(完整word版)高中数学专题训练(教师版)—线性回归
- 格式:doc
- 大小:142.01 KB
- 文档页数:6
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
D A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
同步练习学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本题共22道小题,每小题5分,共110分)1.定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数,x y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则max{4,3}z x y x y =+-的取值范围是( )(A )[8,10]- (B ) [7,10]-(C )[6,8]- (D )2.对于复数a,b,c,d ,若集合{}S=a,b,c,d 具有性质“对任意x,y S ∈,必有xy S ∈”,则当22a=1b =1c =b ⎧⎪⎨⎪⎩时,b+c+d 等于 ( ) A 、1 B 、-1 C 、0 D 、i 3.在实数集R 中定义一种运算“*”,R b a ∈∀,,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=; (2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.关于函数1()()x x f x e e=*的性质,有如下说法:①函数)(x f 的最小值为3;②函数)(x f 为偶函数;③函数)(x f 的单调递增区间为(,0]-∞.其中正确说法的序号为( ) A .①B .①②C .①②③D .②③4.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有( )A .2个B .4个C .6个D .8个 5.对于集合∈+==k k x x S ,12{N }和集合}{S b a b a x x T ∈⊕==,,, 若满足S T ⊆,则集合T 中的运算“⊕”可以是A .加法B .减法C .乘法D .除法 6.设函数)(x f 的定义域为R ,如果存在函数()(g x ax a =为常数),使得)()(x g x f ≥对于一切实数x 都成立,那么称)(x g 为函数)(x f 的一个承托函数. 已知对于任意(0,1)k ∈,()g x ax =是函数()e x kf x =的一个承托函数,记实数a 的取值范围为集合M ,则有( )A. 1e ,e M M -∉∉B. 1e ,e M M -∉∈C.1e ,e M M -∈∉ D.1e ,e M M -∈∈ 7.用C (A )表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=-)()(),()()()(),()(||B C A C A C B C B C A C B C A C B A . 若}2,1{=A ,2{|23|}B x x x a =+-=,且|A-B|=1,由a 的所有可能值构成的集合为S ,那么C (S )等于( )A .1B .2C .3D .48.对于集合M 、N ,定义M -N ={x |x ∈M 且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={y |y =3x , x ∈R},B ={y |y =-122++x x ,x ∈R},则A ⊕B 等于( )A .[0,2)B .(0,2]C .(-∞,0]∪(2,+∞)D .(-∞,0)∪[2,+∞)9.在实数集R 中定义一种运算“*”,R b a ∈∀,,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=;(2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.的性质,有如下说法:①函数)(x f 的最小值为3;②函数)(x f 为偶函数;③函数)(x f 的单调递增区间为(,0]-∞.其中所有正确说法的个数为( ) A .0B.1C .2.310.给出定义:(其中m 则m 叫做与实数x “亲密的整数”, 记作{}x m =,数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________.A .②③④B .①③C .①②D .②④ 11.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m 的取值范围是A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D . (,2]-∞-12.对于函数()f x ,若,,a b c R ∀∈,()()(),,f a f b f c 为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x xe tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是A .[)0,+∞B .[]0,1C .[]1,2D .1[,2]213.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件:(ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=;(ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=;(ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕,则称集合A 对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法;②{}A =复数,运算“⊕”为普通减法;③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有( ) A ①②B ①③C ②③D ①②③14.设()f x 与()g x 是定义在同一区间[a ,b]上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围是( )A. 9,24⎛⎤-- ⎥⎝⎦ B .[-1,0] C .(-∞,-2] D. 9,4⎛⎫--∞ ⎪⎝⎭ 15.设函数()f x 的定义域为D,如果对于任意的1x D ∈,存在唯一的2x D ∈,使得12()()2f x f x C+= 成立(其中C 为常数),则称函数()y f x =在D 上的均值为C , 现在给出下列4个函数: ①3y x = ②4sin y x = ③lg y x = ④2x y = ,则在其定义域上的均值为 2的所有函数是下面的 ( )A. ①②B. ③④C. ①③④D. ①③16.对任意实数,a b 定义运算""*如下()()a ab a b b a b ≤⎧⎪*=⎨>⎪⎩,则函数x x x f 221log )23(log )(*-=的值域为( )A. [)0,+∞B. (],0-∞C. ⎥⎦⎤ ⎝⎛0,32log 2D. 22log ,3⎛⎫+∞ ⎪⎝⎭ 17.设B A ,是非空集合,定义},|{B A x B A x x B A ⋂∉⋃∈=⨯且,已知}20|{≤≤=x x A ,}0|{≥=x x B ,则B A ⨯等于( ).A ),2(+∞ .B ),2[]1,0[+∞⋃ .C ),2()1,0[+∞⋃ .D ),2(]1,0[+∞⋃18.设集合A ⊆R ,如果x 0∈R 满足:对任意a >0,都存在x ∈A ,使得0<|x ﹣x 0|<a ,那么称x 0为集合A 的一个聚点.则在下列集合中: (1)Z +∪Z ﹣; (2)R +∪R ﹣;(3){x|x=,n ∈N *}; (4){x|x=,n ∈N *}.其中以0为聚点的集合有( ) A . 1个B . 2个C . 3个D .4个19.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,}2{-∈x ; (2)y =2x 2+1,}2{∈x ; (3)y =2x 2+1,}2,2{-∈x 。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
8.2 一元线性回归模型及其应用必备知识·素养奠基1.一元线性回归模型一元线性回归模型的完整表达式为错误!未找到引用源。
其中Y称为因变量或响应变量,x称为自变量或解释变量;a,b为模型的未知参数,e是Y与bx+a之间的随机误差.具有相关关系的两个变量,其样本点散布在某一条直线y=bx+a的附近,可以用一次函数y=bx+a来描述两个变量之间的关系吗?提示:不能.2.最小二乘法与经验回归方程(1)最小二乘法=x+称为Y关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的,叫做b,a的最小二乘估计.(2)经验回归方程的系数计算公式经验回归方程的计算公式的计算公式= x+=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
(3)经验回归方程的性质①经验回归方程一定过点__(错误!未找到引用源。
,错误!未找到引用源。
)__;②一次函数=x+的单调性由的符号决定,函数递增的充要条件是>0__;③的实际意义:当x增大一个单位时,增大个单位.正相关、负相关与的符号有何关系?提示:Y与x正相关的充要条件是>0,Y与x负相关的充要条件是<0.3.残差(1)残差:对于响应变量Y,通过观测得到的数据称为观测值,通过经验回归方程得到的称为预测值,观测值减去预测值称为残差.(2)决定系数:R2=1-越接近1,表示回归的效果越好.1.思维辨析(对的打“√”,错的打“×”)(1)经验回归方程一定过样本中的某一个点.( )(2)选取一组数据中的部分点得到的经验回归方程与由整组数据得到的经验回归方程是同一个方程.( )(3)在经验回归模型中,R2越接近于1,表示解释变量和响应变量的线性相关性越强.( )(4)在画两个变量的散点图时,响应变量在x轴上,解释变量在y轴上.( ) 提示:(1)×.经验回归方程一定过点(错误!未找到引用源。
同步练习学校 :___________姓名: ___________班级: ___________考号:___________第 I 卷(选择题)请点击改正第I 卷的文字说明评卷人得分一、选择题(此题共22 道小题,每题 5 分,共 110分)a, a b x2 1.定义max{a, b},设实数 x, y 知足拘束条件y ,则b, a b2z max{4 x y,3 x y} 的取值范围是()(A)[8,10]( B)[ 7,10]( C)[6,8](D)2.对于复数a,b,c,d ,若会集S=a,b,c,d 拥有性质“对随意x,y S,必有 xy S”,则当a=1b2=1时 , b+c+d等于()c2 =bA、 1B、 -1C、 0D、 i3.在实数集 R 中定义一种运算“”,a, b R ,a b 为独一确立的实数,且拥有性质:(1)对随意a R , a0 a ;( 2)对随意a, b R ,a b ab (a0)(b0) .对于函数 f ( x)(e x )1的性质,有以下说法:①函数 f (x) 的最小值为 3 ;②函数e xf ( x)为偶函数;③函数 f ( x) 的单一递加区间为 (,0].此中正确说法的序号为()A.①B.①②C.①②③D.②③4.设A是整数集的一个非空子集,对于∈ ,假如k- 1?A且k+1? ,那么称k是集k A A合 A的一个“好元素”.给定会集S={1,2,3,4,5,6,7,8},由 S 的3个元素组成的所有会集中,不含“好元素”的会集共有()A .2 个B. 4 个C.6 个D.8个5.对于会集S{ x x2k1,k N}和会集 T{ x x a b, a, b S} ,若知足 T S ,则会集 T 中的运算“”能够是A.加法B.减法C.乘法D.除法6. 设函数f ( x)的定义域为 R,如果存在函数g (x)ax(a为常数),使得f ( x)g (x)对于一确实数x都建立,那么称g( x)为函数f (x)的一个承托函数. 已x知对于随意k(0,1) , g(x) ax 是函数f (x) e k的一个承托函数,记实数a的取值范围为会集 M,则有()A. e 1M , e MB. e 1M , e MC. e 1M , e MD. e 1M , e M7. 用C( A)表示非空集合 A中的元素个数,定义| AC( A) C(B), C( A)C( B)B |C( A), C( A).C(B)C( B)若 A{1,2} ,B { x | x22x3|a} ,且|A-B|=1,由 a 的所有可能值组成的会集为S,那么 C( S) 等于 ( )A.1 B.2C.3D.48. 对于会集M、 N,定义M -N= { x|x∈ M 且 x N} , M⊕ N=(M-N)∪ (N- M),设 A = { y|y= 3x, x∈ R} , B= { y|y=-x22x1,x∈R},则A⊕B等于()A . [0,2)B .(0,2]C. (-∞, 0]∪(2,+∞ ) D . (-∞, 0)∪ [2,+∞)9.在实数集R中定义一种运算“”,a, b R, a b 为独一确立的实数,且拥有性质:( 1)对随意aR , a 0 a ;(2)对随意a, b R,ab ab (a 0) (b0) .f ( x) (e x )1f (x)的最小值为3;②函数对于函数e x 的性质,有以下说法:①函数f ( x)为偶函数;③函数f ( x)的单一递加区间为 ( ,0] .此中所有正确说法的个数为()A . 0B . 1C . 2则称会集 A 对于运算“”组成“对称集”.下边给出三个会集及相应的运算“ ”:① A整数 ,运算“ ”为一般加法;②A复数,运算“”为一般减法;③A正实数,运算“”为一般乘法.此中能够组成“对称集”的有()A ①②B ①③C ②③ D①②③ D .3x (m1, m 1]10.给出定义 : 若22 (此中m为整数) , 则m叫做与实数 x“亲近的整数” , 记作 { x}m , 在此基础上给出以下对于函数 f ( x) x { x} 的四个命题 : ①函14.设f (x) 与g( x)是定义在同一区间在 x [ a, b]上有两个不同样样的零点,则称间[ a, b]称为“关系区间”.若f ( x)联函数”,则 m 的取值范围是 ()[a , b] 上的两个函数,若函数y f ( x) g( x)f ( x) 和 g( x) 在 [ a,b] 上是“关系函数”,区x 2 3x 4 与 g(x) 2xm在 [0,3] 上是“关数yf ( x) 在 x(0,1)上是增函数 ; ②函数yf (x)的图象对于直线 xk(kZ )2对称 ; ③ 函 数yf ( x)是 周 期 函 数 , 最 小 正 周 期 为 1; ④ 当x(0, 2] 时 , 函 数g( x)f ( x)ln x有两个零点 . 此中正确命题的序号是 ____________.A .②③④ B.①③ C .①② D .②④a b bc ,若函数 fxx 12在 (, m) 上单一递减,11.定义运算cad xx 3d则实数 m 的取值范围是A . ( 2, )B . [ 2, )C . ( , 2)D . ( , 2]12.对于函数 fx ,若a,b,c R ,fa , fb , fc 为某一三角形的三边长,则称fxf xe x t为“可结构三角形函数”,已知函数ex1 是“可结构三角形函数”,则实数 t的取值范围是1A .0,. 0,1. 1,2[ , 2]B CD. 213.对于会集 A ,假如定义了一种运算“ ”,使得会集A 中的元素间知足以下4 个条件:(ⅰ) a, bA,都有ab A ;(ⅱ) e A,使得对aA,都有ea a e a ; (ⅲ) aA ,aA,使得 aaaae ;(ⅳ)a, b, cA ,都有ab c ab c ,9 ,29 ,A.4B . [ - 1,0]C .( -∞,- 2]D.415.设函数f ( x)的定义域为 D ,假如对于随意的x 1D,存在独一的x 2D,使得f ( x 1 ) f ( x 2 )Cy f ( x) 在 D 上的均值为2C 为常数),则称函数建立(此中 C , 现 在 给 出 下 列 4 个 函 数 : ① yx 3② y4sin x ③ ylg x④y 2x ,则在其定义域上的均值为 2 的所有函数是下边的()A. ①②B. ③④C.①③④D.①③16.对随意实数 a, b 定义运算 " " 以下 a ba a bb a ,则函数bf ( x) log 1 (3x2) log 2 x 的值域为()2A.0, B.,0C. log 22D. 2,0log 2,3317.设 A, B 是非空会集,定义 A B { x | x AB , 且 x AB} ,已知A { x | 0 x 2} ,B { x | x 0} ,则 AB 等于()A. (2,)B. [0,1][ 2, )C . [ 0,1) (2,)D. [ 0,1](2, )18.设会集 A ? R ,假如 x ∈R 知足:对随意 a > 0,都存在 x ∈A ,使得 0< |x ﹣ x |<a ,那么称 x 0 为会集 A 的一个聚点.则在以下会集中:( 1) Z +∪ Z ﹣ ; ( 2)R +∪ R ﹣;(3) {x|x=,n∈N *} ;( 4) {x|x=, n∈N*} .此中以 0 为聚点的会集有()A . 1 个B . 2 个C. 3 个D. 4 个19.若一系列函数的解析式同样,值域同样,但定义域不同样样,则称这些函数为“孪生函数”,比方解析式为y= 2x2+ 1,值域为 {9} 的“孪生函数”三个:( 1) y= 2x2+ 1,x {2} ;(2)y=2x2+1, x { 2} ;(3)y=2x2+1,x{ 2,2} 。
高中数学 2.4 线性回归方程(第1课时)教案新人教版必修3 教学目标:1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回归方程进行预测;3.知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义.教学重点:散点图的画法,回归直线方程的求解方法.教学难点:回归直线方程的求解方法.教学方法:引导发现、合作探究.教学过程:一、创设情景,揭示课题客观事物是相互联系的.过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.二、学生活动提出问题:两个变量之间的常见关系有几种?(1)确定性的函数关系,变量之间的关系可以用函数表示;(2)相关关系,变量之间有一定的联系,但不能完全用函数来表示.说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系.比如地球运行的速度与某个人的行走速度就可认为没有关系.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:-0C,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?如果某天的气温是5从下图可以看出,这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系?我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取(4,50),(18,24)这两点的直线;(2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;……怎样的直线最好呢?三、建构数学1.最小平方法:=+的直线拟合散点图中的点,应使得该直线用方程为ˆy bx a=+与图中六与散点图中的点最接近.那么,怎样衡量直线ˆy bx a个点的接近程度呢?我们将表中给出的自变量x的六个值带入直线方程,得到相应的六个ˆy的值:+++++-+.这六个值与表中相应的实际值应该越b a b a b a b a b a b a26,18,13,10,4,接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和。
不等式专题一.不等式的基本性质1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质(1)a b b a <⇔>(对称性)(2)c a c b b a >⇒>>,(传递性)(3)c b c a b a +>+⇒>(加法单调性)(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)二.一元二次不等式1.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;一元一次不等式)0(0≠>+a b ax 的解法与解集形式当0>a 时,a b x ->, 即解集为⎭⎬⎫⎩⎨⎧->a b x x |当0<a 时 a b x -<,即解集为⎭⎬⎫⎩⎨⎧-<a b x x |②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.0>∆0=∆0<∆二次函数cbx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R的解集)0(02><++a c bx ax{}21x x xx <<∅ ∅(2)分式不等式的解法:先移项通分标准化,则()()x g x f >0()()0>⇔x g x f ()()0<x g x f ()()x g x f ⇔<0 ()()()()()⎩⎨⎧≠<⇔≥000x g x g x f x g x f ()()()()()⎩⎨⎧≠≤⇔≤000x g x g x f x g x f 切忌去分母(3)无理不等式:转化为有理不等式求解 1()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬⇔≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f(4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为2:典型例题例1. 求下列不等式的解集 (1)02532>--x x , (2)2232>-+x x (3)5321<-<x 的解集例2 解下列不等式.(1) 0)4)(23()7()12(632>----x x x x ,(2)232532≥-+-x x x例3.解不等式833>-++x x变式练习:1325<---x x例4:解关于x 的不等式(1)2(3)30x a x a -++>, (2)22<+ax变式练习:1、0)(322<+++a x a a x2、0222≤++ax x3、0)2)(2(>--ax x4、a x ≤-32例5.已知不等式052>+-b x ax 的解集是()2,3--,则不等式052>+-a x bx 的解集变式练习:若不等式20x ax b --<的解集为{|23}x x <<,则不等式210bx ax -->的解集为 __________.例6.若一元二次不等式042≤+-a x ax 的解集是R 则a 的取值范围是变式练习:1已知关于x 的不等式()()012422≥-++-x a x a 的解集为空集,求a 的取值范围。
高中数学必修3知识点第一章算法初步一,算法与程序框图1,算法的概念:按一定规那么解决某一类问题的明确和有限的步骤。
2,算法的三个根本特征:明确性,有限性,有序性。
3,程序框图:也称流程图,是一种用程序框,流程线及文字说明来表示算法的图形。
图形符号名称功能终端框表示一个算法的起始和结束输入〔输出框〕表示一个算法输入和输出的信息处理框赋值、计算判断某一个条件是否成立,成立时在出口处标明“是〞或“Y〞,判断框不成立时标明“否〞或“N〞。
流程线连接程序框连接点连接程序框图的两局部4,三种程序框图1〕顺序结构:顺序结构在程序框图中的表达就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2〕条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
〔3〕循环结构:直到型循环结构,当型循环结构。
一个完整的循环结构,应该包括三个内容:1〕循环体;2〕循环判断语句;3〕与循环判断语句相关的变量。
二,根本算法语句〔一定要注意各种算法语句的正确格式〕1,输入语句INPUT“提示内容〞;表达式注意:提示内容用双引号标明,并2,输出语句PRINT“提示内容〞;表达式与变量用分号隔开。
3,赋值语句变量=表达式注意:“=〞的含义是赋值,将右边的值赋予左边的变量4,条件语句IF条件THEN IF条件THEN语句体1语句体ELSEEND IF语句体2END IF5,循环语句:直到型当型DO WHILE条件循环体1循环体LOOP UNTIL条件WEND直到型和当型循环可以相互演变,循环体相同,条件恰好互补。
三,算法案例1,辗转相除法:例:求2146与1813的最大公约数2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0..............余数为0时计算终止。
37为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比拟,并以大数减小数。
高中数学知识点:线性回归方程(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学知识点:线性回归方程(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学知识点:线性回归方程(word版可编辑修改)的全部内容。
高中数学知识点:线性回归方程1.回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
求出的回归直线方程简称回归方程。
2.回归直线方程的求法设与n 个观测点(,i i x y )()1,2,,i n =⋅⋅⋅最接近的直线方程为,y bx a =+,其中a 、b 是待定系数。
则,(1,2,,)i i y bx a i n =+= .于是得到各个偏差(),(1,2,,)i i i i y y y bx a i n -=-+=. 显见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和。
2222211)()()(a bx y a bx y a bx y Q n n --++--+--=表示n 个点与相应直线在整体上的接近程度.记21()n i i i Q y bx a ==--∑.上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。
3.1 回归分析的基本思想及其初步应用[学习目标]1.了解随机误差、残差、残差图的概念.2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤. [知识链接]1.什么叫回归分析?答 回归分析是对具有相关关系的两个变量进行统计分析的一种方法. 2.回归分析中,利用线性回归方程求出的函数值一定是真实值吗?答 不一定是真实值,利用线性回归方程求的值,在很多时候是个预报值,例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食、是否喜欢运动等. [预习导引] 1.线性回归模型(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系. (2)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (3)对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i-nx -y-∑n i =1x 2i -nx -2,a ^=y --b ^x -,其中(x -,y -)称为样本点的中心.(4)线性回归模型y =bx +a +e ,其中a 和b 是模型的未知参数,e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量. 2.残差的概念对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为e i =y i -bx i -a ,i =1,2,…,n ,其估计值为e ^i =y i -y ^i =y i -b ^x i -a ^,i =1,2,…,n ,e ^i 称为相应于点(x i ,y i )的残差. 3.刻画回归效果的方式 (1)残差图法作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高. (2)残差平方和法残差平方和∑ni =1(y i -y ^i )2,残差平方和越小,模型拟合效果越好. (3)利用R 2刻画回归效果R 2=1-∑ni =1(y i -y ^i )2∑n i =1 (y i -y -)2;R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.要点一 求线性回归方程例1 某班5名学生的数学和物理成绩如下表:(1)画出散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 解 (1)散点图如图.(2)x -=15×(88+76+73+66+63)=73.2, y -=15×(78+65+71+64+61)=67.8.∑5i =1x i y i=88×78+76×65+73×71+66×64+63×61=25 054. ∑5i =1x 2i =882+762+732+662+632=27 174. 所以b ^=∑5i =1x i y i -5x -y -∑5i =1x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y --b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是y ^=0.625x +22.05. (3)x =96,则y ^=0.625×96+22.05≈82, 即可以预测他的物理成绩是82.规律方法 (1)散点图是定义在具有相关关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析.(2)求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.跟踪演练1 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m 2时的销售价格. 解 (1)数据对应的散点图如下图所示:(2)x -=15∑5i =1x i =109,∑5i =1(x i -x -)2=1 570, y -=23.2,∑5i =1(x i -x -)(y i -y -)=308.设所求回归直线方程为y ^=b^x +a ^, 则b^=∑5i =1(x i -x -)(y i -y -)∑5i =1(x i -x -)2=3081 570≈0.196 2,a ^=y --b ^x -=0.181 42.故所求回归直线方程为y ^=0.196 2x +1.814 2. 回归直线如上图所示.(3)据(2),当x =150 m 2时,销售价格的估计值为 y ^=0.196 2×150+1.814 2=31.244 2(万元). 要点二 线性回归分析例2 为研究重量x (单位:克)对弹簧长度y (单位:厘米)的影响,对不同重量的6个物体进行测量,数据如下表所示:(1)作出散点图并求线性回归方程; (2)求出R 2; (3)进行残差分析. 解 (1)散点图如图x -=16(5+10+15+20+25+30)=17.5,y -=16(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑6i =1x 2i=2 275,∑6i =1x i y i =1 076.2 计算得,b^≈0.183,a ^≈6.285, 所求回归直线方程为y ^=0.183x +6.285. (2)列表如下:所以∑6i =1(y i -y ^i )2≈0.013 18,∑6i =1(y i -y -)2=14.678 4.所以,R 2=1-0.013 1814.678 4≈0.999 1, 回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与拉力成线性关系.规律方法 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,通过残差e ^1,e ^2,…,e^n来判断模型拟合的效果,判断原始数据中是否存在可疑数据.若残差点比较均匀地分布在水平带状区域内,带状区域越窄,说明模型拟合精度越高,回归方程预报精度越高.跟踪演练2 已知某种商品的价格x (元)与需求量y (件)之间的关系有如下一组数据:求y 对x 的回归直线方程,并说明回归模型拟合效果的好坏.解 x -=15(14+16+18+20+22)=18, y -=15(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1 660, ∑5i =1x i y i=14×12+16×10+18×7+20×5+22×3=620, 所以b^=∑5i =1x i y i-5x -y -∑5i =1x 2i -5x -2=620-5×18×7.41 660-5×182=-1.15.a^=7.4+1.15×18=28.1, 所以所求回归直线方程是y ^=-1.15x +28.1. 列出残差表:所以,∑5i =1(y i -y ^i )2=0.3,∑5i =1(y i -y -)2=53.2,R 2=1-∑5i =1 (y i -y ^i )2∑5i =1 (y i -y -)2≈0.994,所以回归模型的拟合效果很好. 要点三 非线性回归分析 例3 下表为收集到的一组数据:(1)作出x 与y 的散点图,并猜测x 与y 之间的关系; (2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.解 (1)作出散点图如下图,从散点图可以看出x 与y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y =c 1e c 2x 的周围,其中c 1,c 2为待定的参数.(2)对两边取对数把指数关系变为线性关系,令z =ln y ,则有变换后的样本点应分布在直线z =bx +a (a =ln c 1,b =c 2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为求得回归直线方程为z ^=0.272x -3.849, ∴y ^=e 0.272x -3.849. 残差(3)当x=40时,y=e0.272x-3.849≈1 131.规律方法解决非线性回归问题的方法及步骤(1)确定变量:确定解释变量为x,预报变量为y;(2)画散点图:通过观察散点图并与学过的函数(幂、指数、对数函数、二次函数)作比较,选取拟合效果好的函数模型;(3)变量置换:通过变量置换把非线性回归问题转化为线性回归问题;(4)分析拟合效果:通过计算相关指数等来判断拟合效果;(5)写出非线性回归方程.跟踪演练3为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;(2)描述解释变量x与预报变量y之间的关系;(3)计算相关指数.解(1)作散点图如图所示.(2)由散点图看出样本点分布在一条指数函数y=c1e c2x的周围,于是令z=ln y,则有变换后的样本点应分布在直线z=bx+a(a=ln c1,b=c2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为由计算器得:z ^=0.69x +1.115,则有y ^=e 0.69x +1.115. (3)y -=3776,∑n i =1e ^21=∑n i =1(y i -y ^)2=4.816 1, ∑n i =1(y i-y -)2=24 642.8,R 2=1-4.816 124 642.8≈0.999 8, 即解释变量天数对预报变量繁殖细菌个数解释了99.98%.1.下列各组变量之间具有线性相关关系的是( ) A .出租车费与行驶的里程 B .学习成绩与学生身高 C .身高与体重 D .铁的体积与质量 答案 C2.若劳动生产率x (千元)与月工资y (元)之间的线性回归方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案 B3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y^=-10x+200B.y^=10x+200C.y^=-10x-200D.y^=10x-200答案 A解析由于销售量y与销售价格x成负相关,故排除B、D.又当x=10时,A中y=100,而C中y=-300,C不符合题意,故选A.4.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:(1)求年推销金额y关于工作年限x的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.解(1)设所求的线性回归方程为y^=b^x+a^,则b^=∑5i=1(x i-x-)(y i-y-)∑5i=1(x i-x-)2=1020=0.5,a^=y--b^x-=0.4.所以年推销金额y关于工作年限x的线性回归方程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.回归分析的基本思路(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程y ^=b ^x +a^); (4)按一定规则估计回归方程中的参数;(5)提出结果后分析残差图是否有异常(个别数据对应的残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误或模型是否合适等.一、基础达标1.在下列各量之间,存在相关关系的是( )①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电价之间的关系.A .②③B .③④C .④⑤D .②③④ 答案 D2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由回归方程为y ^=0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系;由最小二乘法建立回归方程的过程知y ^=b ^x +a ^=b ^x +y --b ^x -(a^=y --b ^x -),所以回归直线过样本点的中心(x -,y -);利用回归方程可以估计总体,所以D 不正确.3.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6(万元)时,y ^=9.4×6+9.1=65.5(万元).4.甲、乙、丙、丁四位同学各自对A ,B 两变量做回归分析,分别得到散点图与残差平方和∑ni =1(y i -y ^i )2如下表哪位同学的实验结果体现拟合A ,B 两变量关系的模型拟合精度高?( ) A .甲 B .乙 C .丙 D .丁 答案 D5.如果散点图的所有点都在一条直线上,则残差均为________,残差平方和为________,相关指数为________. 答案 0 0 16.对具有线性相关关系的变量x 和y ,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________. 答案 y ^=-10+6.5x解析 由题意知x -=2,y -=3,b ^=6.5,所以a ^=y --b ^x -=3-6.5×2=-10,即回归直线的方程为y ^=-10+6.5x .7.某个服装店经营某种服装,在某周内纯获利y (元)与该周每天销售这种服装件数x 之间的一组数据如下表:(1)求样本中心点; (2)画出散点图;(3)求纯获利y 与每天销售件数x 之间的回归方程. 解 (1)x -=6,y -=79.86,中心点(6,79.86). (2)散点图如下:(3)因为b ^=∑7i =1 (x i -x -)(y i -y -)∑7i =1(x i -x -)2≈4.75, a ^=y --b ^x -≈51.36,所以y ^=4.75x +51.36.二、能力提升8.(2013·福建)已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( ) A.b^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′ 答案 C解析 x -=1+2+3+4+5+66=72,y -=0+2+1+3+3+46=136,b^=∑ni =1x i y i-nx - y -∑n i =1x 2i -nx -2=57,a ^=y --b ^x -=-13,b ′=2-02-1=2>b^,a ′=-2<a ^. 9.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A.点(2,3) B .点(1.5,4) C .点(2.5,4) D .点(2.5,5) 答案 C解析 回归方程必过样本点的中心(x -,y -),即(2.5,4).10.如图是x 和y 的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.答案 D (3,10)解析 去掉D (3,10)这一组数据后,其他4组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大. 11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y ^=b ^x +a ^;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据处理如下:对处理的数据,容易算得x -=0,y -=3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b ^x -=3.2.由上述计算结果,知所求回归直线方程为y ^-257=6.5(x -2 006)+3.2.即y ^=6.5(x -2 006)+260.2.(2)利用所求得的直线方程,可预测2012年的粮食需求量为6.5×(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).12.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y ^=b ^x +a ^,其中b ^=-20,a ^=y --b ^x -;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入—成本)解 (1)x -=8+8.2+8.4+8.6+8.8+96=8.5,y -=16(90+84+83+80+75+68)=80∵b ^=-20,a ^=y ^-b ^x -, ∴a^=80+20×8.5=250 ∴回归直线方程y ^=-20x +250;(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20(x -334)2+361.25∴该产品的单位应定为334元,工厂获得的利润最大. 三、探究与创新13.(2013·重庆卷)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i=184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x -+a^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --bx -, 其中x -,y -为样本平均值. 解 (1)由题意知n =10,x -=1n ∑n i =1x i =8010=8,y -=1n ∑n i =1y i =2010=2,又l xx =∑ni =1x 2i -nx -2=720-10×82=80,l xy =∑ni =1x i y i -nx -y -=184-10×8×2=24,由此得b ^=l xy l xx=2480=0.3,a ^=y --b ^x -=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x },若M ∪N={0,1,2,3},则x 的值为( )A .3B .2C .1D .02.如图是一个几何体的三视图,则该几何体为( )A .球B .圆柱C .圆台D .圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为( )A .B .C .D .4.某程序框图如图所示,若输入x 的值为1,则输出y 的值是( )A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。
高中数学专题训练(教师版)—线性回归一、选择题1.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( )A.y ^=x +1B.y ^=x +2C.y ^=2x +1D.y ^=x -1答案 A解析 画出散点图,四点都在直线y ^=x +1.2.下列有关样本相关系数的说法不正确的是( )A .相关系数用来衡量变量x 与y 之间的线性相关程度B .|r |≤1,且|r |越接近于1,相关程度越大C .|r |≤1,且|r |越接近0,相关程度越小D .|r |≥1,且|r |越接近1,相关程度越小答案 D3.由一组样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=a +bx ,下面有四种关于回归直线方程的论述:(1)直线y ^=a +bx至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; (2)直线y ^=a +bx 的斜率是∑n i =1x i y i -n x y∑n i =1x 2i -n x 2; (3)直线y ^=a +bx 必过(x ,y )点;(4)直线y ^=a +bx 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑n i =1 (y i -a -bx i )2是该坐标平面上所有的直线与这些点的偏差中最小的直线.其中正确的论述有( )A .0个B .1个C .2个D .3个答案 D解析 线性回归直线不一定过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的任何一点;b =∑n i =1x i y i -n x y∑n i =1x 2i -n x 2就是线性回归直线的斜率,也就是回归系数;线性回归直线过点(x ,y );线性回归直线是平面上所有直线中偏差∑n i =1 (y i -a -bx i )2取得最小的那一条.故有三种论述是正确的,选D.4.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反答案 A5.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R 2的值分别约为0.96和0.85,则拟合效果好的模型是( )A .甲B .乙C .甲、乙相同D .不确定答案 A6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑8 i =1x i =52,∑8 i =1y i =228,∑8 i =1x 2i =478,∑8 i =1x i y i =1849,则其线性回归方程为( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62xC.y ^=2.62+11.47xD.y ^=11.47-2.62x答案 A解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^=11.47+2.62x .二、填空题7.下表是某厂1由散点图可知,其线性回归直线方程是y ^=-0.7x +a ,则a 等于______.解析x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25.8.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为________件. (参考公式:b =∑i =1nx i y i -n x y∑i =1n x 2i -n x 2,a =y -b x )答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58,即线性回归方程y ^=-2x +58,将x =6代入可得.9.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:比较这两种手术对病人又发作心脏病的影响有没有差别.________.答案 392×(39×167-29×157)268×324×196×196≈1.78 不能作出这两种手术对病人又发作心脏病的影响有差别的结论 解析 提出假设H 0:两种手术对病人又发作心脏病的影响没有差别.根据列联表中的数据,可以求得K 2=392×(39×167-29×157)268×324×196×196≈1.78. 当H 0成立时K 2≈1.78,而K 2<2.072的概率为0.85.所以,不能否定假设H 0.也就是不能作出这两种手术对病人又发作心脏病的影响有差别的结论.三、解答题10.某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2010年12月1日至12月5日的每天昼夜温差据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?解析 (1)设抽到不相邻的两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)其中数据为12月份的日期数.每种情况都是可能出现的,事件A 包括的基本事件有6种:所以P (A )=610=35.所以选取的2组数据恰好是不相邻2天数据的概率是35.(2)由数据,求得x =12,y =27.由公式,求得b =52,a =y -b x =-3.所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10,y ^=52×10-3=22,|22-23|<2; 同样,当x =8时,y ^=52×8-3=17,|17-16|<2; 所以,该研究所得到的回归方程是可靠的.11.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个)2 3 4 5 加工的时间y (小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程y ^=bx +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时? (注:b =∑n i =1x i y i -n x y∑n i =1x 2i -n x 2,a =y -b x )解析 (1)散点图如图.(2)由表中数据得:∑4 i =1x i y i =52.5,x =3.5,y =3.5,∑4 i =1x 2i =54,∴b =0.7, ∴a =1.05,∴y ^=0.7x +1.05.回归直线如图所示.(3)将x =10代入回归直线方程,得y ^=0.7×10+1.05=8.05(小时 ). ∴预测加工10个零件需要8.05小时.12.(2010·辽宁卷)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2) 表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80) 频数30402010 表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85) 频数1025203015(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;(ⅱ)完成下面2×2列联表,并回答能否有99.9% 的把握认为“注射药物A 后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70 mm2疱疹面积不小于70 mm2合计注射药物A a=b=注射药物B c=d=合计n=附:K2=(a+b)(c+d)(a+c)(b+d)解析(ⅰ)可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(ⅱ)表3:疱疹面积小于70 mm2疱疹面积不小于70 mm2合计注射药物A a=70b=30100注射药物B c=35d=65100K 2=200×(70×65-35×30)2100×100×105×95≈24.56. 由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.。