110kV兴隆变电站接地网优化改造技术研究
- 格式:docx
- 大小:11.31 KB
- 文档页数:2
电网系统中110kV变电站安装施工技术的应用研究发布时间:2022-06-26T02:38:53.930Z 来源:《中国电业与能源》2022年第4期作者:左涛[导读] 110kV变电站是电网系统建设的重要内容,规范化的开展110kV变电站安装工作,能有效保证电网系统的完成性,提升电力输送的稳定性。
左涛新疆伊犁南岗化工有限责任公司 835100摘要:110kV变电站是电网系统建设的重要内容,规范化的开展110kV变电站安装工作,能有效保证电网系统的完成性,提升电力输送的稳定性。
本文立足电网系统建设,在阐述110kV变电站安装重难点的基础上,从支架安装、变压器安装、电缆敷设、接地施工、断路器安装等层面出发,指出110kV变电站安装施工技术要点和注意事项,期望能充分保证110kV变电站安装的标准性、规范性,为电力资源的高效、安全应用创造良好环境。
关键词:电网系统;变电站;110kV;安装技术电网系统是电力资源高效利用的基础,新经济形态下,我国社会生产中对于电力资源的需求量不断增加,这要求重视电网系统基础设施的有效建设。
110kV变电站是电网系统建设施工的重要内容,其直接关系着电力资源输送、应用的稳定性、安全性。
新时期,有必要严格控制110kV变电站安装施工技术应用,以此来创建良好的电网运行环境,提升电力资源应用效益。
一、110kV变电站安装施工技术重难点作为电网系统基础设施建设的重要内容,110kV变电站安装施工本身具有较强的专业性、综合性和复杂性。
在见图的安装施工阶段,110kV变电站安装施工技术的重难点包括:其一,110kV变电站基础墩施工中,施工人员在技术参数预估和把控中存在一定的难度;其二,变电站安装包含了较多的设备安装与调试工作,同时散热设备安装、配套绝缘设施安装等内容均有较高的技术要求,整体把控难度较大。
其三,110kV变电站的电缆线路较为复杂,当电缆敷设型号、长度选择不当,辐射不合理时,势必影响整体的应用效果。
有关110kV变电站的防雷接地设计的研究110kV变电站是电力系统中重要的组成部分,而防雷接地设计是变电站建设中必不可少的一部分。
因为变电站的设备和线路都极容易受到雷击,因此需要对变电站进行防雷接地设计,以防止雷击对变电站设备和线路造成损坏。
本文将对110kV变电站的防雷接地设计进行研究探讨,以保证变电站的安全运行。
防雷接地设计是指通过合理的接地系统,将雷电流迅速引入大地,避免雷电流对设备和线路的损害。
对于110kV变电站,其防雷接地设计需要考虑以下几个方面:1. 接地系统的选择:110kV变电站的接地系统通常包括平衡接地和非平衡接地两种形式。
平衡接地适用于特高压变电站,而非平衡接地适用于中压变电站。
需要根据110kV变电站的具体情况选择合适的接地系统。
2. 接地电阻的计算:接地电阻是衡量接地系统性能的重要指标,接地电阻越小,接地效果越好。
对于110kV变电站的防雷接地设计,需要通过合理的计算方法,确保接地电阻满足规定的要求。
3. 接地材料的选择:接地材料的选择直接影响接地系统的性能,要根据110kV变电站的具体情况选择合适的接地材料,以保证其接地效果。
4. 接地系统的布置:接地系统的布置应考虑变电站的整体布局、设备配置和线路走向等因素,以确保接地系统能够有效地引导雷电流,避免对设备和线路的损害。
二、110kV变电站的防雷接地设计方法1. 平衡接地的设计方法对于特高压变电站,一般采用平衡接地系统,其设计方法主要包括以下几个步骤:(1)确定接地网的布置:接地网的布置应根据变电站的整体布局和设备配置确定,一般采用网状或者环状布置方式。
(2)计算接地电阻:采用传统的公式或者有限元分析方法,对接地网的接地电阻进行计算,以确保满足规定的要求。
(3)接地材料的选择:一般采用优质的接地材料,如裸铜线或者镀铜扁钢等,以确保接地材料的导电性能。
三、110kV变电站防雷接地设计的技术要求和实际应用1. 技术要求(1)接地电阻:110kV变电站的接地电阻应满足规定的要求,一般不大于1Ω。
绪论随着近年来电力行业的不断发展,电力系统的供电安全成为一个很重要的问题,然而变电站在电力系统中占有重要位置,故变电站的安全可靠运行的工作就显得十分重要。
变电站接地系统的合理性是直接关系到人身和设备安全的重要问题。
随着电力系统规模的不断扩大,接地系统的设计也越来越复杂。
变电站接地包含工作接地、保护接地、雷电保护接地。
工作接地即为电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地即为为雷电保护装置向大地泄放雷电流而设的接地。
变电站接地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。
雷电是影响变电站安全运行的重要因素,变电站发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活,因此变电所防雷措接地施必须十分可靠。
变电站对直击雷的防护方法是装设避雷针,将变电站的进线杆塔和室外电气设备全部置于避雷针的保护范围之内。
为了防止在避雷针上落雷时对被保护物产生“反击”过电压,避雷针与被保护物之间应保持一定的距离。
变电站内安装使用着各种类型的高、低压变、配电设备,这些设备均直接和供电系统的线路相连,而线路上发生雷电过电压的机会较多,因此更要注意防雷。
变电站中防雷的主要装置是避雷器,避雷器是一种防雷设备,它对保护电气设备、尤其是变压器起了很大的作用。
一旦出现雷击过电压,避雷器就很快对地导通,将雷电流泄入大地;在雷电流通过后,又很快恢复对地不通状态。
变电站进线段的防护变电站的进线段杆塔上装设一段避雷线,使感应过电压产生在规定的距离以外,侵入的冲击波沿导线走过这一段路程后,波幅值和陡度均将下降,使雷电流能限制在5kV,这对变电站的防雷保护有极大的好处。
对于本次设计,一方面汲取了指导老师的宝贵意见,一方面查阅了相关的文献,并经过自己学习、研究和大量的计算将其完整的做出,但限于设计者的专业水平有限,难免会出现错误和不足之处,热诚希望老师批评指正。
目录摘要 (Ⅰ)第1章:变电站接地网面临的现状··················( 1 )1.1 接地网的概述·······················( 1 )1.2 接电网的现状分析·····················( 1 )第2章:接地网优化设计的合理性··················( 4 )2.1 关于接地短路电流的计算及接地要求·············( 4 )2.2 对接地网优化设计的分析··················( 6 )第3章:城市变电站接地网设计···················( 8 )3.1 三维立体接地网基本原理··················( 8 )3.2 垂直超深钢镀铜接地棒垂直超深钢镀铜接地棒·········( 9 )3.3 城市变电站接地网设计特点·················( 11 )第4章:接地网优化设计的方法····················( 13 )4.1 接地网接地电阻计算及量大电阻的确定············( 13 )4.2 减小接地电阻的方法···················( 14 )4.3 工程设计中的几点建议···················( 16 )第5章:变电站接地网优化措施····················( 18 )5.1 改进接地网的技术措施·················( 18 )5.2 接地工程设计实践····················( 21 )第6章:与接地网相关问题······················( 23 )6.1 接地网在设计过程中注意事项···············( 23 )6.2 与城市接地网有关的接地·················( 25 )结束语····························( 27 )致谢····························( 28 )参考文献····························( 29 )I摘要随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。
110 kV变电站接地网阴极保护设计与实施
白旭
【期刊名称】《内蒙古电力技术》
【年(卷),期】2010(28)4
【摘要】包头桥西110 kV变电站接地网锈蚀严重,故对其设计了阴极保护方案并予以实施:由WDJDW自动控制装置、WDFY-711型电极、WDCB-811型电极等组成接地网阴极保护系统,自动控制装置的正极与WDFY-711型电极相连,负极与接地网相连;电路接通后,由外部向地下腐蚀的接地网金属材料提供阴极直流电流,电流从WDFY-711型电极经土壤介质至接地网形成回路,使金属电位降低(阴极极化).该接地网阴极保护系统运行后,各参比点极化值超过(或接近)0.1 V,从根本上减缓了金属的腐蚀速率,接地网被阴极极化后得到有效保护,改变了桥西变电站接地网受腐蚀的现状.
【总页数】3页(P39-41)
【作者】白旭
【作者单位】华北电力大学,河北,保定,071003;内蒙古包头供电局,内蒙古,包头,014030
【正文语种】中文
【相关文献】
1.桂供资源梅中110kV变电站接地网设计与实施 [J], 廖可奎;王巨丰;范李莉
2.桂供资源梅中110kV变电站接地网设计与实施 [J], 廖可奎;王巨丰;范李莉
3.500kV双河变电站接地网阴极保护运行分析 [J], 张建德;刘铁
4.110kV变电站接地网牺牲阳极阴极保护设计 [J], 陈坤汉;杨道武;肖忠良;喻林萍;宋刘斌
5.110 kV马山变接地网电化学腐蚀原理及阴极保护法的应用 [J], 刘长青
因版权原因,仅展示原文概要,查看原文内容请购买。
110kV变压器中性点接地方式与保护配置分析刘丛然;刘健;龙家文【摘要】电力系统中变压器中性点的接地方式和保护配置,是一个关系到电网安全运行的综合性问题,它与电压等级、电网结构、绝缘水平、供电可靠性等都有密切的关系.我国1 10kV及以上电网一般采用大电流接地方式,即中性点有效接地方式,发生单相接地故障时,暂态过电压水平较低,故障电流较大,继电保护迅速动作于跳闸以切除故障.主要研究分析了110kV变压器的接地方式及保护配置,并根据大港油田某变电站发生的实际案例来详细分析故障发生的过程及保护配置的必要性.【期刊名称】《电气开关》【年(卷),期】2014(052)006【总页数】3页(P100-102)【关键词】变压器中性点;间隙;避雷器;零序保护【作者】刘丛然;刘健;龙家文【作者单位】大港油田电力公司生产调度中心,天津300280;大港油田电力公司生产调度中心,天津300280;大港油田电力公司生产调度中心,天津300280【正文语种】中文【中图分类】TM7321 前言在110kV及以上电压等级电网系统中,电力变压器是电力生产的核心设备,其成本较高,为了减少成本,减小变压器的内绝缘尺寸从而使整个变压器的尺寸缩小,变压器普遍采用分级绝缘结构,其特点是中性点的绝缘水平低于三相端部出线电压等级的绝缘水平。
在部分变压器中性点接地的电网中,接地短路故障是较常见的故障(约占故障总数的85%以上)。
当系统发生接地故障,中性点接地的变压器跳开后,电网变成不接地系统,电网零序电压升高或谐振等都会使不接地变压器中性点遭受过电压,从而危及变压器的中性点绝缘。
因此,处于该系统中运行的大型变压器必须装设中性点保护[1]。
2 变压器中性点接地方式2.1 变压器中性点接地系统的优缺点对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。
变电站接地网存在的问题及改造意见摘要:根据电力部通报的几次由于接地网问题引起的接地装置扩大事故的原因及分析,并结合保定供电公司地网检查中发现的问题,对地网改造的几个技术问题进行了探讨,并提出了建设性意见。
关键词:接地装置;热容量;腐蚀;变电站;接地网近年来,国内许多地区连续发生多起因接地网不满足要求而引起的设备损坏事故。
1985年东北某电厂66kV系统C相接地,弧光过电压使一条出线隔离开关闪络,构成两相异点接地短路,线路跳闸重合不成,使刀闸弧光蔓延到刀闸两侧形成三相弧光短路。
短路电流将接地引下线烧断8处,高压进入直流系统和二次回路导致全部电源开关跳闸,全厂停电。
全国还发生多起同类地网事故。
1保定供电公司地网腐蚀情况为了摸清保定供电公司地网的腐蚀情况及存在的问题,从1999年起对南郊、高碑店、雄县、上陈驿、定县等运行20a以上的变电站地网进行了挖掘检查,经检查发现如下问题。
a.接地引下线热容量不够公司大部分变电站设备采用的接地引下线为?12mm圆钢,部分设备甚至用?8mm圆钢,而且个别站同一电压等级设备的接地引下线规格不齐,并有多点焊接。
梢接地引下线与水平地线截面配合不当高碑店220kV部分接地引下线截面?22mm圆钢,而接地引下线与地网干线相连的地线截面却为?12mm圆钢;10kV母线桥接地引下线为?10mm的圆钢,主网为40X4mm扁钢。
c.没按图纸施工,接地引下线连接不合理东北郊变电站地网施工图为对称布置,是与西北角相对应的东北角上一条主干线,开挖检查却找不到。
部分设备接地引下线不是直接引到主网,而是经过操作机构再引到主网,或就近与其它设备接地引下线相连,甚至有部分设备接地引下线直接引进电缆沟内扁铁上。
d.后期工程的接地引下线没有与一期工程主地网相连接容城220kV变电站二期工程#1变压器中性点没有与主地网相接;#1变压器本体与底座基础相连,但底座基础没有与主网相连,该主变长期运行在本体及中性点没有有效接地的情况下,侥幸在运行期间没有发生接地故障,并及时发现事故隐患。
110kV变电站接地网的优化设计分析摘要:在电网建设过程中,变电站是其中关键的一环,而要保证变电站运行的可靠性,则接地网的设计又是一项重要内容。
110kV变电站在电力传输过程中担负着升压、降压的作用,而变电站的设备安全以及工作人员的人身安全均与接地网的可靠性有着直接的关系,从而影响到整个电力系统运行的性能。
本文就针对110kV变电站接地网的优化设计展开讨论。
关键词:110kV变电站接地网优化设计1、计算水平主接地网接地电阻3、减小接地电阻设计接地网之前,要先测试、研判变电站地域的地质情况。
因为土壤电阻率有一定的不均交性,尤其是深度不同,电阻率的差别就比较大,这就是土壤分层特性。
是由于大地的结构不同造成这种差别,比如水层与非水层的差别,或者普通土壤与岩石层的差别等等。
所以要先测试变电站所在工的土壤分层状况,从而确定出地层电阻率较低的位置,接下来再针对不同降低接地电阻的方法进行计算,从而确定出最佳方案。
3.1 接地斜井3.2 深井式垂直接地极深井式垂直接地极是以水平接地网为基础,向大地纵深寻求扩大接地面积。
如果大地上层土壤电阻率较高,下层较低时,垂直接地极穿入第二层时会对接地电阻产生较大影响。
深井接地极对场地的要求不高,而且气候条件、季节因素也不会对其产生影响。
有相关试验数据证明,垂直接地体附加于水平接地网,可以减少2%~8%左右的接地电阻,而垂直接地体的长度增加至均压网的长、宽尺寸,均压网趋势近于半个球时,对接地电阻的影响才会比较明显,可以减少约30%。
布置深井接地极时要注意,为了防止垂直接地极互相屏蔽作用,垂直接地极的间距至少是其长度的两倍以上,通常在接地网四周外缘部位设置深井接地极。
此外,要设置帽檐形的辅助均压带,其作用是为了降低深井接地极地表的跨步电压,对深井接地极地面上的电位分布也有所改善。
3.3 扩大接地面积扩大接地网面积可以明显的降低接地电阻。
不过这种外引接地网的方法会受到变电站四周场地的局限,尤其是一些市区的变电点,其四周会有公共建筑或者私人住宅等设施,只可以保证最起码的安全距离。
110千伏变电站10千伏(20千伏)消弧线圈接地方式改造为小电阻接地方式的改造实践与探讨摘要:本文以笔者近几年在工作中遇到的江苏省连云港市110千伏新村变电站和南通市阿里巴巴江苏云计算数据中心110千伏变电站接地系统方案设计案例为依据,简单介绍了110千伏变电站10千伏(20千伏)中性点经小电阻接地系统实例,希望与大家一起探讨。
截止目前,我单位累计已在连云港改造十几座变电站,改造为小电阻接地系统后运行状况良好,达到了预期目标。
关键词:中性点消弧线圈小电阻1、连云港市110千伏新村变电站20千伏接地系统改造1.1项目背景根据电容电流实际测量值,连云港供电公司发现近几年来投入运行的消弧线圈额定补偿电流与实际系统电容电流增长速度不符,实际系统电容电流的增速远远大于额定补偿电流的投入速度,补偿率从2013年的53.63%,增长到2017年的69.14%,并且还有继续增长的趋势。
1.2 110千伏新村变电站概况电气一次:2015年变电站电容电流实测情况:新村变20千伏Ⅰ、Ⅱ段母线125安,新村变20 千伏Ⅲ、Ⅳ段母线175安。
目前在运1200千伏安补偿容量的接地变,最大补偿电流不能满足补偿要求。
且将来还要新上50公里左右3×400平方毫米电缆,新增电容电流约292安(计算公式参考电力工程电气一次设计手册P81页),通过消弧线圈改造来解决消弧补偿容量不足问题已经很困难。
电气二次:现有总控装置和主变保护装置的保护采样板故障率高,保护稳定性差,保护板件老化。
20千伏出线保护测控装置无零序保护,不能满足本次小电阻系统改造要求。
1.3 改造规模变电一次:在运2套20千伏接地变继续做所用变;退役2套20千伏消弧线圈保留并处于备用状态,平常没事的时候与系统断开;新购买2套20千伏小电阻成套装置,安装在原预留的空的位置处,接地变高压侧分别通过电缆直接从#1主变和#2主变低压侧套管处的母线桥处引接过来。
更换20千伏出线开关柜内的零序电流互感器。
110kV兴隆变电站接地网优化改造技术研究
近年来,电力事业得到了快速发展。
然而,随着电力轻量化设备的增多和电力设备的
发展,电磁干扰问题也得到了极大的关注。
接地电路是电力系统中用于消除电磁干扰的重
要环节。
因此,接地网的设计和优化变得越来越重要。
本文以110kV兴隆变电站为例,研
究接地网优化改造技术。
1. 接地网概述
接地网系统是电力系统中的重要组成部分之一,也是消除干扰、防止雷电等电力事故
的主要手段。
接地网是由接地体(如接地棒、接地网、接地极等)组成的,用于将电气设
备和机器的金属外壳和安全保护电路与大地相连。
良好的接地系统可以有效地消除干扰和
防止火灾等事故发生。
2. 兴隆变电站现状
110kV兴隆变电站是一个较早的变电站,已有20多年的使用历史。
接地系统是在建设初期设计的,存在一些问题。
首先,接地系统的接地电阻过大,无法满足电气设备的要求。
其次,由于连接方式不规范,部分接地体未与大地完全接触,导致安全隐患。
3. 接地网优化改造技术
为了改善接地网的性能,必须改变现有的接地网接线方式。
一般来说,接地体应该向
下埋深1.5-2m,以确保与大地的良好接触。
由于兴隆变电站中部分接地体未能完全接触大地,因此需要重新安装接地体。
此外,为了减小接地电阻,还可以采用增加接地体的数量、增加接地体长度、提高接地电阻率等方式。
4. 改造方案
在接地网的改造中,应根据现场实际情况,制定具体的改造方案。
对于兴隆变电站,
可以采取下列方法:
(1)重新安装接地体:重新安装接地体并加强固定,确保所有接地体与大地接触良好。
(2)增加接地体:在原有接地体的基础上增加新的接地体,以增加接地体数量。
(3)增加接地体长度:针对原有接地体长度不足或接地电阻过大的情况,可以考虑延长接地体长度,以有效降低接地电阻。
(4)提高接地电阻率:将接地体材料更换为导电率更高的铜材料,以降低接地电阻。
5. 结论
接地网是电力系统的重要组成部分,良好的接地系统可以消除干扰,防止火灾等事故发生。
本文以兴隆变电站为例,对110kV接地网的优化改造技术进行了研究。
在接地网的改造中,应根据现场实际情况,选择合适的改造方案以提高接地系统的性能。