC=3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________.15.已知AD 是△ABC 中BC 边上的中线,若A B=4,AC=6,则AD 的取值范围是________.16.如图,在Rt△ABC 中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,QA P=________两点分别在AC 和过点 A 且垂直于AC 的射线AO 上运动,当时,△ABC 和△PQA 全等.17.如图,AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是________.(第17 题) (第18 题) (第19 题) (第20 题) 18.如图,在△ABC 中,AB=AC,D 是BC 的中点,DE⊥AB 于点E,DF⊥AC 于点F,则图中的全等三角形共有________对.19.如图,在平面直角坐标系中,点 B 的坐标为(3,1),AB=OB,∠ABO=90°,则点A 的坐标是________.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.题8 分,25~27 题每题10 分,共三、解答题(21,22 题每题7 分,23,24 题每60 分)21.如图,AB∥CD.(1)用直尺和圆规作∠C 的平分线CP,CP 交AB于点E;(保留作图痕迹,不写作法)(2)在(1)中作出的线段CE 上取一点F,连接A F,要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件.(只要给出一种情况即可;图中不再增加字母和线段;不要求证明)(第21题)22.如图,点A,B,C 在同一条直线上,△ABD≌△EBC,AB=2 cm,BC=5 cm.(1)求DE 的长;(2)DB 与AC 垂直吗?为什么?(第22题)23.如图,点C 是AE 的中点,∠A=∠ECD,AB=CD,ED=4,求CB 的长度.(第23题)24.如图,四边形ABCD,BEFG 均为正方形,连接AG,CE.求证:(1) AG=CE;(2) AG⊥CE.(第24题)25.如图,A,B 两建筑物位于河的两岸,要测它们之间的距离,可以从 B 点出D作DE∥AB,使E,C,发在河岸上画一条射线BF,在BF 上截取BC=CD,过A 在同一直线上,则D E 的长就是A,B 之间的距离,请你说明道理.(第25题)26.如图,在△A BC 中,∠ACB=90°,AC=7 cm,BC=3 cm,CD 为斜边AB 上的高,点 E 从点B 出发沿直线BC 以2 cm/s 的速度运动,过点 E 作BC 的垂线交直线CD 于点F.(1)求证:∠A=∠BCD;(2)点E 运动多长时间,CF=AB?并说明理由.(第26题)27.在△ABC 中,AB=AC,点D 是线段C B 上的一动点(不与点B,C 重合),以AD 为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,当点D 在线段C B 上,∠BAC=90°时,那么∠DCE=________°;(2)设∠BAC=α,∠DCE=β.C B 上,∠BAC≠90°时,请你探究α与β之间的数量关①如图②,当点 D 在线段;系,并证明你的结论,完整C B 的延长线上,∠BAC≠90°时,请将图③补充②如图③,当点 D 在线段并直接写出此时α与β之间的数量关系(不需证明).(第27题)。
人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。
第十二章《全等三角形》测试卷时间:90分钟总分:120分班级________________座号________________姓名________________ 成绩________________一、选择题(本大题共3小题,每小题10分,共30分)1.全等图形是指两个图形( )A.大小相同 B.形状相同 C.能够完全重合 D.相等2.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ASA B.SAS C.AAS D.SSS3.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC4.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有( )A.2对 B.3对 C.4对 D.5对5.如图,已知△ABC≌△DFE,则∠DEF的对应角是( )A.∠A B.∠B C.∠ACB D.∠DFE6.如图,AC=DF,∠1=∠2,如果根据“ASA”判定△ABC≌△DEF,那么需要补充的条件是( )A.∠A=∠D B.AB=DE C.BF=CE D.∠B=∠E7.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.已知如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10 cm,BC=8 cm,CA=6 cm,则点O到三边AB、AC和BC 的距离分别等于( )A.2 cm、2 cm、2 cm B.3 cm、3 cm、3 cm C.4 cm、4 cm、4 cm D.2 cm、3 cm、5 cm9. 在△ABC和△DEF中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( )A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F10. 如图,为了促进当地旅游发展,某地要在三条公路AB、AC、BC两两相交围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,则度假村应该修在何处?可供选择的位置是( )A.△ABC内角平分线的交点 B.△ABC中线的交点C.△ABC高的交点 D.顶点A处二、填空题(本大题共6小题,每小题4分,共24分)11.将△ABC沿BC方向平移3 cm得到△DEF,则CF=________;若∠A=80°,∠B=60°,则∠F=________.12.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为__________.13.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是________________.(只需写一个,不添加辅助线)14.如图所示,A、B在一水池放入两侧,若BE=DE,∠B=∠D=90°,CD=10 m,则水池宽AB=________m.15.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN=________.16.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO∶S△BCO∶S△ACO等于________.三、解答题(共66分)17.(7分)如图,AB=AD,CB=CD,求证:△ABC≌△ADC.18.(7分)如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD.19.(8分)如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.20.(8分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且BC∥EF,∠A=∠D,AF=DC.求证:AB=DE.21.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.22.(9分)某校八年级(1)班学生参加社会实践活动,为测量一池塘两端A、B的距离,设计了如下方案:先过B点作AB的垂线BM,再在BM上取O、C两点,使BO=CO,接着过点C作BC的垂线CD,交AO 的延长线于D,则测出CD的长即为A、B的距离.此方案是否切实可行?理由是什么?23.(9分)如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE和CF交于点D.求证:AD平分∠BAC.24.(10分)如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G 点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.《全等三角形》达标测试---参考答案一、填空题1.C 2.A 3.D 4.C 5.C 6.A7.D 8.A9.C10.A二、填空题11.3 cm40°12. 413.∠ABD=∠CBD或AD=CD 14.1015. 216. 2∶3∶4三、解答题17.证明:∵在△ABC和△ADC中,⎩⎨⎧AB=AD,BC=CD,AC=AC,∴△ABC≌△ADC(SSS).18.证明:∵AC∥DB,∴∠A=∠B.在△AOC与△BOD中,∵⎩⎨⎧∠A=∠B,AO=BO,∠AOC=∠BOD,∴△AOC≌△BOD(ASA). ∴AC=BD.19.证明:∵AB∥ED,∴∠A=∠D. 又∵AF=DC,∴AC=DF.在△ABC与△DEF中,⎩⎨⎧AB=DE,∠A=∠D,AC=DF.∴△ABC≌△DEF(SAS). ∴BC=EF. 20.证明:∵AF=DC,∴AF+FC=DC+CF,即AC=DF.又∵BC∥EF,∴∠BCA=∠EFD.在△ABC和△DEF中,⎩⎨⎧∠A=∠D,AC=DF,∠ACB=∠EFD.∴△ABC≌△DEF(ASA),∴AB=DE.21.证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE.在△ABC和△DEC中,⎩⎨⎧AC=DC,∠ACB=∠DCE,BC=EC.∴△ABC≌△DEC(SAS),∴∠A=∠D.22.解:方案可行. 理由:∵AB ⊥BC ,DC ⊥CB , ∴∠ABO =∠DCO =90°. 在△ABO 和△DCO 中,⎩⎨⎧∠ABO =∠DCO ,BO =CO ,∠AOB =∠DOC ,∴△ABO ≌△DCO(ASA), ∴AB =CD , ∴测出DC 的长即为A 、B 的距离. 故方案可行. 23.证明:连接BC ,∵BE ⊥AC 于E ,CF ⊥AB 于F , ∴∠CFB =∠BEC =90°.∵AB =AC , ∴∠ABC =∠ACB. 在△BCF 和△CBE 中,⎩⎨⎧∠BFC =∠CEB ,∠FBC =∠ECB ,BC =BC.∴△BCF ≌△CBE(AAS). ∴BF =CE. 在△BFD 和△CED 中,⎩⎨⎧∠BFD =∠CED ,∠FDB =∠EDC ,BF =CE.∴△BFD ≌△CED(AAS). ∴DF =DE. ∴AD 平分∠BAC. 24.(1)证明:∵BG ∥AC , ∴∠DBG =∠DCF.又∵BD =CD ,∠BDG =∠CDF , ∴△BGD ≌△CFD(ASA), ∴BG =CF. (2)解:BE +CF>EF.证明如下:由△BGD ≌△CFD 可得,=FD ,BG =CF.GD∵DE ⊥FG ,∴EG =在△EBG 中,∵BE +EF.BG>EG ,∴BE +CF>EF.1、老吾老以及人之老,幼吾幼以及人之幼。
第1章《因式分解》测试卷一、选择题(本大题共12小题,共36.0分)1.6x3y2−3x2y3分解因式时,应提取的公因式是()A. 3xyB. 3x2yC. 3x2y3D. 3x2y22.下列各式属于正确分解因式的是()A. 1+4x2=(1+2x)2B. 6a−9−a2=−(a−3)2C. 1+4m−4m2=(1−2m)2D. x2+xy+y2=(x+y)23.下列多项式,能用平方差公式分解的是()A. −x2−4y2B. 9x2+4y2C. −x2+4y2D. x2+(−2y)24.下列四个多项式是完全平方式的是()a2+A. x2+xy+y2B. x2−2xy−y2C. 4m2+2mn+4n2D. 14 ab+b25.若36x2+kx+16是一个完全平方式,则k的值为()A. 48B. 24C. −48D. ±486.计算:1002−2×100×99+992=()A. 0B. 1C. −1D. 396017.把(a+b)2+4(a+b)+4分解因式得()A. (a+b+1)2B. (a+b−1)2C. (a+b+2)2D. (a+b−2)28.把x4−2x2y2+y4分解因式,结果是()A. (x−y)4B. (x2−y2)4C. [(x+y)(x−y)]2D. (x+y)2(x−y)29.多项式x2−3x+a可分解为(x−5)(x−b),则a、b的值分别是()A. 10和−2B. −10和2C. 10和2D. −10和−210.将下列多项式因式分解,结果中不含有因式a+1的是()A. a2−1B. a2+aC. a2+a−2D. (a+2)2−2(a+2)+111.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A. 6B. 3C. 4D. 512.设a,b,c是△ABC的三条边,且a3−b3=a2b−ab2+ac2−bc2,则这个三角形是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形二、填空题(本大题共10小题,共30.0分)13.分解因式:a3−16a=______.14.22017−22016=______ .15.已知x+y=1,那么12x2+xy+12y2的值为______ .16.在多项式4x2+1中添加______ ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是______ .17.9a2+(______ )+25b2=(3a−5b)2.18.已知4x2−12xy+9y2=0,则式子xy的值为______ .19.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______.20.已知x+y=6,xy=4,则x2y+xy2的值为______ .21.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=______ .22.若ax2+24x+b=(mx−3)2,则a=______ ,b=______ ,m=______ .三、计算题(本大题共2小题,共14.0分)23.已知x=−19,y=12,求代数式4x2+12xy+9y2的值.24.已知|x−y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.四、解答题(本大题共2小题,共20.0分)25.因式分解:(1)3a(x−y)+9(y−x)(2)(2m−3n)2−2m+3n(3)16mn4−m(4)(a+2b)2−(2a−b)2(5)ab4−4ab3+4ab2(6)(a−b)(a−4b)+ab.26.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程.解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______ .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______ .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______ .(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.答案1. D2. B3. C4. D5. D6. B7. C8. D9. D10. C11. C12. D13. a(a+4)(a−4)14. 2201615. 1216. +4x;(2x+1)217. −30ab18. 3219. a2+2ab+b2=(a+b)220. 2421. 1522. 16;9;−423. 解:4x2+12xy+9y2=(2x+3y)2=(−38+36)2=(−2)2=4.24. 解:∵|x−y+1|与x2+8x+16互为相反数,∴|x−y+1|与(x+4)2互为相反数,即|x−y+1|+(x+4)2=0,∴x−y+1=0,x+4=0,解得x=−4,y=−3.当x=−4,y=−3时,原式=(−4−3)2=49.25. 解:(1)3a(x−y)+9(y−x)=3(x−y)(a−y+x);(2)(2m−3n)2−2m+3n=(2m−3n)(2m−3n−1);(3)16mn4−m=m(16n4−1)=m(4n2+1)(4n2−1)=m(4n2+1)(2n−1)(2n−1);(4)(a+2b)2−(2a−b)2=(a+2b+2a−b)(a−2b−2a+b)=−(3a+b)(a+b);(5)ab4−4ab3+4ab2=ab2(b2−4b+4)=ab2(b−2)2;(6)(a−b)(a−4b)+ab=a2−4ab−ab+4b2+ab=a2−4ab+4b2=(a−2b)2.26. C;不彻底;(x−2)41、读书破万卷,下笔如有神。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式从左到右的变形正确的是( )A.211aaa+=+B.2222255102a bab c abc-=-C.b a a bb a a b--=--+D.29133mm m-=-+【答案】C【分析】由分式的加法法则的逆用判断A,利用约分判断B,利用分式的基本性质判断C,利用约分判断D.【详解】解:由22111a aaa a a a+=+=+,所以A错误,由2222225555105(2)2a b ab a aab c ab bc bc--•==--•-,所以B错误,由()()b a b a a bb a b a a b----==-----+,所以C正确,由29(3)(3)333m m mmm m-+-==+--,所以D错误.故选C.【点睛】本题考查分式加减运算的逆运算与分式的基本性质,掌握运算法则与基本性质是关键,2.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积()A.4a2B.4a2﹣ab C.4a2+ab D.4a2﹣ab﹣2b2【答案】B【分析】根据阴影部分面积=大长方形的面积-小长方形的面积,列出算式,再根据整式的混合运算顺序和运算法则计算可得.【详解】解:余下的部分的面积为:(2a+b)(2a-b)-b(a-b)=4a2-b2-ab+b2=4a2-ab,【点睛】本题主要考查整式的混合运算,解题的关键是结合图形列出面积的代数式,并熟练掌握整式的混合运算顺序和运算法则.3 ) A .在1和2之间 B .在2和3之间C .在3和4之间D .在4和5之间【答案】B的值,再估算即可==∵479<<∴23<<故选:B 【点睛】本题主要考查了二次根式的乘法和估算无理数的大小,掌握运算法则是解题的关键. 4.下列函数中,y 随x 增大而减小的是( ) A .1y x =- B .12y x =C .21y x =-D .23y x =-+【答案】D【分析】根据一次函数的性质逐一判断即可得出答案.【详解】A. 1y x =-,10k => ,y 随x 增大而增大,不符合题意; B. 12y x =,102k => ,y 随x 增大而增大,不符合题意;C. 21y x =-,20k => ,y 随x 增大而增大,不符合题意;D. 23y x =-+,20k =-< ,y 随x 增大而减小,符合题意; 故选:D . 【点睛】本题主要考查一次函数的性质,掌握一次函数的图象和性质是解题的关键. 5.下列语句中,是命题的是( ) A .延长线段AB 到C B .垂线段最短C .画45AOB ∠=︒D .等角的余角相等吗?【分析】根据命题的定义解答即可.【详解】解:A 、延长线段AB 到C ,不是命题; B 、垂线段最短,是命题; C 、画45AOB ∠=︒,不是命题; D 、等角的余角相等吗?不是命题; 故选:B . 【点睛】本题考查了命题与定理:判断一件事情的语句叫命题. 6.若a 是无理数,则a 的值可以是( ) A .19B .1C .2D .0.25【答案】C【解析】根据无理数的概念和算术平方根解答即可. 【详解】A .1931=是有理数,错误; B .11=是有理数,错误; C .2是无理数,正确; D .0.250.5=是有理数,错误. 故选:C . 【点睛】本题考查了无理数,关键是根据无理数的概念和算术平方根解答.7.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 5【答案】A【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt△DBE中,BD=22+=,3110故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【答案】C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.9.一个正方形的面积等于30,则它的边长a满足()A.4<a<5 B.5<a<6 C.6<a<7 D.7<a<8【答案】B【解析】先根据正方形的面积公式可得边长为30,再由52=25,62=36,即可求解. 【详解】正方形的面积是边长的平方,∵面积为30,∴边长为30.∵52=25,62=36,∴5306<<,即5<a <6,故选B . 【点睛】本题考查了无理数的估算,解题的关键是注意找出和30最接近的两个能完全开方的数. 10.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等; ②周长相等的两个三角形是全等三角形③全等三角形对应边上的高、中线、对应角的角平分线相等; 其中正确的命题有( ) A .1个 B .2个C .3个D .0个【答案】B【分析】逐项对三个命题判断即可求解.【详解】解:①有一条直角边和斜边对应相等的两个直角三角形(HL )全等,故①选项正确; ②全等三角形为能够完全重合的三角形,周长相等不一定全等,故②选项错误; ③全等三角形的性质为对应边上的高线,中线,角平分线相等,故③选项正确; 综上,正确的为①③. 故选:B . 【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理和性质定理是解题关键. 二、填空题 11.如图,在ABC 中A 120AB AC BC 6cm AB ∠=︒==,,,的垂直平分线交BC 于点M ,交AB于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长____________cm .【答案】2【分析】连接AM 和AN ,先说明△AMN 是等边三角形,从而说明BM=MN=CN ,得出MN=2cm. 【详解】解:∵∠BAC=120︒,AB=AC , ∴∠B=∠C=1801202︒-︒=30︒,∵NF 、ME 分别是AC 、AB 的垂直平分线, ∴BM=AM ,CN=AN ,∴∠B=∠MAB=∠C=∠NAC=30°, ∴∠AMN=∠ANM=60°, ∴△AMN 是等边三角形, ∴AM=AN=MN , ∴BM=MN=CN , ∵BM+MN+CN=BC=6cm , ∴MN=2cm ,故答案为2. 【点睛】本题考查了线段垂直平分线的性质、等边三角形的判定.12.在△ABC 中,C 90∠=︒,AB=4,A 60∠=︒,则AC=______. 【答案】1【分析】根据直角三角形两锐角互余求出B 的度数,然后利用30°所对的直角边是斜边的一半即可得出答案. 【详解】C 90︒∠=,A 60∠=︒90906030B A ∴∠=︒-∠=︒-︒=︒ 4AB =122AC AB ∴== 故答案为:1. 【点睛】本题主要考查直角三角形的性质,掌握含30°的直角三角形的性质和直角三角形中两锐角互余是解题的关键.13.已知1(1,5)P a -和2(2,1)P b -关于x 轴对称,则2020()a b +值为_____.【答案】1【分析】根据平面直角坐标系中任意一点(,)P x y ,关于x 轴的对称点是(,)x y -.根据这一结论求得a ,b 的值,再进一步计算.【详解】解:关于x 轴对称的两个点的坐标特征为横坐标相等,纵坐标互为相反数,1(1,5)P a -和2(2,1)Pb -关于x 轴对称,12a ∴-=,510b +-=,解得3a =,4b =-,20202020()[3(4)]a b ∴+=+-2020(1)=-1=,故答案是:1. 【点睛】本题考查的是关于坐标轴对称的点的坐标的性质,熟悉相关性质是解题的关键.14.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.【答案】1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时, 60x =80(1+10%)(x+2﹣9), 解得,x =22,则B 、C 两地相距:60×22=1(千米) 故答案为:1. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形. 【答案】六【分析】n 边形的内角和可以表示成(n ﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n ,依题意,得: (n ﹣2)•180°=2×360°, 解得n =6, 故答案为:六. 【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.16.在平面直角坐标系中,点()7,2m 1-+在第三象限,则m 的取值范围是______. 【答案】1m 2<-【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得2+10m <,求不等式的解即可. 【详解】解:∵点在第三象限,∴ 点的横坐标是负数,纵坐标也是负数,即2+10m < , 解得12m -< , 故答案为:12m -<. 【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 17.下列图形是由一连串直角三角形演化而成,其中11223561OA A A A A A A ===⋅⋅⋅==⋅⋅⋅=.则第3个三角形的面积3S =______;按照上述变化规律,第n (n 是正整数)个三角形的面积n S =______.【答案】32n【分析】根据勾股定理和三角形的面积公式即可得到结论. 【详解】解:∵11223561OA A A A A A A ===⋅⋅⋅==⋅⋅⋅=,∴22112OA =+=,112S =,222313OA =+=,22S =,222414OA =+=,32S =, …,∴第n (n 是正整数)个三角形的面积n S =故答案为:2【点睛】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题. 三、解答题18.现有甲乙丙三个厂家都生产一种灯泡,他们对外都宣称自己的灯泡使用寿命为12个月,为了检查他们灯泡的真正使用寿命,现随机从三个厂家均抽查11个灯泡进行检测,得到的数据如下:(单位:月)(1)这三个生产厂家分别利用了统计中的哪个特征数(平均数,众数,中位数)进行宣传; (2)如果三家灯泡售价相同,作为顾客,你会选择购买哪家的产品,请说明理由.【答案】(1)甲厂用了统计中的平均数、乙厂用了统计中的众数、丙厂用了统计中的中位数进行宣传;(2)答案不唯一,详见解析【分析】(1)根据数据分析,三组数据平均数、中位数、众数为12的符合题意,可得乙厂的广告利用了统计中的众数.丙厂的广告利用了统计中的中位数.再进行少量计算、估算甲厂的平均数,可得甲厂的广告利用了统计中的平均数;(2)根据统计量的意义,结合题意,作出选择.【详解】解:(1)∵甲厂的平均数=甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12 ∴甲厂用了统计中的平均数进行宣传∵乙厂数据中12有3次,是众数,乙厂的众数为12 ∴乙厂用了统计中的众数进行宣传 ∵丙厂数据的中位数是12∴丙厂用了统计中的中位数进行宣传.(2)选用甲厂的产品,因为平均数较真实地反映了灯泡的使用寿命; (或选用丙厂的产品,因为丙厂有一半以上的灯泡使用寿命不少于12个月;).【点睛】本题考查了统计量的选择,掌握平均数、中位数、众数的定义.数据的平均数、众数、中位数是描述一组数据集中趋势的特征量19.如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.(1)①当α=15°时,∠CBA'=;②用α表示∠CBA'为.(2)如图2,点P在BD延长线上,且∠1=∠2=α.①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②BP=8,CP=n,则CA'=.(用含n的式子表示)【答案】(1)①30°;②60°﹣2α;(2)①BP=AP+CP,理由见解析;②8﹣2n【分析】(1)先求出∠ABC=60°,得出∠ABD=60°﹣α,再由折叠得出∠A'BD=60°﹣α,即可得出结论;(2)①先判断出△BP'C≌△APC,得出CP'=CP,∠BCP'=∠ACP,再判断出△CPP'是等边三角形,得出PP'=CP;②先求出∠BCP=120°﹣α,再求出∠BCA'=60°+α,判断出点A',C,P在同一条直线上,即:PA'=PC+CA',再判断出△ADP≌△A'DP(SAS),得出A'P=AP,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠CBD=α,∴∠ABD=∠ABC﹣∠CBD=60°﹣α,由折叠知,∠A'BD=∠ABD=60°﹣α,∴∠CBA'=∠A'BD﹣∠CBD=60°﹣α﹣α=60°﹣2α,①当α=15°时,∠CBA'=60°﹣2α=30°,故答案为30°;②用α表示∠CBA'为60°﹣2α,故答案为60°﹣2α;(2)①BP=AP+CP,理由:如图2,连接CP,在BP上取一点P',使BP'=AP,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵∠1=∠2=α,∴△BP'C≌△APC(SAS),∴CP'=CP,∠BCP'=∠ACP,∴∠PCP'=∠ACP+∠ACP'=∠BCP'+∠ACP'=∠ACB=60°,∵CP'=CP,∴△CPP'是等边三角形,∴∠CPB=60°,PP'=CP,∴BP=BP'+PP'=AP+CP;②如图3,由①知,∠BPC=60°,∴∠BCP=180°﹣∠BPC﹣∠PBC=180°﹣60°﹣α=120°﹣α,由(1)知,∠CBA'=60°﹣2α,由折叠知,BA=BA',∵BA=BC,∴BA'=BC,∴∠BCA'=12(180°﹣∠CBA')=12[180°﹣(60°﹣2α)]=60°+α,∴∠BCP+∠BCA'=120°﹣α+60°+α=180°,∴点A',C,P在同一条直线上,即:PA'=PC+CA',由折叠知,BA=BA',∠ADB=∠A'DB,∴180°﹣∠ADB=180°﹣∠A'DB,∴∠ADP=∠A'DP,∵DP=DP,∴△ADP≌△A'DP(SAS),∴A'P=AP,由①知,BP=AP+CP,∵BP=8,CP=n,∴AP=BP﹣CP=8﹣n,∴A'P=8﹣n,∴CA'=A'P﹣CP=8﹣n﹣n=8﹣2n,故答案为:8﹣2n.【点睛】此题是几何变换综合题,主要考查了折叠的性质,全等三角形的判定和性质,等边三角形的判定和性质,构造出全等三角形是解本题的关键.20.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为125cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】解:(1)①△BPD 与△CQP 全等,理由如下:∵AB=AC=18cm ,AD=2BD ,∴AD=12cm ,BD=6cm ,∠B=∠C ,∵经过2s 后,BP=4cm ,CQ=4cm ,∴BP=CQ ,CP=6cm=BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP≠CQ ,∵△BPD 与△CQP 全等,∠B=∠C ,∴BP=PC=12BC=5cm ,BD=CQ=6cm , ∴t=52, ∴点Q 的运动速度=612552=cm/s ,∴当点Q 的运动速度为125cm/s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x=36, 解得:x=90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.21.在等边三角形ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .(1)求证:△ABP ≌△ACQ ;(2)请判断△APQ 是什么形状的三角形?试说明你的结论.【答案】(1)证明见解析;(2)△APQ是等边三角形.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ =60°,从而得出△APQ是等边三角形. 【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,AB ACABP ACQBP CQ=⎧⎪∠=∠⎨⎪=⎩∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.22.计算:(1)计算:231(5)84---;(2)求x的值:(x+3)2=16;(3)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?【答案】(1)212;(2)x=﹣7或1;(3)木杆断裂处离地面1米【分析】(1)直接利用立方根以及二次根式的性质化简得出答案;(2)直接利用平方根的定义得出答案;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,求出x的值即可.【详解】解:(1231(5)84 --=5﹣2﹣1 2=212;(2)(x+3)2=11,则x+3=±4,则x=﹣7或1;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,解得x=1.答:木杆断裂处离地面1米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.23.如图,点A,E,F在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE【答案】见解析.【分析】利用SAS证明△ACF≌△BDE,根据全等三角形的性质即可得.【详解】∵AE=BF,∴AF=BE,∵AC∥BD,∴∠CAF=∠DBE,又AC=BD,∴△ACF≌△BDE(SAS),∴CF=DE.【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解题的关键.24.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.【答案】(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).25.(1)计算:3652⨯-;()034838201621π---(2)解方程组:24, 4523. x yx y-=-⎧⎨-=-⎩【答案】(1)①-2;②42(2)125 xy⎧=⎪⎨⎪=⎩【分析】(1)根据二次根式的运算法则即可求解;(2)根据加减消元法即可求解.【详解】(1)365 2⨯-185 2-5 =3-5=-2()02016π+-211++=4(2)解244523x yx y-=-⎧⎨-=-⎩①②①×2得4x-2y=-8③③-②得3y=15解得y=5把y=5代入①得2x-5=-4解得x=12∴原方程组的解为125xy⎧=⎪⎨⎪=⎩.【点睛】此题主要考查二次根式与方程组的求解,解题的关键是熟知其运算法则.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有( ) A .40人B .30人C .20人D .10人【答案】C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.2.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:①AC AF =,②FAB EAB ∠=∠,③EF BC =,④EAB FAC ∠=∠,其中正确的是( )A .①②B .①③④C .①②③④D .①③【答案】B 【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【详解】解:∵△ABC ≌△AEF ,∴AC=AF ,EF=BC ,∠EAF=∠BAC ,故①③正确;∵∠EAF=∠BAC ,∴∠FAC=∠EAB≠∠FAB ,故②错误,④正确;综上所述,结论正确的是①③④.故选:B .【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键. 3.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s 甲2=0.45,s 乙2=0.50,s 丙2=0.55,s 丁2=0.65,则测试成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】A【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵s 甲2=0.45,s 乙2=0.50,s 丙2=0.55,s 丁2=0.65,∴S 丁2>S 丙2>S 乙2>S 甲2,∴射箭成绩最稳定的是甲;故选:A .【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积是15cm 2,AB =9cm ,BC =6cm ,则DE =( )cm .A .1B .2C .3D .4【答案】B 【分析】过D 作DF ⊥BC 于F ,由角平分线的性质得DE=DF ,根据1122ABC ABD BCD S S S BC DF AB DE ∆∆∆=+=+即可解得DE 的长. 【详解】过D 作DF ⊥BC 于F ,∵BD 是∠ABC 的角平分线,DE ⊥AB 于E ,∴DF=DE ,∵△ABC 的面积是15cm 2,AB =9cm ,BC =6cm ,又1122ABC ABD BCD S S S BC DF AB DE ∆∆∆=+=+, ∴11156922DE DE =⨯+⨯, 解得:DE=2,故选:B .【点睛】本题主要考查角平分线的性质定理、三角形的面积公式,熟练掌握角平分线的性质定理,作出相应的辅助线是解答本题的关键.5.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】.在假设结论不成立时要注意考虑结论的反面所有考查了反证法,解此题关键要懂得反证法的意义及步骤可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①②B.③④C.①②③D.②③④【答案】C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.7.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是()A.B.C.D.【答案】B详解:客车是匀速行驶的,图象为线段,s表示客车从霍山出发后与合肥的距离,s会逐渐减小为0;A、C、D都不符.故选B.点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.8.在给出的一组数据0,π 3.14227中,无理数有()A.1个B.2个C.3个D.4个【答案】C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:这一组数中,无理数有:π共3个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像1.1111111111…,等有这样规律的数.9.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.240120420x x-=-B.240120420x x-=+C.120240420x x-=-D.120240420x x-=+【答案】D【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x本资料,则这次买了(x+20)本,根据题意得:120240420x x-=+.故选:D.【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.已知关于x的多项式24x mx-++的最大值为5,则m的值可能为()【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案. 【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭ 故245,4m += 解得: 2.m =±故选B.【点睛】本题考查了配方法的运用,掌握配方法是解题的关键.二、填空题11.如图,在Rt ABC ∆中,90ACB ∠=︒,,D E 是边AB 上两点,且CE 所在的直线垂直平分线段AD ,CD 平分BCE ∠,10AC =,则BD 的长为________.【答案】1【分析】根据CE 垂直平分AD ,得AC=CD ,再根据等腰三角形的三线合一,得∠ACE=∠ECD ,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC ,由此即可求得答案.【详解】∵CE 垂直平分AD ,∴AC=CD=1,∴∠ACE=∠ECD ,∵CD 平分∠ECB ,∴∠ECD=∠DCB ,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴BD=CD=1,故答案为:1.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,直角三角形两锐角互余等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.12.当1x =时,分式x b x a -+无意义,则a =_________. 【答案】-1【分析】根据分式无意义的条件是分母为零即可解答.【详解】解:∵当1x =时,分式x b x a-+无意义, ∴当1x =时,分母为零,即10a +=,解得a=-1,故答案为:-1.【点睛】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.13.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是_________________。
2020年人教版八年级数学上册《第11章三角形》单元测试卷一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.52.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..65.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.47.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°二.填空题(共8小题)11.在图中共有个三角形.12.直角三角形中,两锐角的角平分线所夹的锐角是度.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.16.在下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③直角三角形④平行四边形17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=(含x的代数式表示)②求∠F的度数.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?22.已知△ABC中,AB=6,BC=4,求AC的取值范围.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?2020年人教版八年级数学上册《第11章三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.5【分析】先找出以A为顶点的锐角三角形的个数,再找出以E为顶点的锐角三角形的个数,然后将两种锐角三角形相加即可.【解答】解:①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个;所以图中锐角三角形的个数有2+1=3(个);故选:B.【点评】本题考查了三角形.数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.【点评】本题考查的是三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.【分析】利用三角形的稳定性进行解答.【解答】解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性.故选:C.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..6【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可.【解答】解:设第三边长为x,由题意可得9﹣2<x<9+2,解得7<x<11,故x为8、9、10,这样的三角形个数为3.故选:A.【点评】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系是解答的关键.5.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,作出图形更形象直观.7.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,平行四边形,锐角三角形中只有锐角三角形具有稳定性.故选:D.【点评】本题考查了三角形的稳定性,是基础题,需熟记.8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据多边形内角和公式(n﹣2)×180°即可求出结果.【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C.【点评】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠F,∠1+∠2+∠D+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.二.填空题(共8小题)11.在图中共有8个三角形.【分析】按照从左到右的顺序,分单个的三角形和复合的三角形找出所有的三角形,然后再计算个数.【解答】解:三角形有:△ACE、△CDE、△DEF、△BCD,△CDF、△ACD、△BCE、△ACB,共8个.故答案为:8.【点评】考查了三角形,本题难点在于找出复合三角形的个数,按照一定的顺序找即可做到不重不漏.12.直角三角形中,两锐角的角平分线所夹的锐角是45度.【分析】根据△ACB为Rt△,利用三角形内角和定理求出∠CAB+∠ABC=90°,再利用角平分线的性质即可求出两锐角的角平分线所夹的锐角的度数.【解答】解:如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=∠CAB+∠ABC=45°.故答案为:45.【点评】此题主要考查学生对三角形内角和定理和角平分线的性质等知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【解答】解:桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.故答案为:三角形具有稳定性.【点评】本题考查三角形的稳定性在实际生活中的应用问题,是基础题型.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为5,7,9.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于11,又第三边长为奇数,故第三边的长为5,7,9.故答案为:5,7,9.【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.还要注意第三边长为奇数这一条件.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉1根木条.【分析】根据三角形的稳定性可得答案.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:1【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.16.在下列四个图形中,具有稳定性的是③(填序号)①正方形②长方形③直角三角形④平行四边形【分析】根据三角形具有稳定性对各图形分析后解答.【解答】解:在下列四个图形中,具有稳定性的是三角形.故答案为:③【点评】本题主要考查了三角形具有稳定性的性质,是基础题,但容易出错.17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=100°.【分析】首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.【解答】解:正五边形的内角和为(5﹣2)×180°=540°,∵∠A+∠B+∠C+∠D=440°,∴∠E=540°﹣440°=100°,故答案为:100°.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.【解答】解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.【分析】用6根火柴能组成四个一样大的三角形,把六根火柴棒组合成一个正三棱锥即可.【解答】解:首先用3根火柴棒拼成一个等边三角形,然后用3根火柴棒与原来的3根火柴棒组合成三棱锥,因为三棱锥有4个面,每个面都是一样大小的三角形,所以用6根火柴能组成四个一样大的三角形.【点评】此题主要考查了空间想象能力的应用,以及正三棱锥的特征和应用,要熟练掌握.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=72°﹣x°(含x的代数式表示)②求∠F的度数.【分析】(1)先根据三角形内角和得到∠CAB=180°﹣∠B﹣∠C=100°,再根据角平分线与高线的定义得到∠CAE=∠CAB=50°,∠ADC=90°,则∠CAD=90°﹣∠C =40°,然后利用∠DAE=∠CAE﹣∠CAD计算即可;(2)根据题意可知∠B=x°,∠C=(x+36)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FD⊥BC,可得出∠F的度数.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠CAB=180°﹣∠B﹣∠C=100°,∵AD是△ABC角平分线,∴∠CAE=∠CAB=50°,∵AE分别是△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=40°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)①∵∠B=x°,∠C=(x+36)°,AF平分∠BAC,∴∠EAC=∠BAF,∴∠CAE=[180°﹣x°﹣(x+36)°]=72°﹣x°,②∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°.【点评】本题考查的是三角形的角平分线、中线和高以及三角形内角和定理,掌握三角形的角平分线、中线和高的概念,正确运用数形结合思想是解题的关键.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?【分析】根据三角形的稳定性解答.【解答】解:如图,根据三角形的稳定性可知,要使四边形木架不变形,至少要再钉上1根木条,要使五边形木架不变形,至少要再钉上2根木条,要使六边形木架不变形,至少要再钉上3根木条.【点评】本题考查的是三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.22.已知△ABC中,AB=6,BC=4,求AC的取值范围.【分析】根据三角形的第三边应大于两边之差,而小于两边之和进行分析求解.【解答】解:根据三角形的三边关系,得6﹣4<AC<6+4,∴2<AC<10.AC的取值范围是:2<AC<10.【点评】本题考查了求三角形第三边的范围,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【分析】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把三角形分成(n﹣2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n﹣3)根木条.【点评】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n﹣3.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.【分析】(1)先根据四边形内角和等于360°求出∠B+∠C的度数,再除以2即可求解;(2)先根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,再根据四边形内角和等于360°求出∠BEC的度数;(3)①先根据四边形内角和等于360°求出∠ABC+∠BCD的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数;②先根据三角形内角和等于180°求出∠FBC+∠BCF的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数【解答】解:(1)∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠B=∠C,∴∠C=70°;(2)∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣145°=35°,∵∠ABC的角平分线BE交DC于点E,∴∠ABC=70°,∴∠C=360°﹣(145°+75°+70°)=70°;(3)①∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°;②不变.∵∠F=40°,∴∠FBC+∠BCF=180°﹣40°=140°,∵∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°.【点评】本题考查了多边形内角与外角,解决的关键是综合运用四边形的内角和以及三角形的内角和、熟练运用平行线的性质和角平分线的定义.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36°,得出内错角相等,可得两直线平行.【解答】答:AC∥DE,理由:∵五边形ABCDE的内角和=540°,且每个内角都相等.∴∠B=∠BAE=∠E=108°.∵∠1=∠2=∠3=∠4.∴∠1=∠2=∠3=∠4==36°,∴∠CAD=108°﹣36°×2=36°,∴∠CAD=∠4,∴AC∥DE.【点评】本题主要考查了平行线的判定、正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108°.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=180°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为70°;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【分析】(1)根据三角形内角和解答即可;(2)①由四边形的内角和为360°以及角平分线的定义可得∠AOB+∠COD=180°,据此解答即可;②由①得∠AOB+∠COD=180°,从而得出∴∠ADO+∠BOD=180°,可得∠AOD=∠BOC=90°,进而得出∠DAB+∠ADC=180°,可得AB∥CD.【解答】解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,,∴,∴∠DAB+∠ADC=180°,∴AB∥CD.【点评】此题考查了三角形内角和定理、三角形外角的性质、平行线的性质以及角平分线的定义,掌握角平分线的性质和等量代换是解决问题的关键.。
八年级(下)数学第6章平行四边形单元测试卷一.选择题(共10小题)1.平行四边形一定具有的性质是()A.邻边相等B.邻角相等C.对角相等D.对角线相等2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是()A.10B.11C.12D.以上都有可能3.从五边形的一个顶点出发可以连接的对角线条数为()A.1B.2C.3D.44.平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是()A.BE DF=B.//AF CE C.AE CF=D.BAE DCF∠=∠5.如图,在平行四边形ABCD中,AB AC⊥,若8AB=,12AC=,则BD的长是()A.22B.16C.18D.206.如图所示,点D,E,F分别是()ABC AB AC∆>各边的中点,下列说法错误()A.12AD BC=B.12EF BC=C.EF与AD互相平分D.DEF∆的面积是ABC∆面积的1 47.如图,ABCDY的周长为32,对角线AC、BD相交于点O,点E是CD的中点,14BD=,则DOE∆的周长为()A .14B .15C .18D .218.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s二.填空题(共6小题) 11.八边形内角和度数为 .12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n =13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 .14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 .15.如图,在平行四边形ABCD 中,213AB =,4AD =,AC BC ⊥.则BD = .16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 .三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数. 18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF . (1)求证:四边形ABFD 是平行四边形; (2)求证:BF DC =.21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =. (1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式; (3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD . (1)求证:四边形ACED 是平行四边形;(2)若2AC=,4CE=,求四边形ACEB的周长.24.如图,在平面直角坐标系中,点A,B的坐标分别是(3,0)-,(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCODY.在线段OP延长线上一动点E,且满足PE AO=.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?参考答案一.选择题(共10小题)1.平行四边形一定具有的性质是( ) A .邻边相等B .邻角相等C .对角相等D .对角线相等【解答】解:A 、平行四边形的邻边不相等,故此选项错误; B 、平行四边形邻角互补,故此选项错误; C 、平行四边形的对角相等,故此选项正确;D 、平行四边形的对角线不相等,故此选项错误;故选:C .2.一个多边形截取一个角后,形成另一个多边形的内角和是1620︒,则原来多边形的边数是( ) A .10B .11C .12D .以上都有可能【解答】解:Q 内角和是1620︒的多边形是1620211180+=边形, 又Q 多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形. 综上原来多边形的边数可能为10、11、12边形, 故选:D .3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .4【解答】解:n Q 边形(3)n >从一个顶点出发可以引(3)n -条对角线, ∴从五边形的一个顶点出发可以画出532-=(条)对角线.故选:B .4.平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得到四边形AECF 一定为平行四边形的是( ) A .BE DF =B .//AF CEC .AE CF =D .BAE DCF ∠=∠【解答】解:如图,连接AC 与BD 相交于O , 在ABCD Y 中,OA OC =,OB OD =,要使四边形AECF 为平行四边形,只需证明得到OE OF =即可;A 、若BE DF =,则OB BE OD DF -=-,即OE OF =,故本选项不符合题意;B 、//AF CE 能够利用“角角边”证明AOF ∆和COE ∆全等,从而得到OE OF =,故本选项不符合题意;C 、若AE CF =,则无法判断OE OE =,故本选项符合题意;D 、BAE DCF ∠=∠能够利用“角角边”证明ABE ∆和CDF ∆全等,从而得到DF BE =,然后同A ,故本选项不符合题意; 故选:C .5.如图,在平行四边形ABCD 中,AB AC ⊥,若8AB =,12AC =,则BD 的长是( )A .22B .16C .18D .20【解答】解:Q 四边形ABCD 是平行四边形,12AC =, 162OA AC ∴==,2BD OB =, AB AC ⊥Q ,8AB =,228610OB ∴=+=,220BD OB ∴==.故选:D .6.如图所示,点D ,E ,F 分别是()ABC AB AC ∆>各边的中点,下列说法错误( )A .12AD BC =B .12EF BC =C .EF 与AD 互相平分 D .DEF ∆的面积是ABC ∆面积的14【解答】解:A 、由于点D 是BC 的中点,所以12BD BC =,只有当BD AD CD ==时,结论12AD BC =成立,故本选项符合题意. B 、根据中位线定理,12EF BC =.故本选项不符合题意; C 、根据中位线定理,//AF ED ,//AE FD ,四边形AEDF 为平行四边形,对角线EF 与AD 互相平分.故正确;D 、因为DFE ∆和ABC ∆的各边对应成比例,为1:2,而且每组对应点所在的直线都经过同一个点,对应边互相平行,是位似图形. 故选:A .7.如图,ABCD Y 的周长为32,对角线AC 、BD 相交于点O ,点E 是CD 的中点,14BD =,则DOE ∆的周长为( )A .14B .15C .18D .21【解答】解:Q 四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,172OB OD BD ===, ABCD Q Y 的周长为32, 16CD BC ∴+=,Q 点E 是CD 的中点,12DE CD ∴=,OE 是BCD ∆的中位线,12OE BC ∴=, 1()82DE OE CD BC ∴+=+=, DOE ∴∆的周长7815OD DE OE =++=+=;故选:B .8.如图,设M 是ABCD Y 一边上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定【解答】解:Q 四边形ABCD 是平行四边形, AB DC ∴=,CMB ∆Q 的面积为12S DC =g 高,ADM ∆的面积为112S MA =g 高,CBM ∆的面积为212S BM =g 高, 而它们的高都是等于平行四边形的高, 1212S S AD ∴+=g 高12BM +g 高1()2MA BM =+g 高12AB =g 高12CD =g 高S =, 则S ,1S ,2S 的大小关系是12S S S =+. 故选:A .9.如图,在平面直角坐标系中,ABCO Y 的顶点A 在x 轴上,顶点B 的坐标为(4,6).若直线3y kx k =+将ABCO Y 分割成面积相等的两部分,则k 的值是( )A .35B .53C .35-D .53-【解答】解:连接OB 和AC 交于点M ,过点M 作ME x ⊥轴于点E ,过点B 作CB x ⊥轴于点F ,如下图所示:Q 四边形ABCD 为平行四边形,132ME BF ∴==,122OE OF ==, ∴点M 的坐标为(2,3),Q 直线3y kx k =+将ABCO Y 分割成面积相等的两部分, ∴该直线过点M ,323k k ∴=+,35k ∴=. 故选:A .10.在等腰梯形ABCD 中,//AB DC ,5AD BC ==,7DC =,13AB =,点P 从点A 出发,以3个单位/s 的速度沿AD DC ⇒向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A .3sB .4sC .5sD .6s【解答】解:设运动时间为xs ,则753CP x =+-,BQ x =, Q 四边形PQBC 为平行四边形, CP BQ ∴=, 123x x ∴-=, 124x ∴=, 3x ∴=,故选:A .二.填空题(共6小题)11.八边形内角和度数为 1080︒ . 【解答】解:(82)180********-︒=⨯︒=︒g . 故答案为:1080︒.12.如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n = 8 【解答】解:Q 每个内角都相等,并且是它外角的3倍, 设外角为x ,可得:3180x x +=︒,解得:45x =︒,∴边数360458=︒÷︒=.故答案为:8.13.从多边形的一个顶点可以作出6条多边形的对角线,则该多边形的边数是 9 .【解答】解:设这个多边形是n 边形.依题意,得36n -=,解得9n =.故该多边形的边数是9.故答案为:9.14.如图,在ABCD Y 中,120D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE .若AE AB =,则EBC ∠的度数为 45︒ .【解答】解:Q 四边形ABCD 是平行四边形,120ABC D ∴∠=∠=︒,//AB CD ,18060BAD D ∴∠=︒-∠=︒,AE Q 平分DAB ∠,60230BAE ∴∠=︒÷=︒,AE AB =Q ,(18030)275ABE ∴∠=︒-︒÷=︒,45EBC ABC ABE ∴∠=∠-∠=︒;故答案为:45︒.15.如图,在平行四边形ABCD 中,13AB =,4AD =,AC BC ⊥.则BD = 10 .【解答】解:Q 四边形ABCD 是平行四边形,4BC AD ∴==,OB OD =,OA OC =,AC BC ⊥Q ,∴由勾股定理得:2222(213)46AC AB BC =-=-=,132OC AC ∴==, Q 在Rt BCO ∆中,90BCO ∠=︒,2222345OB OC BC ∴=+=+=,210BD OB ∴==,故答案为:10.16.如图,OABC Y 的顶点O 、A 、C 的坐标分别是(0,0),(4,0),(2,3),则点B 的坐标为 (6,3) .【解答】解:(4,0)A Q ,4OA ∴=,Q 四边形OABC 是平行四边形,4OA BC ∴==,(2,3)C Q ,(6,3)B ∴,故答案为(6,3).三.解答题(共8小题)17.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【解答】解:设这个多边形的边数为n ,则(2)180360(122)180n -⨯︒+︒=-⨯︒,解得:10n =,答:这个多边形的边数为10.18.已知:如图,在四边形ABCD 中,DE AC ⊥于E ,BF AC ⊥于F ,DE BF =,ADB CBD ∠=∠.求证:四边形ABCD 是平行四边形.【解答】证明:ADB CBD ∠=∠Q ,//AD BC ∴,DAE BCF ∴∠=∠,在ADE ∆和CBF ∆中DAE BCF AED CFB DE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴∆≅∆,AD BC ∴=,∴四边形ABCD 是平行四边形.19.如图,已知ABC ∆是等边三角形,E 为AC 上一点,连接BE .将AC 绕点E 旋转,使点C 落在BC 上的点D 处,点A 落在BC 上方的点F 处,连接AF . 求证:四边形ABDF 是平行四边形.【解答】证明:ABC ∆Q 是等边三角形,AC BC AB ∴==,60ACB ∠=︒;Q 将AC 绕点E 旋转ED CE ∴=,EF AE =EDC ∴∆是等边三角形,DE CD CE ∴==,60DCE EDC ∠=∠=︒,FD AC BC ∴==,ABC ∴∆、AEF ∆、DCE ∆均为等边三角形,60CDE ABC EFA ∴∠=∠=∠=︒,//AB FD ∴,//BD AF ,∴四边形ABDF 是平行四边形.20.如图,DE 是ABC ∆的中位线,延长DE 至R ,使EF DE =,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF DC =.【解答】证明:(1)DE Q 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =EF DE =Q2DF DE ∴=AB DF ∴=,且//AB DF∴四边形ABFD 是平行四边形;(2)Q 四边形ABFD 是平行四边形AD BF ∴=,且AD CD =BF DC ∴=21.如图,在ABCD Y 中,点E ,F 是对角线AC 上两点,且AE CF =.(1)求证:四边形BFDE 是平行四边形.(2)若22EF AE ==,45ACB ∠=︒,且BE AC ⊥,求ABCD Y 的面积.【解答】(1)证明:连接BD ,交AC 于O ,如图所示:Q 四边形ABCD 是平行四边形,OB OD ∴=,OA OC =,AE CF =Q ,OA AE OC CF ∴-=-,OE OF ∴=,∴四边形BFDE 是平行四边形;(2)解:AE CF =Q ,OE OF =,22EF AE ==,1AE CF OE OF ∴====,4AC =,3CE =,45ACB ∠=︒Q ,BE AC ⊥,BCE ∴∆是等腰直角三角形,3BE CE ∴==,Q 四边形ABCD 是平行四边形,ABCD ∴Y 的面积2ABC =∆的面积1243122AC BE =⨯⨯⨯=⨯=.22.(1)如图①②,试研究其中1∠、2∠与3∠、4∠之间的数量关系;(2)如果我们把1∠、2∠称为四边形的外角,那么请你用文字描述上述的关系式;(3)用你发现的结论解决下列问题:如图③,AE 、DE 分别是四边形ABCD 的外角NAD ∠、MDA ∠的平分线,240B C ∠+∠=︒,求E ∠的度数.【解答】(1)解:3∠Q 、4∠、5∠、6∠是四边形的四个内角, 3456360∴∠+∠+∠+∠=︒,34360(56)∴∠+∠=︒-∠+∠,15180∠+∠=︒Q ,26180∠+∠=︒,12360(56)∴∠+∠=︒-∠+∠,1234∴∠+∠=∠+∠;(2)答:四边形的任意两个外角的和等于与它们不相邻的两个内角的和;(3)解:240B C ∠+∠=︒Q ,240MDA NAD ∴∠+∠=︒,AE Q 、DE 分别是NAD ∠、MDA ∠的平分线, 12ADE MDA ∴∠=∠,12DAE NAD ∠=∠, 11()24012022ADE DAE MDA NAD ∴∠+∠=∠+∠=⨯︒=︒, 180()18012060E ADE DAE ∴∠=︒-∠+∠=︒-︒=︒.23.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD .(1)求证:四边形ACED 是平行四边形;(2)若2AC =,4CE =,求四边形ACEB 的周长.【解答】解:(1)证明:90ACB ∠=︒Q ,DE BC ⊥,//AC DE ∴又//CE AD Q∴四边形ACED 是平行四边形.(2)Q 四边形ACED 是平行四边形. 2DE AC ∴==.在Rt CDE ∆中,由勾股定理得2223CD CE DE =-=. D Q 是BC 的中点,243BC CD ∴==.在ABC ∆中,90ACB ∠=︒,由勾股定理得22213AB AC BC =+=. D Q 是BC 的中点,DE BC ⊥,4EB EC ∴==.∴四边形ACEB 的周长10213AC CE EB BA =+++=+.24.如图,在平面直角坐标系中,点A ,B 的坐标分别是(3,0)-,(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造PCOD Y .在线段OP 延长线上一动点E ,且满足PE AO =.(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形;(2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少?【解答】(1)证明:连接CD 交AE 于F , Q 四边形PCOD 是平行四边形,CF DF ∴=,OF PF =,PE AO =Q ,AF EF ∴=,又CF DF =,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,32OP =,3OC =, 则92OE =, 由勾股定理得,2232AC OA OC =+=, 223132CE OC OE =+=,Q 四边形ADEC 为平行四边形, ∴周长为3(3213)2623132+⨯=+.。
2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥56.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.9.下列图形中轴对称图形是()A.B.C.D.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二.填空题(共8小题)11.如果两个直角三角形的分别对应相等,那么这两个直角三角形全等.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为.13.用反证法证明“两条直线相交,只能有一个交点”,应假设.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为(用含a的代数式表示).16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.17.写出一个成轴对称图形的大写英文字母:.18.下列说法中,正确的有(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)22.用反证法证明:如果x>,那么x2+2x﹣1≠0.23.等边三角形有条对称轴.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【分析】根据全等三角形的判定方法对A、B、C、D选项逐个分析是否可求证两三角形全等,然后即可得出正确选项.【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选:D.【点评】此题主要考查学生对直角三角形全等得判定的理解和掌握,解得此题的关键是根据A、B、C选项给出的已知条件都可判断出三角形全等,所以答案就很明显了.2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°【分析】分别求出第三个内角的度数,即可得出结论.【解答】解:A、有两个角分别为20°,120°的三角形,第三个内角为180°﹣120°﹣20°=40°,∴有两个角分别为20°,120°的三角形不是等腰三角形,选项A不符合题意;B、有两个角分别为40°,80°的三角形,第三个内角为180°﹣40°﹣80°=60°,∴有两个角分别为40°,80°的三角形不是等腰三角形,选项B不符合题意;C、有两个角分别为30°,60°的三角形,第三个内角为180°﹣30°﹣60°=90°,∴有两个角分别为30°,60°的三角形不是等腰三角形,选项C不符合题意;D、有两个角分别为50°,80°的三角形,第三个内角为180°﹣50°﹣80°=50°,有两个角相等,是等腰三角形;∴有两个角分别为50°,80°的三角形是等腰三角形,选项D符合题意;故选:D.【点评】本题考查了等腰三角形的判定以及三角形内角和定理;熟练掌握三角形内角和定理和等腰三角形的判定是解题的关键.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选:B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥5【分析】对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.【解答】解:假设:“好”≥5,则“客”=1,故“好“=7或9.若“好”=7,则“居“=3,引出矛盾;假设:“好“=9,则“居’’=9,引出矛盾.故“好’’≤4.显然“好“≠1;假设:“好”=2,则“客”≤4,只有“客“=4,从而“居”=7,引出矛盾;假设:“好”=3,则“客“≤2,但若“客”=1,则“居”=7,引出矛盾;假设:“客“=2,则“居“=4,引出矛盾.故只有“好”=4.故选:C.【点评】本题考查了用反证法证明命题的正确性,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.6.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°【分析】依据轴对称的性质,即可得到∠APO=∠AP1O,∠AOP=∠AOP1,∠BPO=∠BP2O,∠BOP=∠BOP2,进而得出∠OP1P2+∠OP2P1=90°,再根据∠APB=∠APO+∠BPO=∠AP1O+∠BP2O,即可得出结论.【解答】解:由轴对称可得,OP=OP1、AP=AP1,而AO=AO,∴△AOP≌△AOP1(SSS),∴∠APO=∠AP1O,∠AOP=∠AOP1,同理可得,∠BPO=∠BP2O,∠BOP=∠BOP2,∴∠P1OP2=2∠AOB=90°,∴∠OP1P2+∠OP2P1=90°,∴∠APB=∠APO+∠BPO=∠AP1O+∠BP2O=90°,故选:B.【点评】本题主要考查了轴对称的性质,轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD=,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°﹣,∴∠ACB'=∠EB'O﹣∠COB'=180°﹣﹣90°=90°﹣,∴∠ACB=∠ACB'=90°﹣,故选:D.【点评】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.下列图形中轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【点评】本题考查了轴对称﹣最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如果两个直角三角形的两条直角边分别对应相等,那么这两个直角三角形全等.【分析】直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,添加条件AC=DE,BC=EF,根据SAS推出两三角形全等即可.【解答】解:如图所示∵在Rt△ACB和Rt△DEF中,∴Rt△ACB≌Rt△DEF(SAS).故答案为:两条直角边.【点评】本题考查了直角三角形全等的判定,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,此题是一道开放性的题目,答案不唯一.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为75°或15°.【分析】首先根据题意画出图形,然后利用等腰三角形的性质求解即可求得答案,注意分为点P在边BC上或在CB的延长线上.【解答】解:如图1,∵在等腰△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BP=AB,∴∠APB==75°;如图2,在等腰△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BP=AB,∴∠APB=∠ABC=15°.综上所述:∠APB的度数为75°或15°.故答案为:75°或15°.【点评】此题考查了等腰三角形的性质.注意结合题意画出图形,利用图形求解是关键.13.用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行解答.【解答】解:用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点,故答案为:两条直线相交,有两个或两个以上交点.【点评】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中三角形中每一个内角都小于60°.【分析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.【解答】解:用反证法证明“三角形中必有一个内角不小于60°”时,应先假设三角形中每一个内角都小于60°.故答案为:三角形中每一个内角都小于60°.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为180°﹣2α(用含a的代数式表示).【分析】依据轴对称的性质,即可得出△BCD≌△BED,∠A=∠AEB,再根据四边形ABCD 中,∠ABC+∠ADC=180°,∠ADC=2∠BDC=2α,即可得到∠ABC=180°﹣2α.【解答】解:如图所示,连接BE,∵点C关于BD的对称点E恰好落在AD上,∴BC=BE=AB,DE=DC,∴△BCD≌△BED,∠A=∠AEB,∴∠BCD=∠BED,又∵∠BED+∠AEB=180°,∴∠A+∠BCD=180°,∴四边形ABCD中,∠ABC+∠ADC=180°,又∵∠ADC=2∠BDC=2α,∴∠ABC=180°﹣2α,故答案为:180°﹣2α.【点评】本题主要考查了轴对称的性质以及四边形内角和的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.【分析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断△P1OP2是等腰直角三角形,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,进而得出∠EPF=90°,最后依据勾股定理列方程,即可得到EF的长度.【解答】解:∵P,P1关于直线OA对称,P、P2关于直线OB对称,∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,∴△P1OP2是等腰直角三角形,∴P1P2==2,设EF=x,∵P1E==PE,∴PF=P2F=﹣x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣x)2=x2,解得x=.故答案为:.【点评】本题考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题,依据勾股定理列方程求解.17.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.【分析】根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.【解答】解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.【点评】此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.18.下列说法中,正确的有②③④(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.【分析】根据轴对称图形的定义判断①②;根据等腰三角形的判定判断③;根据平行线的判定判断④;根据等腰三角形线段的性质判断⑤.【解答】解:①梯形、平行四边形不是轴对称图形,故本项错误;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分,本项正确;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形,本项正确;④等腰三角形顶角的外角平分线与底边平行,本项正确;⑤等腰三角形的一个内角为80°,则另外两个内角为50°,50°或80°,20°,故本项错误,故答案为:②③④.【点评】本题主要考查了轴对称图形的定义、等腰三角形的判定、平行线的判定、等腰三角形线段的性质.熟练掌握定理及性质是解题的关键.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.【分析】连接BD,根据等腰三角形的性质和判定,求出BC=DC,根据直角三角形全等的判定定理HL推出两三角形全等即可.【解答】证明:连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC=90°,∴∠CBD=∠CDB,∴BC=DC,∵BE⊥EF,DF⊥EF,∴∠E=∠F=90°,在Rt△BCE和Rt△DCF中,∴Rt△BCE≌Rt△DCF(HL).【点评】本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.【分析】(1)如图1,将∠BAC=100°,∠DAC=36°代入∠BAD=∠BAC﹣∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=104°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=72°,那么∠CDE=∠ADC﹣∠ADE=32°;(2)如图2,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB﹣∠AED=,再由∠BAD=∠BAC﹣∠DAC得到∠BAD=n﹣100°,从而得出结论∠BAD =2∠CDE;(3)如图3,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD﹣∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵AE=AD,∴∠ADE=∠AED.∵∠DAC=36°,∴∠ADE=∠AED=72°.∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.(2)∠BAD=2∠CDE.理由如下:在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴.∵∠ACB=∠CDE+∠E,∴=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°.∴∠BAD=2∠CDE.(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)【分析】根据反证法的一般步骤,假设AB与EF不垂直,根据平行线的性质证明∠CNE ≠90°,与已知相矛盾,从而肯定原命题的结论正确.【解答】证明:假设AB与EF不垂直,则∠AME≠90°,∵AB∥CD,∴∠AME=∠CNE,∴∠CNE≠90°,这与CD⊥EF相矛盾,∴AB⊥EF.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.22.用反证法证明:如果x>,那么x2+2x﹣1≠0.【分析】假设x2+2x﹣1=0,根据一元二次方程的解法解出方程,证明方程的两个根小于即可.【解答】解:假设x2+2x﹣1=0,x=,x1=﹣1+,x2=﹣1﹣,∵2,∴,∴﹣1+,∴x1<,易得x2<,这与已知相矛盾,∴假设不成立,∴如果x>,那么x2+2x﹣1≠0.【点评】本题考查的是反证法的应用,反证法的步骤是:假设结论不成立;从假设出发推出矛盾;假设不成立,则结论成立.23.等边三角形有3条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:等边三角形有3条对称轴.故答案为:3【点评】本题考查了轴对称的性质,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【分析】根据轴对称、轴对称图形的概念以及对称轴的概念进行解答即可.【解答】解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.【点评】本题考查的是轴对称和轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解题的关键.25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为6.【分析】(1)根据轴对称的性质确定出点B关于AE的对称点F即可;(2)即DC与EF的交点为G,由四边形ADGE的面积=平行四边形ADCE的面积﹣△ECG的面积求解即可.【解答】解:(1)如图1所示:在Rt△BEF中,由勾股定理得:BF===6.(2)如图2所示:重叠部分的面积=S ADEC﹣S△GEC=×(2+2)×4﹣=8﹣2=6.故答案为:6.是解题的【点评】本题主要考查的是轴对称变换,重叠部分的面积转化为S ADEC﹣S△GEC 关键.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)【分析】根据对称性,作点A关于小河l的对称点A′,连接A′B,则A′B的长度就是牧童完成这件事情所走的最短路线.【解答】解:过点A作点A关于小河l的对称点A′,连接A′B,与小河l交于点P,点P就是马饮水的地方.则A′B的长度就是牧童完成这件事情所走的最短路线.过点A、A′分别作l的平行线与过点B作的l的垂线分别相交于M、N两点,如图所示:在Rt△ABM中,AB=10,BM=6,∴AM=8,在Rt△BNA′中,A′N=AM=8,BN=BM+MN=6+2=8,∴A′B==8≈11.3.答:他要完成这件事情所走的最短路程是11.3千米.【点评】本题考查了最短路线问题、近似数和有效数字,解决本题的关键是掌握轴对称性质.。
2020年浙教新版八年级上册数学《第5章一次函数》单元测试卷一.选择题(共10小题)1.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量2.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.43.一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8D.y=0.5x+84.函数y=自变量x的取值范围()A.x≠0B.x≠1C.x>1D.x<15.已知y是x的函数,且当自变量的值为2时函数值为1,则该函数的解析式可以是()A.y=x2B.y=x﹣1C.y=2x D.y=6.下列函数中,是一次函数的是()A.y=B.y=C.y=x2﹣3D.y=2x﹣17.若函数y=(k﹣1)x+b+2是正比例函数,则()A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=2 8.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.9.一次函数y =﹣x 的图象平分( )A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限 10.已知直线y =kx +b 经过第一、二、四象限,那么直线y =bx +k 一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二.填空题(共8小题)11.快餐每盒5元,买n 盒需付m 元,则其中常量是 .12.如果y =(m +2)x +m ﹣1是常值函数,那么m = .13.运城市出租车价格是这样规定的:不超过3千米付车费5元;超过的部分按每千米1.6元收费,已知小颖乘出租车行驶了x (x >3)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的关系式为 .14.函数的定义域为 .15.当m = 时,函数+3是关于x 的一次函数. 16.若y =3x n ﹣1是正比例函数,则n = .17.如图是y =kx +b 的图象,则b = ,与x 轴的交点坐标为 ,y 的值随x 的增大而 .18.设直线(n 为自然数)与两坐标轴围成的三角形面积为S n (n =1,2,…2008),则S 1+S 2+…+S 2008的值为 .三.解答题(共8小题)19.如图,甲、乙两地打电话需付的电话费y (元)是随时间t (分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:(1)自变量是 ,因变量是 ;(2)写出电话费y (元)与通话时间t (分钟)之间的关系式;(3)若小明通话10分钟,则需付话费多少元;(4)若小明某次通话后,需付话费4.8元,则小明通话多少分钟.20.如图所示,梯形的上底长是x ,下底长是15,高是8.(1)梯形面积y 与上底长x 之间的关系式是什么?(2)用表格表示y 与x 的关系,完成表格中打“▲”的相应值.(3)y 如何随x 的变化而变化?(4)当x =0时,y 等于什么?此时它表示的图形是什么?21.吴京同学根据学习函数的经验,对一个新函数y =的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x 的取值范围是 .(2)列表:表中m = ,n = .(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点(其中x 为横坐标,y 为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①;②.22.如图①,在矩形ABCD中,AB=12cm,BC=6m,点P从A点出发,沿A→B→C→D 路线运动,到D点停止:点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm),如图②是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系:图③是△AQD的面积S2(cm2)与Q点出发时间x(秒)之间的关系,根据图象回答下列问题:(1)则a=;b=;c=.(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的关系式,并求出点P与Q相遇时x的值.23.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.24.定义一种新运算:a⊕b=(1)请写出函数y=x⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;(2)观察(1)中图象,探究得到y的最小值是.25.已知一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当﹣1≤x≤2时,求y的取值范围.26.已知关于x的一次函数y=mx+4m﹣2.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象不过第四象限,求m的取值范围;(3)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标.2020年浙教新版八年级上册数学《第5章一次函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.【解答】解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.【点评】此题主要考查了常量与边量问题,要熟练掌握,解答此题的关键是要明确:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.2.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.4【分析】根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.【点评】本题主要考查的是函数的概念,熟练掌握函数的定义是解题的关键.3.一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8D.y=0.5x+8【分析】弹簧总长=弹簧原来的长度+挂上xkg重物质量时弹簧伸长的长度,把相关数值代入即可.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.【点评】本题考查了列代数式;得到弹簧总长的等量关系是解决本题的关键.4.函数y=自变量x的取值范围()A.x≠0B.x≠1C.x>1D.x<1【分析】根据分式的分母不为0列式计算,得到答案.【解答】解:由题意得,3x﹣3≠0,解得,x≠1,故选:B.【点评】本题考查的是函数自变量的取值范围的确定,掌握分式的分母不为0是解题的关键.5.已知y是x的函数,且当自变量的值为2时函数值为1,则该函数的解析式可以是()A.y=x2B.y=x﹣1C.y=2x D.y=【分析】把x=2代入各函数解析式,函数值为1的就是答案.【解答】解:A、当x=2时,y=22=4,故本选项不符合题意;B、当x=2时,y=2﹣1=1,故本选项符合题意;C、当x=2时,y=2×2=4,故本选项不符合题意;D、当x=2时,y=﹣=﹣1,故本选项不符合题意.故选:B.【点评】本题考查了函数的定义及求函数值,解题的关键是能够分清楚自变量x和函数值y.6.下列函数中,是一次函数的是()A.y=B.y=C.y=x2﹣3D.y=2x﹣1【分析】根据一次函数的定义分别进行判断即可.【解答】解:A.,自变量x的次数为3,不是一次函数,故A错误;B.中,自变量x的次数为﹣1,不是一次函数,故B错误;C.y=x2﹣3,自变量x的次数为2,不是一次函数,故C错误;D.y=2x﹣1是一次函数.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.若函数y=(k﹣1)x+b+2是正比例函数,则()A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=2【分析】根据正比例函数的定义可知k﹣1≠0,b+2=0,从而可求得k、b的值.【解答】解:∵y=(k﹣1)x+b+2是正比例函数,∴k﹣1≠0,b+2=0.解得;k≠1,b=﹣2.故选:B.【点评】本题主要考查的是正比例函数的定义,根据正比例函数的定义得到k﹣1≠0,b+2=0是解题的关键.8.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.【分析】根据图象,确定一次项系数及常数项的性质符号,再作判断.若不等式的解集有公共部分,则有可能;反之,则不可能.【解答】解:根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选:B.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.注意当k>0时,且k值变大时,图象与x轴的夹角的锐角变大.9.一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【分析】根据正比例函数的性质判断出正比例函数y=﹣x的图象所经过的象限,进而可得出答案.【解答】解:∵k=﹣1<0,∴一次函数y=﹣x的图象经过二、四象限,∴一次函数y=﹣x的图象平分二、四象限.故选:D.【点评】本题考查的是一次函数的图象,熟知一次函数的性质是解答此题的关键.10.已知直线y=kx+b经过第一、二、四象限,那么直线y=bx+k一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】由直线经过一、二、四象限可分析k<0,b>0,由此判定y=bx+k不经过第二象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴直线y=bx+k一定不经过第二象限.故选:B.【点评】本题考查了一次函数的性质,关键要知道k和b对图象的决定作用.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.12.如果y=(m+2)x+m﹣1是常值函数,那么m=﹣2.【分析】因为y=(m+2)x+m﹣1是常值函数,所以m+2=0,即可求得m的值.【解答】解:由题意得,m+2=0,m=﹣2,故答案为:﹣2.【点评】本题考查了函数的概念﹣常值函数,是指函数值是固定不变的.13.运城市出租车价格是这样规定的:不超过3千米付车费5元;超过的部分按每千米1.6元收费,已知小颖乘出租车行驶了x(x>3)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的关系式为y=1.6x+0.2.【分析】根据题意找出等量关系即可列出函数关系式.【解答】解:y=5+1.6(x﹣3)=1.6x+0.2,故答案为:y=1.6x+0.2.【点评】本题考查函数关系式,解题的关键是找出等量关系,本题属于基础题型.14.函数的定义域为x>5.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得x﹣5>0,解得x>5.故答案为:x>5.【点评】考查了函数自变量的取值范围,本题用到的知识点:分式的分母不等于0,被开方数大于等于0.15.当m=﹣2时,函数+3是关于x的一次函数.【分析】由一次函数的定义可知m﹣2≠0,m2﹣3=1,从而可求得m的值.【解答】解:∵函数+3是关于x的一次函数,∴m﹣2≠0,m2﹣3=1.解得:m=﹣2.故答案为:﹣2.【点评】本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.16.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k ≠0,自变量次数为1.17.如图是y=kx+b的图象,则b=﹣2,与x轴的交点坐标为(,0),y的值随x的增大而增大.【分析】利用待定系数法求出一次函数的表达式即可解答.【解答】解:把(1,2),(0,﹣2)代入y=kx+b得,解得,所以一次函数的表达式为y=4x﹣2,令y=0,得4x﹣2=0,解得x=,所以x轴的交点坐标为(,0)y的值随x的增大而增大.故答案为:﹣2,(,0),增大.【点评】本题主要考查了一次函数的图象,解题的关键是根据图象求出一次函数的表达式. 18.设直线(n 为自然数)与两坐标轴围成的三角形面积为S n (n =1,2,…2008),则S 1+S 2+…+S 2008的值为.【分析】分别求出直线(n 为自然数)与两坐标轴的交点,即(,0),(,);则S n=•==,然后分别代入1,2,…,2008,最后求和即可.【解答】解:分别令x =0和y =0,得到直线(n 为自然数)与两坐标轴的交点,即(,0),(0,);则S n =•= =,然后分别代入1,2,…,2008;则有S 1+S 2+…+S 2008=1﹣+﹣++…+﹣=1﹣=.【点评】掌握一次函数的性质.会求一次函数与两坐标轴的交点坐标;熟悉三角形的面积公式;记住:=(n 为自然数).三.解答题(共8小题)19.如图,甲、乙两地打电话需付的电话费y (元)是随时间t (分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:(1)自变量是通话时间,因变量是电话费;(2)写出电话费y(元)与通话时间t(分钟)之间的关系式;(3)若小明通话10分钟,则需付话费多少元;(4)若小明某次通话后,需付话费4.8元,则小明通话多少分钟.【分析】(1)根据函数的定义解答即可;(2)根据表格可知,通话每增加1分钟,电话费增加0.15元,可得电话费y(元)与通话时间t(分钟)之间的关系式;(3)把x=10代入(2)的结论即可;(4)把y=4.8代入(2)的结论即可【解答】解:(1)自变量是通话时间,因变量是电话费.故答案为:通话时间;电话费;(2)y=0.15t;(3)当t=10时,y=0.15t=0.15×10=1.5.所以小明通话10分钟,则需付话费1.5元;(4)把y=4.8代入y=0.15t中得:4.8=0.15t,∴t=32.所以当付话费为4.8元,小明通话32分钟.【点评】本题主要考查了函数的定义,理清题意,得出电话费y(元)与通话时间t(分钟)之间的关系式是解答本题的关键.20.如图所示,梯形的上底长是x,下底长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示y与x的关系,完成表格中打“▲”的相应值.(3)y如何随x的变化而变化?(4)当x=0时,y等于什么?此时它表示的图形是什么?【分析】(1)根据梯形的面积公式,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据一次函数的性质,可得答案;(4)根据三角形的面积公式,可得答案.【解答】解:(1)梯形面积y与上底长x之间的关系式y=(x+15)×8÷2=4x+60;(2)4x+60=120,解得x=15;y=4×18+60=132;填表如下:(3)当x每增加1时,y增加4;(4)当x=0时,y=4×0+60=60;此时它表示的图形是三角形.【点评】本题考查了函数值,利用梯形的面积公式得出函数关系式是解题关键.21.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是一切实数.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.【分析】(1)分式的分母不等于零;(2)把自变量的值代入即可求解;(3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.故答案为:一切实数;(2)m=,n=,故答案为:;;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称【点评】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.22.如图①,在矩形ABCD中,AB=12cm,BC=6m,点P从A点出发,沿A→B→C→D 路线运动,到D点停止:点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm),如图②是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系:图③是△AQD的面积S2(cm2)与Q点出发时间x(秒)之间的关系,根据图象回答下列问题:(1)则a=8;b=2;c=1.(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的关系式,并求出点P与Q相遇时x的值.【分析】(1)先观察图象②,由面积公式得出关于a的方程,解出a,进而可根据面积差除以时间差求得b,再根据图象③,以路程相等为等量关系,求得c的值;(2)由(1)可知相遇时间在8秒以后,分别写出点P和点Q关于x的函数关系,相遇时两个函数值相等,从而可求得x的值.=PA•AD=×(1×a)×6=24【解答】解:(1)由图象可得,S△APQ解得:a=8∴b==2∴(22﹣8)c=(12×2+6)﹣2×8解得:c=1故答案为:8;2;1.(2)依题意得:y1=1×8+2(x﹣8)∴y1=2x﹣8 (x>8)y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)∵点P与Q相遇时,y1=y2∴2x﹣8=22﹣x∴x=10∴点P与Q相遇时x的值为10.【点评】本题考查了动点函数的图象问题,数形结合是解答本题的关键;同时正确地列一元一次方程和写出函数关系式也是解答本题的关键.,23.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.【分析】依据正比例函数的定义得到|m+2|=1且m+3≠0,求得m的值即可.【解答】解:依题意有|m+2|=1且m+3≠0,解得m=﹣1.故m的值是﹣1.【点评】本题主要考查的是正比例函数的定义,依据正比例函数的定义列出方程组是解题的关键.24.定义一种新运算:a⊕b=(1)请写出函数y=x⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;(2)观察(1)中图象,探究得到y的最小值是0.【分析】(1)根据新运算可得到y=,分别讨论x<0和0≤x≤1时,去绝对值符号,即可得到函数y=x⊕1的解析式,在所给的平面直角坐标系中画出该函数图象,即可得到答案,(2)观察(1)中图象,即可得到当x=0时,y取到最小值,即可得到答案.【解答】解:(1)根据题意得:y=,当x<0时,|x|=﹣x,当0≤x≤1时,|x|=x,即y=,该函数图象如下图所示:(2)由图象可知:当x=0时,y取到最小值0,故答案为:0.【点评】本题考查了一次函数的图象,解题的关键:(1)正确掌握去绝对值符号法则,(2)正确掌握观察函数图象.25.已知一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,且m为整数.(1)求m的值.(2)当﹣1≤x≤2时,求y的取值范围.【分析】(1)先根据一次函数y=(3m﹣8)x+1﹣m的图象与y轴的负半轴相交,y随x的增大而减小关于m的不等式组,求出m的取值范围即可;(2)根据﹣1≤x≤2列出关于y的不等式,通过解不等式求得y的取值范围.【解答】解:(1)∵一次函数y=(3﹣m)x+2m﹣9的图象与y轴的负半轴相交,y随x的增大而减小,∴,解得3<m<4.5,∵m为整数,∴m=4.(2)由(1)知,m=4,则该一次函数解析式为:y=﹣x﹣1.∵﹣1≤x≤2,∴﹣3≤﹣x﹣1≤0,即y的取值范围是﹣3≤y≤0.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时y随x的增大而减小,且函数与y轴负半轴相交是解答此题的关键.26.已知关于x的一次函数y=mx+4m﹣2.(1)若这个函数的图象经过原点,求m的值;(2)若这个函数的图象不过第四象限,求m的取值范围;(3)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标.【分析】(1)直接把(0,0)代入求出m的值即可;(2)根据一次函数的性质列出关于m的不等式组,求出m的取值范围即可;(3)把一次函数解析式化为关于m的一元一次方程,根据方程有无数解解答.【解答】解:(1)∵这个函数的图象经过原点,∴当x=0时,y=0,即4m﹣2=0,解得m=;(2)∵这个函数的图象不经过第四象限,∴,解得,m≥;(3)一次函数y=mx+4m﹣2变形为:m(x+4)=y+2,∵不论m取何实数这个函数的图象都过定点,∴x+4=0,y+2=0,解得,x=﹣4,y=﹣2,则不论m取何实数这个函数的图象都过定点(﹣4,﹣2).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点一定适合此函数的解析式是解答此题的关键.。
一、填空题(每题2分,共26分) 1、用适当的符号表示下列关系:
x 的
3
2
与5的差不小于1 ;x 的3倍与7的差是非
负数 ;
2、已知a <b,用“<”或“>”号填空:33--b a ; b a 44--;
3、当x 时,分式2
4
2+-x x 的无意义;当
x
时,分式
2
4
2+-x x 值为零;
4、一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打 折;
5、化简:
ab
bc
a 2= ,
1
2122+--x x x = ,
2
12
2x
x -- = ;
6、已知6=+y x ,4=xy ,则22xy y x +的值为 ;
7、多项式92++kx x 是完全平方式,那么=k ;
8、已知: ABCD, A 、E 、F 共线,B 、C 、F 共线,则 与△FCE 相似的三角形有 ; 二、选择题(每题3分,共18分)
1、在x 1、21
、212+x 、π13xy 、y x +3、m
a 1+中分式的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个 2、适合不等式52
5≤<x 的整数为边长,可以构成一个( )
A 、等边三角形
B 、等腰三角形
C 、直角三角形
D 、
一般三角形
3、下列从左到右的变形,是因式分解的是( )
A 、()()9332-=-+a a a
B 、()5152-+=-+x x x x
C 、⎪⎭
⎫ ⎝
⎛+=+x x x x 112 D 、()22
244+=++x x x
4、对于任何整数m ,多项式()9542-+m 都能( )
A 、被8整除
B 、被m 整除
C 、被()1-m 整除
D 、被()12-m 整除
5、以下两个图形必定相似的是( )
A 、有两条边对应成比例的等腰三角形
B 、有一角是o 25的等
腰三角形
C 、有一个角是o 100的等腰三角形
D 、有一个角相等,两边成比例的三角形
6、下列各式中,一定成立的是( )
A 、1-=---b
a a
b B 、()222b a b a -=-
C 、
y
x y x xy y x -=---1222 D 、()22
22a b b ab a -=+-
三、解答题(共37分)
1、求下列不等式(组),并将解集表示在数轴上(1题3分、2题4分,共7分)
(1)、31
2223-≤-x x (2)、⎪⎩⎪⎨⎧≤+--+<-12153
12)
1(315x x x x
2、分解因式(每题3分,共6分)
(1)、3222y xy y x +- (2)、()()x y y y x x ---
3、利用分解因式进行简便运算(每题3分,共6分) (1)、55
1355
131.3755
139.18-⨯+⨯ (2)、22224.36.6ππ-
4、化简(每题3分,共6分)
(1)、a b a b a b a -+-+ (2)、y y y y y y 9
3322-⋅⎪⎪⎭
⎫ ⎝⎛+--
5、先化简,再求值(4分)
2
24
44122
--⨯+--a a a a a ,其中1-=a 。
6、解方程:(每题4分,共8分) (1)、
1256
52=-+-x
x x (2)、()01213=-+--x x x x
四、运用题(1、2题各6分,3题7分,共19分)
1、有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩59个;如果每一个猴子分5个,都能分得桃子,但剩下一个猴子分得的桃子不够5个,你能求出有几只猴子,几个桃子吗?
2、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的 1.2倍,以便提前
2
1小时到达目的地做准备工作,求先遣队与大队的速度各是多少?
3、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?。