锂电名词解释
- 格式:docx
- 大小:28.14 KB
- 文档页数:21
1 什麼是锂电池锂离子电池(LithiumIonBattery,缩写为LIB),又称锂电池。
锂电池分为液态锂电池(LIB)和聚合物锂电池(PLB)2类。
其中,液态锂电池是指Li+嵌入化合物为正、负极的二次电池。
电池正极采用锂化合物LiCoO2或LiMn2O4,负极采用锂-碳层间化合物。
锂电池是迄今所有商业化使用的二次化学电源中性能最为优秀的电池,这也是促进锂电池用于电动助力车的一个关键因素。
1.1比能量高无论是体积比能量,还是重量比能量,锂电池均比铅酸蓄电池高出三倍以上。
由此决定了锂电池体积更小、重量更轻,其市场消费感觉很好。
1.2循环寿命长锂电池用于电动助力车的循环寿命一般在800次以上,采用磷酸铁锂正极材料的锂电池可以达到2000次左右,超出铅酸蓄电池1.5倍至5倍以上。
这大大降低了锂电池的使用成本,提高了消费者的使用便利程度。
1.3具有较宽的充电功率范围这是锂电池具有的独特优势。
在需要时,可以使充电时间控制在20~60min,充电效率达到85%以上。
在进一步技术创新的基础上,这一特性得到更好的发挥,可以具有很好的商业价值。
1.4倍率放电性能好锂电池的倍率放电可以达到10倍率以上,特殊制作可以达到30倍率。
这一特性非常有利于电动助力车的智能控制骑行技术的发展。
只是目前对这一特性尚未有很好的开发与利用。
我国锂电池产量全球第一,生产量佔世界总量的1/3以上,100多家锂电生产企业对锂电池材料需求殷切,不少厂商都计划在今后2年内把产量大幅提高。
目前,中国锂电制造企业形成了液态锂电池以比亚迪为首,聚合物锂电以TCL电池为首的两大巨头。
TCL电池完成了聚合物锂离子电芯从技术研发到大规模生产的全过程,并且迅速走到了这项技术的最前沿。
TCL生产的聚合物锂电芯在电池电化学阻抗、能量密度、高低温放电等方面均已躋身世界一流行列,比亚迪是液态锂电池的老大,而TCL则是新一代聚合物锂离子电池的老大,聚合物锂电比液态锂电具有优势。
1、电池的定义:按照学者们的命名“电池”即是“化学电源”,它是一个由化学能直接转换成电能的装置。
称“化学电源”显得更科学一些,称“电池”则更贴近百姓一些。
2、何为“一次电池”和“二次电池”?“一次电池”也被称为“原电池”,它是不可以充电的,当设计的容量用完后要更换新电池,它的优点是使用方便,它的缺点是大量的废弃电池对环境造成一定影响。
“二次电池”也称“蓄电池”,是可充电电池,当电池的电量用到一定程度时可以用规定的充电器充电以恢复电量。
还有一种介于二者之间的“可充电一次电池”,它是一次电池的原理,经改良后也可充电,但充放电深度和循环寿命都不能和“二次电池”同日而语。
3、“公称电压”是怎样确定的?规定它有什么作用?“公称电压”顾名思义是大家公认的电压体系,就像220V是我们国家规定的家用交流电的“公称电压”一样,电池的“公称电压”其值规定在:当电池较小电流放电时的电压平台附近。
所以它低于电池的开路电压,又高于较大电流工作时的负载电压。
它的作用是为用电器的设计提供参考,也为电池使用者更换电池时提供依据。
有关标准规定“每个电池必须标明公称电压和正负极性”。
使用者也应注意:“大小形状即使相同,如公称电压不同的电池不能互换。
”目前市场流行的电池体系及公称电压是:“锌锰”/“碱锰” 1.5V“镍镉”/“镍氢” 1.2V“铅酸”2.0V“锂锰”3.0V“锂硫”2.7V“锂氯”3.6V“锂钴” 3.8V(从资料上看,也有标注3.6V和3.7V的,那是因为随着电池材料的改进,充电电压有所提高,电压平台也有所提高。
规定3.8V是比较合理的。
)4、何为“额定容量”?“额定容量”是电池的设计电容量,有关标准规定:电池的实际容量应大于或等于额定容量,因此只要是负责任的厂家出品的电池,绝大多数电池个体容量均不低于额定容量。
但容量的测定条件在标准中规定得非常严格,一般用户不一定具备,所以通常只是在室温下对电池进行定电流(或定电阻)放电,计算其容量基本附合就可以了。
锂离子电池1.锂离子电池锂离子电池是一种二次电池,俗称“锂电”,其发展最早始于十九世纪60-70年代的世界石油危机,1990年由日本sony能源公司和意大利moli能源公司率先开发出以炭为负极材料、以钴酸锂为正极材料的锂离子电池。
锂离子电池分别用能够可逆的嵌如和脱嵌锂离子的化合物为正负极材料,依靠锂离子在正负极之间的转移来实现电池充放电工作。
锂离子电池的性能很大程度上取决于其正负极材料以及电解质和隔膜材料的选择和制备。
锂离子电池具有高电压、高比能循环寿命长、安全性好及使用温度范围宽等显著特点。
在可充电池中,锉离子二次单电池工作电压最高,一般为3.。
~.4OV。
电极电位较高的材料可作为正极,电位较低的材料可作为负极,正负极之间电位差越大,电池的电动势越高。
1.1电极反应正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。
负极反应:放电时锂离子脱插,充电时锂离子插入。
电池总反应以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。
而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。
回正极的锂离子越多,放电容量越高。
我们通常所说的电池容量指的就是放电容量。
在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。
Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。
所以Li-ion Batteries又叫摇椅式电池。
一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。
而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。
锂电池的一些常见名词解释1.开路电压(OCV)锂电池没有连接外电路或者负载时的电压,用万用表就可以测试出来。
2.工作电压(WV)电池在外加负载的情况下,即电路中有电流流过电池时电池正负极之间的电势差。
电池在工作时,就会有电流流过电池内部,因为电池本身的内阻和负载电阻,所以电池工作电压总是低于开路电压。
3.放电截止电压(DCV)指电池在有电能的情况下,放完电时达到的设定的电压,一般设定的电压均在3.0V或者3.0V以上,过放电会对电池产生不可逆转的影响。
4.充电限制电压(LCV)现在的充电制度一般为CC(恒流充电)CV(恒压充电),就是充电过程中由恒流变为恒压充电的电压。
5.电池容量电池容量是指在一定条件下(放电率、温度、终止电压等)电池放出的电量,它是电池电性能的重要指标之一。
用C表示,单位为Ah (安时)或mAh(毫安时)。
6.额定容量即电池包装上注明的容量,是按国家或有关部门颁布的标准,在标准的条件下,放出的最低的容量。
7.理论容量设计时根据活性物质的质量通过按法拉第定律计算而得的理论值。
8.实际容量根据电池所在的实际情况,在一定的充放电制度下所放出来的电池容量。
它与电池本身所在的情况,比如SOC,SOH等相关,同时还与充放电制度相关。
9.电池内阻电池的内阻是指电池流过电流时所受到的阻力。
电池内阻大小主要受到电池的材料、生产工艺、电池结构等因素的影响。
10.充电循环寿命二次电池经历一次充放电称为一个周期或一次循环,电池在反复充放电后,容量会逐渐下降。
一般锂电池都会规定在标准的情况下充放电,当电池容量降至80%时,电池所经受的循环次数就是循环寿命。
11.电池能量(Wh)指电池储存的能量多少,一般用Wh或者KWh来表示。
能量(Wh)=额定电压(V)×工作电流(A)×工作时间(h)。
12.能量密度(Wh/Kg)是单位质量或单位体积的电池所放出的能量,即体积比能量或质量比能量指单位体积或质量所释放的能量,通常用体积能量密度(Wh/L)或表示。
锂电的名词解释锂电是一种以锂离子嵌入和脱嵌为基础工作原理的充电电池。
它是由锂金属和其他材料组成的电池系统,在当今电子设备和电动车等领域得到广泛应用。
在本文中,将对锂电的相关名词进行解释和说明,以增进对锂电的理解。
一、锂离子(Li-ion)锂离子是锂电的核心,是指在电池中进行嵌入和脱嵌反应的离子。
充电时,锂离子从正极材料中嵌入负极材料,释放出电子,电池储存能量,处于充电状态。
放电时,锂离子从负极材料中脱嵌出来,回到正极材料,并释放出储存的能量,驱动设备工作。
二、正极材料正极材料是锂电的一个重要组成部分,用于嵌入和脱嵌锂离子。
目前常用的正极材料有锂铁磷酸(LiFePO4)、三元材料(Li[NiMnCo]O2)等。
锂铁磷酸具有高安全性和高放电电流密度的特点,广泛应用于电动汽车;而三元材料则具有高能量密度和高放电平台电压的特点,适用于便携式电子设备。
三、负极材料负极材料是锂电中的另一个重要组成部分,用于嵌入和脱嵌锂离子。
常用的负极材料有石墨、硅基材料等。
石墨是目前最常用的负极材料,具有良好的电导率和嵌锂性能;而硅基材料则具有更高的容量和能量密度,但存在体积膨胀和失活等问题。
四、电解液电解液是锂电中的重要组成部分,用于媒介正负极之间的离子传输。
电解液通常由有机溶剂和锂盐组成。
有机溶剂具有良好的溶解性、稳定性和电导率,在锂离子嵌入和脱嵌过程中能够有效传输离子。
常见的锂盐有六氟化磷酸锂、六氟硫酸锂等。
五、容量和能量密度容量是指电池储存锂离子的能力,通常用安培时(Ah)来表示。
能量密度则是指单位重量或单位体积的电池储存的能量,通常用瓦时/千克(Wh/kg)或瓦时/立方米(Wh/L)来表示。
锂电池的容量和能量密度是衡量其性能优劣的重要指标,更高的数值意味着更长的使用时间和更高的储存能量。
六、循环寿命循环寿命是指电池在充放电循环中能够保持一定容量的循环次数。
循环寿命的长短直接影响锂电池的使用寿命和性能稳定性。
通常来说,锂电池的循环寿命在300-500次左右,但随着科技的进步和新材料的应用,当前已经有锂电池实现了上千次的循环寿命。
锂电基本概念--倍率充放电一般电池放电,1/10电池容量放电,叫一倍率,也叫标准放电倍率,2倍这个电流放电就是双倍率放电,同理还有三倍率,四倍率等,充电也是一样道理,只是放电改成充电。
用这个一倍或多倍恒流电流把一个充满电的电池放电到规定电压下,计算时间,C=I*t,得到的就是电池容量,电池时间长了或者新电池可以通过这个办法检验容量是否还足够。
一般小倍率放电(充电),测得的电池容量要大些,他们会接近一个数值,一般都是以一倍率充放电测得的容量为标准。
高倍铝放电主要对电池黏结性能影响比较大,大电流放电极粉容易脱落,循环性能变差! 增加导电剂,黏结剂吗,不过那样容量肯定会有影响。
极片做薄点,增加或者增大极耳,再用电导率高点的电解液就可以了解决大电流放电的性能,我觉得要从以下几个方面来考虑。
1)提高正极材料的电子导电率,如果导电率低,大电流充放电时,单位面积通过的电荷无法满足大电流,必然导致电池的阻抗增加,从而导致循环性能降低。
2)从负极方面来考虑,应该对石墨进行改性,增加石墨层的孔径及孔隙率(可以通过氧化等方法来处理)3)从电解液方面来考虑,添加的电解液最好不要含有PC等其它容易石墨剥落的溶剂这是一个综合权衡地问题,不是单单只解决某一方面就可以搞定的,比如说:为了防止电极活性物质粉体的脱落而加入大量的黏结剂的话极化现象加剧,导电性势必受到影响。
为此我们又要加入导电剂来提高导电性可是这样一来又使得比容量降低了。
大电流放电主要是解决导电问题。
这包括配方、电池结构、电流密度三个大的方面。
配方中的材料选择自然是非常重要的了,尤其是负极材料。
据说采用层状石墨和中间相碳微球按一定比例混合做负极活性物质效果比较好,但没有试验过,这一点还需大家去验证。
电池结构主要是极耳、极柱的选择,还有就是他们之间的连接方式,这很重要。
电流密度是可以计算出来的,你要达到多少C率放电,那选用多大的电流密度自己算一下就知道了。
你是需要一个大容量的电池呢,还是需要一个高放电倍率的电池呢?当然,你的钱多到不知道怎么花,那么你大可以买一只容量也大,放电倍率也大的电池。
锂电池术语(草案)
1、电压(单位伏特 V)
电压是电池两端的电势差,可以类比为水管两端的水压。
2、电流(单位安培 A)
电荷的定向移动形成电流。
电流可以是电子在电线类的导体中移动,也可以是离子在正级和负极中的电解液中移动
3、容量(单位安时 Ah)
电池所存储的电量即安培每小时,表示电池1小时持续充入或放出的电量。
如20Ah的电池表示以20A的电流放电能持续放电1小时,以10A的电流持续放电能放电2小时。
4、标称电压
厂家标注的适当的电压近似值该值持续放电时间最长。
如三元锂电池的工作电压是2.8v到4.2v之间,标称电压是3.7。
磷酸铁锂的工作电压是2.5v到3.65v之间,标称电压是3.2v,我们是设计电池组计算电压时就是以标称电压为基数计算的。
5、标称容量
厂家标注的电芯存储电能的容量,一般单位是mAh或Ah(1000mAh=1Ah)标称容量是设计电池组计算容量和保证一致性的重要依据。
6、倍率(c)
电池在充放电时电流与电池标称容量的比率。
这对于锂电池是非常重要的参数,可根据倍率计算电池的最大充放电时间和充放电电流,如2Ah5C的电池,5C表示最快能在0.2小时放完2Ah的电量即该电池最大持续放电电流能达到10A。
最快放电时间公式:1÷5c=0.2小时
最大放电电流公式:2Ah*5C=10A。
锂电名词解释锂电名词解释电池的标称容量(nominal capacity)是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。
电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响。
电池容量用mAh表示。
1C是指电池标称容量的电流,电池以一定的电流放电到3.0V电压时,时间刚好一小时,这个一定的电流就是1C电流。
不同国家的容量定义不一样,有的标称容量是以0.2C计算,有的以1C计算,但1C的定义是一样的.。
电池的倍率性一般以C表示,举个例子,20AH的电池如果放电电流是10A,那么放电倍率就是0.5C。
振实密度(surf-ace density)是在规定条件下容器中的粉末经振实所测得的密度。
压实密度(compacted density)压实密度等于面密度/ (极片碾压后的厚度—集流体厚度) ,单位:g/cm3 压实密度分为负极压实密度(Anode density)和正极压实密度(Cathode density)。
面密度(surf-ace density) 单位露头面积内裂缝的总长度或总宽度。
也有人将单位露头面积内裂缝的面积百分率叫做裂缝率。
集流体(set fluid)是指汇集电流的结构或零件,在锂离子电池上主要指的是金属箔,如铜箔、铝箔。
泛指也可以包括极耳。
其功用主要是将电池活性物质产生的电流汇集起来以便形成较大的电流对外输出,因此集流体应与活性物质充分接触,并且内阻应尽可能小为佳。
这也是锂离子电池为什么选用价格较高的金属铜和铝的原因——电阻小、延展性好。
比表面积(specific surf-ace area)单位质量粉粒的表面积。
终止电压(cut-off discharge voltage) 是电池电压下降到不宜再继续放电的最低工作电压值。
根据不同的电池类型及不同的放电条件,对电池的容量和寿命的要求也不同,因此规定的电池放电的终止电压也不相同。
锂电名词解释1 什麼是锂电池锂离子电池(LithiumIonBattery,缩写为LIB),又称锂电池。
锂电池分为液态锂电池(LIB)和聚合物锂电池(PLB)2类。
其中,液态锂电池是指Li+嵌入化合物为正、负极的二次电池。
电池正极采用锂化合物LiCoO2或LiMn2O4,负极采用锂 -碳层间化合物。
锂电池是迄今所有商业化使用的二次化学电源中性能最为优秀的电池,这也是促进锂电池用于电动助力车的一个关键因素。
比能量高无论是体积比能量,还是重量比能量,锂电池均比铅酸蓄电池高出三倍以上。
此决定了锂电池体积更小、重量更轻,其市场消费感觉很好。
循环寿命长锂电池用于电动助力车的循环寿命一般在800次以上,采用磷酸铁锂正极材料的锂电池可以达到xx年内把产量大幅提高。
目前,中国锂电制造企业形成了液态锂电池以比亚迪为首,聚合物锂电以TCL电池为首的两大巨头。
TCL电池完成了聚合物锂离子电芯从技术研发到大规模生产的全过程,并且迅速走到了这项技术的最前沿。
TCL生产的聚合物锂电芯在电池电化学阻抗、能量密度、高低温放电等方面均已躋身世界一流行列,比亚迪是液态锂电池的老大,而TCL 则是新一代聚合物锂离子电池的老大,聚合物锂电比液态锂电具有优势。
2 锂电池的原材料锂电池正负电极、电解质、聚合物隔离膜及保护电路芯片组成,锂电池的上游有正极材料、负极材料、隔膜、电解液、锂资源等。
正极材料电池的发展史,正是一部材料科技的进步史。
工艺的改进使电池量变,新材料的发明促使电池质变。
可以预见的是,采用含有锂元素的导体材料作为电极材料是高能电池的最佳选择。
锂电池根据正极材料不同,可分为磷酸鈷锂、磷酸锰锂、磷酸铁锂三种。
磷酸鈷锂于鈷价高昂而被放弃;磷酸锰锂相较于磷酸铁锂,在安全性和使用寿命方面不高;在可预见的将来,磷酸铁锂将成为锂电池的主要正极材料。
通用的 Volt和比亚迪的F3DM都采用磷酸铁锂电池。
随着锰酸锂和磷酸铁锂等极具发展前途的正极材料的技术进步,其在动力电池领域也开始了扩张的步伐。
贝特瑞公司是锂电池碳负极材料和磷酸铁锂正极材料的龙头。
贝特瑞在国内拥有40多项锂电池正负极材料专利,xx年销售额个亿,净利润3000万,预计xx年全部销售额4亿~5亿元,xx年8亿~10亿元,同比保持100%歷史增速。
负极材料目前业界对负极材料的研究相对较少,其实负极与正极对锂离子电池具有同等的重要性。
在正、负极材料的选择上,正极材料必须选择高电位的嵌锂化合物,负极材料必须选择低电位的嵌锂化合物。
目前,开发和使用的锂离子电池负极材料主要有石墨、软碳(softCarbon)、硬碳(HardCaobon)等。
在石墨中有天然石墨、人造石墨、石墨碳纤维。
在软碳中常见的有石油焦、针状焦、碳纤维、中间相碳微球(MesocarbonMicrobends,缩写MCMB)等。
硬碳是指高分子聚合物的热解碳。
常见的有树脂碳、有机聚合物热解碳、碳黑等。
目前除石墨材料外,其他各类材料都还存在一些尚未解决的难题,目前还不能应用于LIB的生产。
例如无序炭儘管放电容量很大,但不可逆容量也很大,而且电位滞后现象严重,即Li+嵌入的电位接近0V而Li+脱出的电位接近1V,与无序炭类似。
B-C-N系化合物和C-Si-O系化合物的放电曲线为——「斜坡」,不像石墨材料那样在低电位处有一个电位平台。
过渡金属氧化物用作LIB负极活性材料时的主要问题是不可逆容量大和充、放电电位平台高。
锂一过渡金属氮化物则于其对空气湿度的敏感,因此实际应用仍受到限制。
至于锂合金材料则因在合金化过程中体积膨胀率太大,致使电极材料在反覆充、放电时粉化、导电网络中断,因此循环性能很差。
对这些问题还有待进一步的研究,以求获得更新更好的负极材料。
电解液电解液是锂电池四大关键材料之一,号称锂电池的「血液」,是锂电池获得高电压、高比能等优点的保证;作为锂离子电池必需的关键材料,锂电池电解液的发展取决于锂电池的发展。
锂电池电解液是六氟磷酸锂加上有机溶剂配成,六氟磷酸锂五氯化磷和溶解在无水氟化氢中的氟化锂反应结晶而成。
据估算每辆新型动力汽车需碳酸锂约为30kg,假设xx年起全球新增1%的乘用车使用锂电池,此后逐年递增1%。
按xx 年全球产销规模约 5000万辆为基数,依此推算,每年新增碳酸锂需求将达数万吨。
目前全球碳酸锂供需基本平衡,如因新型动力电池而出现需求的跳跃式增长,碳酸锂的供需平衡将被彻底打破,市场规模的急剧扩大,将给现有碳酸锂生产企业带来革命性变化。
隔离膜隔离膜材料佔锂离子电池成本的1/3左右。
锂离子电池隔离膜一般采用聚丙烯(PP)、聚乙烯(PE)单层微孔膜,以及PP和PE 復合的多层微孔膜作为隔离膜,以聚丙烯为例,其原料成本约8千元/吨,而将其加工成隔膜后,其价值可达到300万元/吨,大幅升值几百倍。
电池保护IC锂电池在使用过程中,过充电、过放电和过电流都会影响电池使用寿命和性能,严重者会导致锂电池燃烧、爆炸,现已出现手机锂电池爆炸致人伤亡的案例,经常出现IT和手机厂家召回锂电池产品的事件。
所以每块锂电池都要安装一块安全保护板,一块专用IC和若干个外部元件组成,通过保护环路有效监测并防止对电池产生损害,防止过充、过放和短路造成的燃烧、爆炸等危险。
于每个锂离子电池中都要安装一片电池保护IC,锂电池保护IC市场大得惊人,每年有几十亿美元的市场,专业的微电子生产商士兰微集团是生产「锂电池保护电路芯片」的龙头企业,公司生产的锂电池保护用集成电路,可比日本理光的产品媲美,而价格却低得多,市场潜力很大。
于锂电池能量密度高,因此难以确保电池的安全性。
在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而产生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,因而降低可充电次数。
锂电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精密度、保护IC功耗低、高耐压以及零伏可充电等特性。
士兰微已开发了SA1412型号双节锂电池保护电路、SA45141型号3节或4节锂电池保护电路、SC8261G型号单节锂电池保护电路、SC121型号内置延时电容单节锂电池保护电路、SC8201型号单节锂电池保护电路、SC8821型号内置MOSFET的单节锂电池保护芯片,其中SA1412是锂电池保护用集成电路。
当锂电池处于过放电、过充电以及过电流时,对锂电池起到保护作用。
SC8821是内置MOSFET的单节锂电池保护芯片,为避免锂电池因过充电、过放电、电流过大导致电池寿命缩短或电池被损坏而设计的,SC8821具有高精确度的电压检测与时间延迟功能。
锂电池的过充、过度放电、过电流及短路保护很重要,否则严重者会导致燃烧、爆炸,致人伤亡,所以通常都会在电池包内设计保护线路用以保护锂电池,锂电池保护电路芯片是每一块锂电池的保护神,市场前景非常广阔。
3 锂电池发展的障碍锂离子电池也存在许多缺陷:循环寿命短,充电电路复杂,对电池内部保护电路的要求很高等,尤其对全密封铝壳封装的锂离子电池来说,在其安全保护的设计上存在一个极其致命的缺陷。
资源紧缺地壳中锂元素的比例约为%,其丰度在各种元素中居第27位。
海水中锂的总储量达2600亿t,但浓度太小,提炼困难。
世界盐湖锂资源主要分布在智利、阿根廷、中国及美国。
花岗伟晶岩锂矿床主要分布在澳大利亚、加拿大、芬兰、中国、津巴布韦、南非和刚果。
印度和法国也发现伟晶岩锂矿床,但是不具有商业开发价值,目前世界上只有少数国家拥有可经济开发利用的锂资源。
中南大学化学电源与材料研究所所长唐有根表示,即便是锂的成本和安全性的问题全部解决了,今后用锂电池替代汽油的话,也满足不了全部需求,因为这相当于用一种紧缺的资源去替代另一种紧缺的资源。
冶炼污染锂电池中含有的六氟磷酸锂、聚丙二乙烯(醇)等化学物质会对环境造成有机污染。
其含有的鈷等重金属元素,也会对环境会造成危害,尤其是鈷,含量相对较高,属于稀有贵重金属,具有很高的回收价值。
虽然锂电池本身的污染并不严重,但锂金属在提取冶炼过程中,对环境的污染不亚于汽油产生的污染。
金属锂的工业生产方法主要有熔盐电解法和真空热还原法。
熔盐电解法系采用氯化锂为原料,在熔融电解槽内电解时分解为金属锂和氯气,在阴极析出锂,在阳极析出氯气。
电解进行时,氯化锂离解为锂离子,向阴极移动并放电,形成的金属锂通过熔盐逐渐上升到电解槽表面或到锂收集室。
在阳极析出的氯气通过熔盐上升至出口排出或收集。
该法的最大缺点是电解时产生氯气污染严重,且产品质量不易控制,生产成本高。
安全问题专家认为,市场上多半使用的高容量锂电池于化学成分的不同,在发生质量问题时,容易出现爆炸伤人事故。
而相对安全的是镍氢和镍鎘电池。
锂元素过于活跃,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来经过改进型的锂离子电池,加入了能抑制锂元素活跃的成分,从而使锂电提高安全标准和高效。
在锂电池发展过程中,因为采用的正负极材料及其配方不同,出现过爆炸、燃烧等不安全现象。
主要是负极采用金属锂,经循环后产生枝晶,致使短路,出现燃烧爆炸;而正极材料采用鈷酸锂或镍鈷锂等,其化学活泼性较高,在石墨负极的配合下,一旦出现高温,容易发生爆炸燃烧。
儘管实际发生的概率在十万分之一或百万分之一以上,但于以手机及笔记本电脑等为主的电子消费品数量极大,使用范围极广,因此累计发生的安全事故绝对数量使人们感觉很多。
于这些电子消费品是人们日常生活相伴,不可或缺的用品,一旦发生安全问题,影响很大,致使人们「谈锂电池色变」。
这种在电子数码产品中使用的锂电池的安全问题形成一种成见,开始影响电动助力车用锂电池。
锂电池的安全设计过分依赖其内部电子安全保护芯片,而没有设置必要的物理安全保护措施。
在充电以及使用的过程中,一旦出现其安全保护芯片失效的故障,后果是不堪设想的,轻则出现电池内部气体积聚引起电池体涨鼓现象,重则可能因为发生电池内部短路等等异常而导致电池爆炸的悲剧发生。
成本问题相对于铅酸蓄电池,锂电池用于电动助力车的成本较高是一个突出的特点,也是影响锂电池大规模替代铅酸蓄电池用于电动助力车的关键。
锂电池的正极材料、负极材料、集流体、隔膜、电解质等主材价格比铅酸蓄电池高出很多,其组装辅材和外部电路系统成本则是铅酸蓄电池几乎没有的。
虽然锂电池于能量远高于铅酸蓄电池,因此单位功率的原辅材料成本并没有表现出来的成本差距那麼大,但是二者的材料成本差距确实存在,而且差距以倍数计。
于制作工艺的原因,锂电池的人工成本比较高。
在制造成本中,锂电池的人工成本佔40%以上,而铅酸蓄电池的人工成本一般为10%~20%。
锂电池在生产中大部分过程是不可逆的,而铅酸蓄电池是可逆修復的,因此锂电池的总体合格率较低。