北京市石景山区2012-2013高三上学期期末考试数学(文)试卷(含标准答案)
- 格式:doc
- 大小:354.10 KB
- 文档页数:10
石景山区2011—2012学年第一学期期末考试试卷高三数学(文科)第Ⅰ卷 选择题一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃)(B A C U ( )A . }3{B . }2{C .}4,2,1{D .}4,1{2.已知复数i1i1z -+=,则复数z 的模为( ) A . 2B . 2C .1D .03.设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f ( )4.如图,一个空间几何体的正视图、侧视图、俯视图 为全等的等腰直角三角形,如果直角三角形的直角 边长为2,那么这个几何体的体积为( )A .38 B .34 C .4 D .25.执行右面的框图,若输入实数2=x ,则输出结果为( )A .22 B .41 A .-3 B .-1 C .1 D .3正视图侧视图俯视图C .12-D .216.设抛物线x y 82=上一点P 到y 轴的距离是4,则点P 到该抛物线准线的距离为( )A .4B .6C .8D .127.以下四个命题中,真命题的个数是( ) ①命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”; ②若q p ∨为假命题,则p 、q 均为假命题;③命题p :存在R x ∈,使得012<++x x ,则p ⌝:任意R x ∈,都有012≥++x x ;④在ABC ∆中,B A <是B A sin sin <的充分不必要条件. A .1 B .2 C .3 D .48.对于使M x x ≤+-22成立的所有常数M 中,我们把M 的最小值1叫做22x x -+的 上确界,若+∈R b a 、,且1=+b a ,则122a b--的上确界为( ) A .92B .92-C .41 D .-4第Ⅱ卷 非选择题二、填空题:本大题共6个小题,每小题5分,共30分.9.在ABC ∆中,若32,120,2=︒=∠=a A c ,则=∠B .10.统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如下图,规定不低于60分为及格,不低于80分为优秀.则及格人数是 ;优秀率为 .11.已知向量)1,3(=a,)1,0(=b ,)3,(k c = ,若b a 2+与c 垂直,则=k .12.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S = .13.若实数,x y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-.1,2,01x y x y x 则2x y +的最大值为 .14.已知函数)1,0(log )(≠>+-=a a b x x x f a 且,当2131<<a 且43<<b 时, 函数)(x f 的零点*0),1,(N n n n x ∈+∈,则=n .三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数x x x f 2sin 21cos 3)(2+=.(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题满分13分)甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:甲 乙 1 8 6 0 02 4 4 23(Ⅰ)求乙球员得分的平均数和方差;(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和超过55分的概率.FCA(注:方差[]222212)()()(1x x x x x x ns n -++-+-=其中x 为1x ,2x ,⋯n x 的平均数)17.(本小题满分13分)如图,矩形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,AB ∥CD ,2AB AD ==,4CD =,M 为CE 的中点.(Ⅰ)求证:BM ∥平面ADEF ; (Ⅱ)求证:BC ⊥平面BDE .18.(本小题满分14分)已知椭圆12222=+by a x (0>>b a )过点M (0,2),离心率36=e .(Ⅰ)求椭圆的方程;(Ⅱ)设直线1+=x y 与椭圆相交于B A 、两点,求AMB S ∆.19.(本小题满分14分) 已知.,ln )(R a x ax x f ∈-=(Ⅰ)当2=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程; (Ⅱ)若)(x f 在1=x 处有极值,求)(x f 的单调递增区间;(Ⅲ)是否存在实数a ,使()f x 在区间(]e ,0的最小值是3,若存在,求出a 的值; 若不存在,说明理由.20.(本小题满分13分)对于给定数列{}n c ,如果存在实常数,p q 使得1n n c pc q +=+对于任意*n N ∈都成立,我们称数列{}n c 是 “κ类数列”.(Ⅰ)若n a n 2=,32n n b =⋅,*n N ∈,数列{}n a 、{}n b 是否为“κ类数列”?若是,指出它对应的实常数,p q ,若不是,请说明理由;(Ⅱ)证明:若数列{}n a 是“κ类数列”,则数列}{1++n n a a 也是“κ类数列”;(Ⅲ)若数列{}n a 满足12a =,)(23*1N n t a a n n n ∈⋅=++,t 为常数.求数列{}n a 前2012项的和.并判断{}n a 是否为“κ类数列”,说明理由.石景山区2011—2012学年第一学期期末考试试卷高三数学(文科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.二、填空题:本大题共6个小题,每小题5分,共30分. 注:两空的题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)x x x f 2sin 2122cos 13)(++∙=232sin 212cos 23++=x x 23)32sin(++=πx ……………5分π=T ……………7分(Ⅱ)因为46ππ≤≤-x ,所以ππ65320≤+≤x …………9分当232ππ=+x 时,即12π=x 时,)(x f 的最大值为231+;………11分当032=+πx 时,即6π-=x 时,)(x f 的最小值为23. ………13分16.(本小题满分13分)解:(Ⅰ)由茎叶图可知,乙球员四场比赛得分为18,24,24,30,所以平均数24430242418=+++=x ; ……………………2分[]18)2430()2424()2424()2418(4122222=-+-+-+-=s . ……5分(Ⅱ)甲球员四场比赛得分为20,20,26,32,分别从两人得分中随机选取一场的 得分,共有16种情况:(18,20)(18,20)(18,26)(18,32) (24,20)(24,20)(24,26)(24,32) (24,20)(24,20)(24,26)(24,32)(30,20)(30,20)(30,26)(30,32) …………9分 得分和超过55分的结果有:(24,32)(24,32)(30,26)(30,32) …………11分求得分和超过55分的概率为41. ………13分17.(本小题满分13分)解:(Ⅰ)证明:取DE 中点N ,连结,MN AN .在△EDC 中,,M N 分别为,EC ED 的中点, ………2分所以MN ∥CD ,且12MN CD =. 由已知AB ∥CD ,12AB CD =, 所以MN ∥AB ,且MN AB =.所以四边形ABMN 为平行四边形. ………4分所以BM ∥AN .又因为AN ⊂平面ADEF ,且BM ⊄平面ADEF ,所以BM ∥平面ADEF . ………………………………6分 (Ⅱ)证明:在矩形ADEF 中,ED AD ⊥.又因为平面ADEF ⊥平面ABCD ,且平面ADEF 平面ABCD AD =,所以ED ⊥平面ABCD .所以ED BC ⊥. ………………………………9分 在直角梯形ABCD 中,2AB AD ==,4CD =,可得BC = 在△BCD中,4BD BC CD ===, 因为222BD BC CD +=,所以BC BD ⊥.因为BD DE D ⋂=,所以BC ⊥平面BDE .………………………13分18.(本小题满分14分) 解:(Ⅰ)由题意得36,2==a c b 结合222c b a +=,解得122=a所以,椭圆的方程为141222=+y x . ………………5分 (Ⅱ)由⎪⎪⎩⎪⎪⎨⎧+==+1141222x y y x 得12)1(322=++x x ………………6分即09642=-+x x ,经验证0>∆.设),(),,(2211y x B y x A . 所以49,232121-=⋅-=+x x x x , ………………8分 221221221)2)()AB x x y y x x -=-+-=((,2103]4)[2AB 21221=-+=x x x x ( ………………11分 因为点M 到直线AB 的距离222120=+-=d , ………………13分 所以4532221032121=⨯⨯=⨯⨯=∆d AB S AMB . ………………14分19.(本小题满分14分)解:(Ⅰ)由已知得)(x f 的定义域为(0)+∞,, 因为()ln f x ax x =-,所以'1()f x a x =-当2a =时,()2ln f x x x =-,所以(1)2f =, 因为'1 ()2f x x =-,所以'1 (1)211f =-=……………………2分 所以曲线)(x f 在点))1(,1(f 处的切线方程为2(1)(1)y f x '-=-,即10x y -+=. …………………………4分 (Ⅱ)因为)(x f 在1=x 处有极值,所以(1)0f '=, 由(Ⅰ)知(1)1f a '=-,所以1a =经检验,1a =时)(x f 在1=x 处有极值. …………………………5分 所以()ln f x x x =-,令'1()10f x x=->解得10x x ><或; 因为)(x f 的定义域为(0)+∞,,所以'()0f x >的解集为(1)+∞,, 即)(x f 的单调递增区间为(1)+∞,. …………………………………………8分(Ⅲ)假设存在实数a ,使x ax x f ln )(-=(],0(e x ∈)有最小值3, ① 当0≤a 时,因为(]e x ,0∈,所以0)('<x f , 所以)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,解得ea 4=,舍去. ……………………10分 ②当e a <<10时,)(x f 在)1,0(a 上单调递减,在],1(e a上单调递增,3ln 1)1()(min =+==a a f x f ,解得2e a =,满足条件. …………………12分③ 当e a≥1时,因为(]e x ,0∈,所以0)('<x f , 所以)(x f 在],0(e 上单调递减,31)()(min =-==ae e f x f ,解得ea 4=,舍去. 综上,存在实数2e a =,使得当],0(e x ∈时()f x 有最小值3. ……………14分20.(本小题满分13分)解:(Ⅰ)因为2,n a n =则有12,n n a a +=+*n N ∈故数列{}n a 是“κ类数列”,对应的实常数分别为1,2; …………… 1分因为32n n b =⋅,则有12n n b b +=,*n N ∈. 故数列{}n b 是“κ类数列”,对应的实常数分别为2,0. ……………3分(Ⅱ)证明:若数列{}n a 是“κ类数列”,则存在实常数q p 、,使得1n n a pa q +=+对于任意*n N ∈都成立,且有21n n a pa q ++=+对于任意*n N ∈都成立, 因此()()1212n n n n a a p a a q ++++=++对于任意*n N ∈都成立,故数列{}1n n a a ++也是“κ类数列”.对应的实常数分别为,2p q . ……………6分 (Ⅲ)因为 *132()n n n a a t n N ++=⋅∈ 则有1232a a t +=⋅,33432a a t +=⋅, 20092009201032a a t +=⋅20112011201232a a t +=⋅故数列{}n a 前2012项的和2012S =()12a a ++()34a a +++()20092010a a ++()20112012a a +()320092011201232323232221t t t t t =⋅+⋅++⋅+⋅=-……………9分若数列{}n a 是“κ类数列”,则存在实常数q p 、使得1n n a pa q +=+对于任意*n N ∈都成立, 且有21n n a pa q ++=+对于任意*n N ∈都成立,因此()()1212n n n n a a p a a q ++++=++对于任意*n N ∈都成立,而*132()n n n a a t n N ++=⋅∈,且)(23*121N n t a a n n n ∈⋅=++++,则有132322n n t t p q +⋅=⋅+对于任意*n N ∈都成立,可以得到(2)0,0t p q -==,当2,0p q ==时,12n n a a +=,2n n a =,1t =,经检验满足条件. 当0,0t q == 时,1n n a a +=-,12(1)n n a -=-,1p =-经检验满足条件. 因此当且仅当1t =或0t =时,数列{}n a 是“κ类数列”.对应的实常数分别为2,0或1,0-. ………………… 13分注:若有其它解法,请酌情给分.。
石景山区2013—2014学年第一学期期末考试试卷高三数学(文科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}31M x x =∈-≤≤R ,{}10N x x =∈+<R ,那么M N = ( )A .{101}-,,B .{321}---,,C .{11}x x -≤≤D .{31}x x -≤<-2.复数1ii =-( ) A .122i + B .122i -C .122i-+ D .122i --3.已知向量1)=a ,(1)c =,b .若⋅a b 0=,则实数c 的值为( )A .BC .3D .3-4.已知数列}{n a 为等差数列,4724a a ==-,,那么数列}{n a 的通项公式为( )A .210n a n =-+B .25n a n =-+C .1102n a n =-+ D .152n a n =-+5.执行如图所示的程序框图,若输入的x 的值为2, 则输出的x 的值为( ) A .3 B .126 C .127 D .1286.已知直线3450x y +-=与圆224x y +=相交于A B ,两点,那么弦AB 的长等于 ( )A. B. CD .17.设数列{}n a 是等比数列,则“123a a a <<”是“数列{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.已知函数()()1xf x x x=-∈+R ,区间[]()M a b a b =<,,集合{}()N y y f x x M ==∈,,则使M N =成立的实数对()a b ,有( )A .0个B .1个C .2个D .无数个第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知3sin =5α,且()2παπ∈,,则cos α= . 10.函数1()1f x x x =+-(1)x >的最小值为 .11.二元一次不等式组1020x y x y ≤⎧⎪≥⎨⎪-+≥⎩,,,所表示的平面区域的面积为 ,z x y =+的最大值为 .12.某四棱锥的三视图如下图所示,该四棱锥的侧面积为 .13.已知抛物线24y x =的焦点为F ,准线为直线l ,过抛物线上一点P 作PE l ⊥于E ,若直线EF 的倾斜角为o150,则||PF =______. 14.已知三角形ABC ,2AB =,AC =,那么三角形ABC 面积的最大值为 .俯视图主视图左视图三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()cos cos 21()f x x x x x =++∈R . (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数()f x 在44ππ⎡⎤-⎢⎥⎣⎦,上的最小值,并写出()f x 取最小值时相应的x 值.16.(本小题满分13分)北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为100分,规定测试成绩在[85100],之间为体质优秀;在[7585),之间为体质良好;在[6075),之间为体质合格;在[060),之间为体质不合格.现从某校高三年级的300名学生中随机抽取30名学生体质健康测试成绩,其茎叶图如下:9 1 3 5 68 0 1 1 2 2 3 3 3 4 4 5 6 6 7 7 9 7 0 5 6 6 7 9 6 4 5 8 5 6(Ⅰ)试估计该校高三年级体质为优秀的学生人数;(Ⅱ)根据以上30名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取5名学生,再从这5名学生中选出3人.(ⅰ)求在选出的3名学生中至少有1名体质为优秀的概率;(ⅱ)求选出的3名学生中体质为优秀的人数不少于体质为良好的人数的概率.M APEBDCF17.(本小题满分14分)如图,已知PA ⊥平面ABCD ,四边形ABCD 是矩形,1PA AB ==,AD =点E ,F 分别是BC ,PB 的中点.(Ⅰ)求三棱锥P ADE -的体积; (Ⅱ)求证:AF ⊥平面PBC ;(Ⅲ)若点M 为线段AD 中点,求证:PM ∥平面AEF .18.(本小题满分13分)已知函数()2xf x e x =-(e 为自然对数的底数). (Ⅰ)求曲线()f x 在点(0(0))f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若存在..122x ⎡⎤∈⎢⎥⎣⎦,使不等式()f x mx <成立,求实数m 的取值范围.19.(本小题满分14分)已知椭圆C :22221x y a b +=(0a b >>)过点(20),,且椭圆C 的离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且P 为线段MN 中点,再过P 作直线l MN ⊥.证明:直线l 恒过定点,并求出该定点的坐标.20.(本小题满分13分)已知集合{101}A =-,,,对于数列{}n a 中(123)i a A i n ∈= ,,,,. (Ⅰ)若三项数列{}n a 满足1230a a a ++=,则这样的数列{}n a 有多少个? (Ⅱ)若各项非零数列{}n a 和新数列{}n b 满足首项10b =,11i i i b b a ---=(23i n = ,,,),且末项0n b =,记数列{}n b 的前n 项和为n S ,求n S 的最大值.石景山区2013—2014学年第一学期期末考试高三数学(文科)参考答案一、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分.(两空的题目第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)()f x 2cos 2+1x x =+ …………2分 2sin2+16x π=+(), ……………4分所以函数)(x f 的最小正周期π ……………6分 (Ⅱ)因为44x ππ-≤≤,22363xπππ-≤+≤, ……………8分 sin(2)126x π-≤+≤, ……………10分 12sin 2+136x π≤+≤(), ……………11分所以当2=63x ππ+-,即=4x π-时,函数)(x f 取得最小值1+.……………13分所以,从体质为良好的学生中抽取的人数为3535⨯=,从体质为优秀的学生中抽取的人数为2525⨯=. ……………6分 (ⅰ)设在抽取的5名学生中体质为良好的学生为1a ,2a ,3a ,体质为优秀的学生为1b ,2b .则从5名学生中任选3人的基本事件有123()a a a ,,,121()a a b ,,,122()a a b ,,,131()a a b ,,,132()a a b ,,,231()a a b ,,,232()a a b ,,,112()a b b ,,,212()a b b ,,,312()a b b ,,10个,其中“至少有1名学生体质为优秀”的事件有121()a a b ,,,122()a a b ,,,131()a a b ,,,132()a a b ,,,231()a a b ,,,232()a a b ,,,112()a b b ,,, 212()a b b ,,,312()a b b ,,9个. 所以在选出的3名学生中至少有1名学生体质为优秀的概率为910. ……………10分 (ⅱ)“选出的3名学生中体质为优秀的人数不少于体质为良好的人数”的事件有112()a b b ,,,212()a b b ,,,312()a b b ,,3个.(Ⅰ)解:因为PA ⊥平面ABCD ,所以PA 为三棱锥P ADE -的高. ……………2分1122ADE S ∆==,所以113P ADE V -==……………4分 (Ⅱ)证明:因为PA ⊥平面ABCD ,BC ⊂平面ABCD , 所以PA BC ⊥,因为AB BC ⊥,AB PA A = , 所以BC ⊥平面PAB 因为AF ⊂平面PAB ,所以BC AF ⊥. ……………6分 因为PA AB =,点F 是PB 的中点, 所以PB AF ⊥ 又因为BC PB B = ,所以AF ⊥平面PBC . ……………8分 (Ⅲ)证明:连结BM 交AE 于N ,连结PM ,FN . 因为四边形ABCD 是矩形, 所以//AD BC ,且=AD BC , 又M ,E 分别为AD ,BC 的中点, 所以四边形AMEB 是平行四边形, 所以N 为BM 的中点, 又因为F 是PB 的中点,所以PM ∥FN , ……………13分因为PM ⊄平面AEF ,NF ⊂平面AEF ,所以PM ∥平面AEF . ……………14分18.(本小题共13分)解:(Ⅰ)(0)1f =. ……………1分()2x f x e '=-得(0)1f '=-, ……………2分所以曲线()f x 在点(0(0))f ,处的切线方程为1y x =-+. ……………3分M A PEB DCFN(Ⅱ)()2xf x e '=-.令()0f x '=,即2=0xe -,解得ln 2x =. ……………5分(ln 2)x ∈-∞,时,()0f x '<,(ln 2)x ∈+∞,时,()0f x '>,此时()f x 的单调递减区间为(ln 2)-∞,,单调递增区间为(ln 2)+∞,. ……………7分(Ⅲ)由题意知1[2]2x ∃∈,使()f x mx <成立,即1[2]2x ∃∈,使2x e x m x ->成立; ……………8分所以min 2x e xm x ->() ……………9分令()2x e g x x =-,2(1)()xx e g x x -'=, 所以()g x 在1[1]2,上单调递减,在[12],上单调递增, 则min ()(1)2g x g e ==-, ……………12分 所以(2)m e ∈-+∞,. ……………13分 19.(本小题共14分)解:(Ⅰ)因为点(20),在椭圆C 上,所以22401a b +=, 所以24a =, ……………1分 因为椭圆C 的离心率为12, 所以12c a =,即22214a b a -= , ……………2分 解得23b =, ……………4分所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)设0(1)P y -,,033()22y ∈-,, ①当直线MN 的斜率存在时,设直线MN 的方程为0(1)y y k x -=+,11()M x y ,,22()N x y ,,由2203412(1)x y y y k x ⎧+=⎨-=+⎩,,得22222000(34)(88)(48412)0k x ky k x y ky k ++++++-=, ……………7分 所以2012288+34ky k x x k+=-+, ……………8分 因为P 为MN 中点, 所以12=12x x +-,即20288=234ky k k +--+. 所以003(0)4MN k y y =≠, ……………9分 因为直线l MN ⊥,所以043l y k =-, 所以直线l 的方程为004(1)3y y y x -=-+, 即041()34y y x =-+ , 显然直线l 恒过定点1(0)4-,. ……………11分 ②当直线MN 的斜率不存在时,直线MN 的方程为1x =-,此时直线l 为x 轴,也过点1(0)4-,. ……………13分综上所述直线l 恒过定点1(0)4-,. ……………14分 20.(本小题共13分) 解:(Ⅰ)满足1230a a a ++=有两种情形:0000++=,这样的数列只有1个;1(1)00+-+=,这样的数列有6个,所以符合题意的数列{}n a 有7个. ……………3分 (Ⅱ)因为数列{}n b 满足11i i i b b a ---=,所以1211(23)i i b a a a b i n -=++++= ,,,, ……………5分 因为首项10b =,所以121(23)i i b a a a i n -=+++= ,,,. 根据题意有末项0n b =,所以1210n a a a -+++= , ……………6分而{11}i a ∈-,,于是n 为正奇数,且121n a a a - ,,,中有12n -个1和12n -个1-. ……………8分 121121210()()n n n S b b b a a a a a a -=+++=++++++++121(1)(2)n n a n a a -=-+-++要求n S 的最大值,则要求121n a a a - ,,,的前12n -项取1,后12n -项取1-. ……………11分 所以max ()(1)(2)(3)(3)(2)(1)n S n n n =-+-+-++-+-+-2(1)(2)(4)(6)14n n n n -=-+-+-++= . 所以2max (1)()4n n S -= (n 为正奇数). ……………13分 【注:若有其它解法,请酌情给分.】。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( ) A . {}2,1 B . {}4,32, C . {}4,3 D .{}4,3,2,1 【答案】B【KS5U 解析】因为{}4,3,2,1=U ,{}2,1=A ,所以{34}U A =,ð,所以{2,3,4}U C A B ⋃=(),选B.2. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i -- B .i +2 C .13i + D .i +3 【答案】A 【KS5U 解析】2133113Z i i Z i i -==-=--,选A.3.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( ) A .(2,4) B .(3,7) C .(1,1)D .(1,1)-- 【答案】D【KS5U 解析】因为(2,4),(1A B A C ==所以(1,1)B C A C A B =-=--,即(1,1A D B C ==--,选D.4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ 【答案】C【KS5U 解析】C 中,当//,//m m n α,所以,//,n α或,n α⊂当n β⊥,所以α⊥β,所以正确。
2012-2013学年北京市石景山区高三(上)期末数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合U ={1, 2, 3, 4},A ={1, 2},B ={2, 4},则(∁U A)∪B =( ) A.{1, 2} B.{2, 3, 4} C.{3, 4} D.{1, 2, 3, 4}2. 若复数Z 1=i ,Z 2=3−i ,则Z 2Z 1=( )A.1+3iB.2+iC.−1−3iD.3+i3. 在平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则AD →=( ) A.(2, 4) B.(1, 1)C.(−1, −1)D.(−2, −4)4. 设m ,n 是不同的直线,α,β是不同的平面,下列命题中正确的是( ) A.若m // α,n ⊥β,m ⊥n ,则α⊥β B.若m // α,n ⊥β,m ⊥n ,则α // β C.若m // α,n ⊥β,m // n ,则α⊥β D.若m // α,n ⊥β,m // n ,则α // β5. 执行框图,若输出结果为3,则可输入的实数x 值的个数为( )A.1B.2C.3D.46. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A.60种B.63种C.65种D.66种7. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A.83B.4C.2D.438. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},k =0,1,2,3,4.给出如下四个结论: ①2011∈[1]; ②−3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a −b ∈[0]”. 其中,正确结论的个数是( ) A.1 B.2C.3D.4二、填空题共6小题,每小题5分,共30分.已知不等式组{y ≤xy ≥−x x ≤a 表示的平面区域S 的面积为4,则a =________;若点P(x, y)∈S ,则z =2x +y 的最大值为________.如图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知PA =1,AB =2,PO =3,则圆O 的半径等于________.在等比数列{a n }中,a 1=12,a 4=−4,则公比q =________;|a 1|+|a 2|+...+|a n |=________.在△ABC中,若a=2,∠B=60∘,b=√7,则BC边上的高等于________.已知F是双曲线x24−y212=1的左焦点,A(1, 4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.给出定义:若m−12<x≤m+12(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x−{x}的四个命题:①y=f(x)的定义域是R,值域是(−12,12];②点(k, 0)是y=f(x)的图象的对称中心,其中k∈Z;③函数y=f(x)的最小正周期为1;④函数y=f(x)在(−12,32]上是增函数.则上述命题中真命题的序号是________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=sin2x(sin x+cos x)cos x.(1)求f(x)的定义域及最小正周期;(2)求f(x)在区间[−π6,π4]上的最大值和最小值.如图1,在Rt△ABC中,∠C=90∘,BC=3,AC=6.D、E分别是AC、AB上的点,且DE // BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(1)求证:BC⊥平面A1DC;(2)若CD=2,求BE与平面A1BC所成角的正弦值;(3)当D点在何处时,A1B的长度最小,并求出最小值.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为12,13,p.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14.(1)求甲乙二人中至少有一人破译出密码的概率;(2)求p的值;(3)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.已知函数f(x)=ln x−ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1, f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l 的下方;(2)讨论函数y=f(x)零点的个数.已知椭圆的中心在原点,焦点在x轴上,离心率为√32,且经过点M(4, 1),直线l:y=x+m交椭圆于不同的两点A、B.(1)求椭圆的方程;(2)求m的取值范围;(3)若直线l不过点M,求证:直线MA、MB的斜率互为相反数.定义:如果数列{a n}的任意连续三项均能构成一个三角形的三边长,则称{a n}为“三角形”数列.对于“三角形”数列{a n},如果函数y=f(x)使得b n=f(a n)仍为一个“三角形”数列,则称y=f(x)是数列{a n}的“保三角形函数”(n∈N∗).(1)已知{a n}是首项为2,公差为1的等差数列,若f(x)=k x(k>1)是数列{a n}的“保三角形函数”,求k的取值范围;(2)已知数列{c n}的首项为2013,S n是数列{c n}的前n项和,且满足4S n+1−3S n=8052,证明{c n}是“三角形”数列;(3)若g(x)=lg x是(2)中数列{c n}的“保三角形函数”,问数列{c n}最多有多少项?(解题中可用以下数据:lg2≈0.301,lg3≈0.477,lg2013≈3.304)参考答案与试题解析2012-2013学年北京市石景山区高三(上)期末数学试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.【答案】 B【考点】交、并、补集的混合运算 【解析】先求出∁U A ,再由集合的并运算求出B ∪(∁U A). 【解答】解:∵ 集合U ={1, 2, 3, 4},A ={1, 2}, ∴ ∁U A ={3, 4} ∵ B ={2, 4}∴ (∁U A)∪B ={2, 3, 4} 故选:B . 2.【答案】 C【考点】复数代数形式的乘除运算 【解析】把两个复数代入后运用复数的除法运算即可求得两复数的商. 【解答】解:由复数Z 1=i ,Z 2=3−i , 则Z 2Z 1=3−i i=i(3−i)i 2=−1−3i .故选C . 3.【答案】 C【考点】向量的减法及其几何意义 【解析】由已知中平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),根据向量加减法的三角形法则,可得向量BC →的坐标,根据平行四边形的几何特征及相等向量的定义,可得AD →=BC →,进而得到答案. 【解答】解:∵ 平行四边形ABCD 中,AC 为一条对角线, 又AB →=(2,4),AC →=(1,3),∴ BC →=AC →−AB →=(−1, −1), 故AD →=BC →=(−1, −1). 故选C . 4. 【答案】 C【考点】空间中直线与平面之间的位置关系 空间中直线与直线之间的位置关系 命题的真假判断与应用【解析】利用线面平行、垂直的判定定理和性质定理及面面垂直的判定定理即可判断出答案. 【解答】选择支C 正确,下面给出证明. 证明:如图所示:∵ m // n ,∴ m 、n 确定一个平面γ,交平面α于直线l . ∵ m // α,∴ m // l ,∴ l // n . ∵ n ⊥β,∴ l ⊥β, ∵ l ⊂α,∴ α⊥β. 故C 正确. 故选:C .5. 【答案】 C【考点】 程序框图 【解析】根据题中程序框图的含义,得到分段函数y ={x 2−1(x ≤2)log 2x(x >2),由此解关于x 的方程f(x)=3,即可得到可输入的实数x 值的个数. 【解答】解:根据题意,该框图的含义是当x ≤2时,得到函数y =x 2−1;当x >2时,得到函数y =log 2x .因此,若输出结果为3时,①若x≤2,得x2−1=3,解之得x=±2②当x>2时,得y=log2x=3,得x=8因此,可输入的实数x值可能是2,−2或8,共3个数故选:C6.【答案】A【考点】排列、组合及简单计数问题【解析】本题是一个分类计数问题,要得到四个数字的和是奇数,需要分成两种不同的情况:3个偶数、1个奇数;1个偶数,3个奇数,利用组合知识,即可求得结论.【解答】解:由题意知,要得到四个数字的和是奇数,需要分成两种不同的情况,当取得3个偶数、1个奇数时,有C43C51=20种结果,当取得1个偶数,3个奇数时,有C41C53=40种结果,∴共有20+40=60种结果,故选A.7.【答案】B【考点】由三视图求体积【解析】由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB =1,CE=EB=2.据此即可计算出其体积.【解答】由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB =1,CE=EB=2.∴V P−ABC=13×S△ABC×PD=13×12×4×3×2=4.8.【答案】C【考点】同余的性质(选修3)【解析】根据题中“类”的理解,在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,对于各个结论进行分析:①∵2011÷5=402...1;②∵−3÷5=0...2,③整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4];④从正反两个方面考虑即可.【解答】解:①∵2011÷5=402...1,∴2011∈[1],故①对;②∵−3=5×(−1)+2,∴对−3∉[3];故②错;③∵整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③对;④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a−b被5除的余数为0,反之也成立,故“整数a,b属于同一“类”的充要条件是“a−b∈[0]”.故④对.∴正确结论的个数是3.故选C.二、填空题共6小题,每小题5分,共30分.【答案】2,6【考点】求线性目标函数的最值【解析】作出题中不等式组表示的平面区域,得如图的△ABO及其内部,根据三角形面积公式建立关于a的方程,解之可得a=2.再将目标函数z=2x+y对应的直线进行平移,可得当x=2,y=2时,z=2x+y取得最大值为6.【解答】解:根据题意,可得a是一个正数,由此作出不等式组{y≤xy≥−xx≤a表示的平面区域,得到如图的△ABO及其内部,其中A(a, a),B(a, −a),O(0, 0)∴平面区域的面积S =12×2a×a=4,解之得a=2(舍负).设z=F(x, y)=2x+y,将直线l:z=2x+y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(2, 2)=6故答案为:2,6【答案】√6【考点】与圆有关的比例线段【解析】由于PAB与PCD是圆的两条割线,且PA=1,AB=2,PO=3,我们可以设圆的半径为R,然后根据切割线定理构造一个关于R的方程,解方程即可求解.【解答】解:设⊙O的半径为R则PC=PO−OC=3−RPD =PO +OD =3+R 又∵ PA =1,AB =2, ∴ PB =PA +AB =3 由切割线定理易得: PA ⋅PB =PC ⋅PD即1×3=(3−R)×(3+R) 解得R =√6. 故答案:√6. 【答案】 −2,2n−1−12【考点】等比数列的前n 项和 【解析】先利用等比数列的通项公式求得公比;|a n |是以a 1为首项,|q|为公比,进而利用等比数列的求和公式求解. 【解答】解:q =√a4a13=√−83=−2,|a 1|+|a 2|+⋯+|a n |=12(1−2n )1−2=2n−1−12.故答案为:−2;2n−1−12. 【答案】 3√32【考点】 正弦定理 【解析】根据余弦定理b 2=a 2+c 2−2ac cos B ,结合题中数据算出c =3,从而得到△ABC 的面积S =12ac sin B =3√32,再由△ABC 的面积S =12a ⋅ℎ(ℎ是BC 边上的高),即可算出ℎ的大小,从而得到BC 边上的高. 【解答】解:∵ △ABC 中,a =2,b =√7,且∠B =60∘, ∴ 根据余弦定理,得b 2=a 2+c 2−2ac cos B ,可得7=4+c 2−4c cos 60∘,化简得c 2−2c −3=0,解之得c =3(舍负) ∴ △ABC 的面积S =12ac sin B =12×2×3×sin 60∘=3√32又∵ △ABC 的面积S =12a ⋅ℎ(ℎ是BC 边上的高) ∴ ℎ=2S a=3√32×22=3√32故答案为:3√32【答案】9【考点】 双曲线的定义 【解析】根据A 点在双曲线的两支之间,根据双曲线的定义求得a ,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案. 【解答】解:∵ A 点在双曲线的两支之间,且双曲线右焦点为F′(4, 0), ∴ 由双曲线性质|PF|−|PF′|=2a =4, 而|PA|+|PF′|≥|AF′|=5,两式相加得|PF|+|PA|≥9,当且仅当A 、P 、F′三点共线时等号成立. 故答案为:9. 【答案】 ①③ 【考点】命题的真假判断与应用 【解析】依据函数定义,得到f(x)=x −{x}∈(−12,12],再对四个命题逐个验证后,即可得到正确结论.【解答】解:由题意知,{x}−12<x ≤{x}+12,则得到f(x)=x −{x}∈(−12,12],则命题①为真命题;由于k ∈Z 时,f(k)=k −{k}=k −k =0,但由于f(x)∈(−12,12],故函数不是中心对称图形,故命题②为假命题;由题意知,函数f(x)=x −{x}∈(−12,12]的最小正周期为1,则命题③为真命题;由于,{x}−12<x ≤{x}+12,则得到f(x)=x −{x}为分段函数,且在(−12,12],(12,32]为增函数,但在区间(−12,32]上不是增函数,故命题④为假命题.正确的命题为①③故答案为①③.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)由函数的解析式可得cos x ≠0,所以x ≠kπ+π2,k ∈Z .所以函数f(x)的定义域为{x|x ≠kπ+π2,k ∈Z}.… 再由f(x)=sin 2x(sin x+cos x)cos x=2sin x(sin x +cos x)=2sin 2x +sin 2x =√2sin (2x −π4)+1,…可得函数的周期T =2π2=π.…(2)因为−π6≤x ≤π4,所以−7π12≤2x −π4≤π4.… 故当2x −π4=π4时,即x =π4时,函数f(x)取得最大值为√2×√22+1=2; …当2x−π4=−π2时,即x=−π8时,函数f(x)取得最小值为√2×(−1)+1=−√2+1.…【考点】求两角和与差的正弦求二倍角的正弦求二倍角的余弦三角函数的周期性及其求法正弦函数的定义域和值域【解析】(1)由函数的解析式可得cos x≠0,所以x≠kπ+π2,k∈Z.由此求得函数f(x)的定义域.再利用三角函数的恒等变换化简函数f(x)的解析式为√2sin(2x−π4)+1,由此可得函数的周期T=2π2.(2)根据−π6≤x≤π4,利用正弦函数的定义域和值域求得最大值和最小值.【解答】解:(1)由函数的解析式可得cos x≠0,所以x≠kπ+π2,k∈Z.所以函数f(x)的定义域为{x|x≠kπ+π2,k∈Z}.…再由f(x)=sin2x(sin x+cos x)cos x =2sin x(sin x+cos x)=2sin2x+sin2x=√2sin(2x−π4)+1,…可得函数的周期T=2π2=π.…(2)因为−π6≤x≤π4,所以−7π12≤2x−π4≤π4.…故当2x−π4=π4时,即x=π4时,函数f(x)取得最大值为√2×√22+1=2;…当2x−π4=−π2时,即x=−π8时,函数f(x)取得最小值为√2×(−1)+1=−√2+1.…【答案】(1)证明:∵在△ABC中,∠C=90∘,DE // BC,∴AD⊥DE,可得A1D⊥DE.又∵A1D⊥CD,CD∩DE=D,∴A1D⊥面BCDE.∵BC⊂面BCDE,∴A1D⊥BC.∵BC⊥CD,CD∩A1D=D,∴BC⊥面A1DC.(2)以C为原点,CD、CB所在直线分别为x、y轴,建立空间直角坐标系,如图所示.可得D(2, 0, 0),E(2, 2, 0),B(0, 3, 0),A1(2, 0, 4),设n→=(x, y, z)为平面A1BC的一个法向量,∵CB→=(0,3,0),CA1→=(2,0,4),BE→=(2,−1,0),∴{3y=02x+4z=0,令x=2,得y=0,z=−1.所以n→=(2, 0, −1)为平面A1BC的一个法向量.设BE与平面A1BC所成角为θ,则sinθ=|cos<BE→⋅n→>|=√5⋅√5=45.所以BE与平面A1BC所成角的正弦值为45.(3)以(2)建立的空间直角坐标系为基础,如图所示:设D(x, 0, 0),则A1(x, 0, 6−x),B(0,3,0),∴A1B=√(x−0)2+(0−3)2+(6−x−0)2=√2x2−12x+45,根据二次函数的图象与性质,可得当x=3时,A1B取得最小值,A1B的最小值是3√3,此时点D为AC的中点,即D为AC中点时,A1B的长度最小,最小值为3√3.【考点】用空间向量求直线与平面的夹角直线与平面所成的角空间两点间的距离公式 直线与平面垂直的判定【解析】(1)由Rt △ABC 中,∠C =90∘且DE // BC ,证出A 1D ⊥DE .结合A 1D ⊥CD ,可得A 1D ⊥面BCDE ,从而得到A 1D ⊥BC .最后根据线面垂直判定定理,结合BC ⊥CD 可证出BC ⊥面A 1DC ;(2)以C 为原点,CD 、CB 所在直线分别为x 、y 轴,建立空间直角坐标系如图所示.可得D 、E 、B 、A 1各点的坐标,从而算出CB →、CA 1→的坐标,利用垂直向量数量积为零的方法建立方程组,解出n →=(2, 0, −1)为平面A 1BC 的一个法向量.根据空间向量的夹角公式和直线与平面所成角的性质,即可算出BE 与平面A 1BC 所成角的正弦值;(3)设D(x, 0, 0),可得A 1(x, 0, 6−x),由此得到A 1B =√2x 2−12x +45,结合二次函数的图象与性质可得当D 为AC 中点时A 1B 的长度最小,并且这个最小值为3√3.【解答】(1)证明:∵ 在△ABC 中,∠C =90∘,DE // BC , ∴ AD ⊥DE ,可得A 1D ⊥DE . 又∵ A 1D ⊥CD ,CD ∩DE =D , ∴ A 1D ⊥面BCDE . ∵ BC ⊂面BCDE , ∴ A 1D ⊥BC .∵ BC ⊥CD ,CD ∩A 1D =D , ∴ BC ⊥面A 1DC .(2)以C 为原点,CD 、CB 所在直线分别为x 、y 轴,建立空间直角坐标系,如图所示.可得D(2, 0, 0),E(2, 2, 0),B(0, 3, 0),A 1(2, 0, 4), 设n →=(x, y, z)为平面A 1BC 的一个法向量, ∵ CB →=(0,3,0),CA 1→=(2,0,4),BE →=(2,−1,0), ∴ {3y =02x +4z =0,令x =2,得y =0,z =−1.所以n →=(2, 0, −1)为平面A 1BC 的一个法向量. 设BE 与平面A 1BC 所成角为θ,则sin θ=|cos <BE →⋅n →>|=√5⋅√5=45.所以BE 与平面A 1BC 所成角的正弦值为45. (3)以(2)建立的空间直角坐标系为基础,如图所示:设D(x, 0, 0),则A1(x, 0, 6−x),B(0,3,0),∴ A 1B =√(x −0)2+(0−3)2+(6−x −0)2=√2x 2−12x +45, 根据二次函数的图象与性质,可得当x =3时,A 1B 取得最小值, A 1B 的最小值是3√3,此时点D 为AC 的中点,即D 为AC 中点时,A 1B 的长度最小,最小值为3√3.【答案】解:记甲、乙、丙三人各自破译密码的事件为A 1,A 2,A 3,且,A 1,A 2,A 3相互独立, 则P(A 1)=12,p(A 2)=13,p(A 3)=p ,(1)甲乙二人中至少有一人破译出密码的概率 p 1=1−p(A 1¯A 2¯)=1−(1−12)(1−13)=23. (2)∵ 三人中只有甲破译出密码的概率为14.∴ 12×(1−13)×(1−p)=14, 解得p =14.(3)X 的可能取值为0,1,2,3, p(X =0)=(1−12)(1−13)(1−14)=14.p(X =1)=12×(1−13)×(1−14)+(1−12)×13×(1−14)+(1−12)×(1−13)×14=1124. p(X =2)=12×13×(1−14)+12×(1−13)×14+(1−12)×13×14=14. p(X =3)=12×13×14=124. ∴ X 的分布列是EX =0×14+1×1124+2×14+3×124=1312.【考点】离散型随机变量的期望与方差 相互独立事件的概率乘法公式 离散型随机变量及其分布列【解析】(1)记甲、乙、丙三人各自破译密码的事件为A 1,A 2,A 3,且,A 1,A 2,A 3相互独立,P(A 1)=12,p(A 2)=13,p(A 3)=p ,甲乙二人中至少有一人破译出密码的概率p 1=1−p(A 1¯A 2¯).(2)由三人中只有甲破译出密码的概率为14.知12×(1−13)×(1−p)=14,由此能求出p =14. (3)X 的可能取值为0,1,2,3,p(X =0)=14.p(X =1)=1124.p(X =2)=14.p(X =3)=124.由此能求出X 的分布列和期望.【解答】解:记甲、乙、丙三人各自破译密码的事件为A 1,A 2,A 3,且,A 1,A 2,A 3相互独立, 则P(A 1)=12,p(A 2)=13,p(A 3)=p ,(1)甲乙二人中至少有一人破译出密码的概率 p 1=1−p(A 1¯A 2¯)=1−(1−12)(1−13)=23. (2)∵ 三人中只有甲破译出密码的概率为14. ∴ 12×(1−13)×(1−p)=14, 解得p =14.(3)X 的可能取值为0,1,2,3, p(X =0)=(1−12)(1−13)(1−14)=14.p(X =1)=12×(1−13)×(1−14)+(1−12)×13×(1−14)+(1−12)×(1−13)×14=1124. p(X =2)=12×13×(1−14)+12×(1−13)×14+(1−12)×13×14=14. p(X =3)=12×13×14=124. ∴ X 的分布列是EX =0×14+1×1124+2×14+3×124=1312.【答案】 解:(1)f(1)=−a +1,k 1=f′(1)=1−a ,所以切线l 的方程为 y −f(1)=k 1×(x −1),即y =(1−a)x作F(x)=f(x)−(1−a)x =ln x −x +1,x >0,则 F′(x)=1x−1=1x(1−x),解F′(x)=0得x =1.所以任意x >0且x ≠1,F(x)<0,f(x)<(1−a)x ,即函数y =f(x)(x ≠1)的图象在直线l 的下方.(2)令y =0,即ln x =ax −1,画图可知当a ≤0时,直线y =ax −1与y =ln x 的图象有且只有一个交点,即一个零点; 当a >0时,设直线y =ax −1与y =ln x 切于点(x 0, ln x 0),切线斜率为k =1x 0∴ 切线方程为y −ln x 0=1x 0(x −x 0),把(0, −1)代入上式可得x 0=1,k =1∴ 当0<a <1时,直线y =ax −1与y =ln x 有两个交点,即两个零点; 当a =1时直线y =ax −1与y =ln x 相切于一点,即一个零点; 当a >1时直线y =ax −1与y =ln x 没有交点,即无零点.综上可知,当a >1时,f(x)无零点;当a =1或a ≤0时,f(x)有且仅有一个零点; 当0<a <1时,f(x)有两个零点. 【考点】利用导数研究函数的单调性 根的存在性及根的个数判断【解析】(1)已知f(x)=ln x −ax +1,对你进行求导,根据导数和斜率的关系,求出切线的方程;(2)令y =0,进行变形ln x =ax −1,利用数形结合的方法,进行分类讨论,讨论函数y =f(x)的零点; 【解答】 解:(1)f(1)=−a +1,k1=f′(1)=1−a,所以切线l的方程为y−f(1)=k1×(x−1),即y=(1−a)x作F(x)=f(x)−(1−a)x=ln x−x+1,x>0,则F′(x)=1x −1=1x(1−x),解F′(x)=0得x=1.所以任意x>0且x≠1,F(x)<0,f(x)<(1−a)x,即函数y=f(x)(x≠1)的图象在直线l的下方.(2)令y=0,即ln x=ax−1,画图可知当a≤0时,直线y=ax−1与y=ln x的图象有且只有一个交点,即一个零点;当a>0时,设直线y=ax−1与y=ln x切于点(x0, ln x0),切线斜率为k=1x0∴切线方程为y−ln x0=1x0(x−x0),把(0, −1)代入上式可得x0=1,k=1∴当0<a<1时,直线y=ax−1与y=ln x有两个交点,即两个零点;当a=1时直线y=ax−1与y=ln x相切于一点,即一个零点;当a>1时直线y=ax−1与y=ln x没有交点,即无零点.综上可知,当a>1时,f(x)无零点;当a=1或a≤0时,f(x)有且仅有一个零点;当0<a<1时,f(x)有两个零点.【答案】解:(1)设椭圆的方程为x 2a2+y2b2=1,因为e=√32,所以c2a2=a2−b2a2=34,所以a2=4b2,又因为M(4, 1)在椭圆上,所以16a2+1b2=1,两式联立解得b2=5,a2=20,故椭圆方程为x 220+y25=1;(2)将y=x+m代入x 220+y25=1并整理得5x2+8mx+4m2−20=0,△=(8m)2−20(4m2−20)>0,解得−5<m<5;(3)设直线MA,MB的斜率分别为k1,k2,只要证明k1+k2=0即可.设A(x1, y1),B(x2, y2),则x1+x2=−8m5,x1x2=4m2−205.k1+k2=y1−1x1−4+y2−1x2−4=(y1−1)(x2−4)+(y2−1)(x1−4)(x1−4)(x2−4).分子=(x1+m−1)(x2−4)+(x2+m−1)(x1−4)=2x1x2+(m−5)(x1+x2)−8(m−1)=2(4m2−20)5−8m(m−5)5−8(m−1)=0.所以直线MA、MB的斜率互为相反数.【考点】圆锥曲线的综合问题椭圆的标准方程【解析】(1)由椭圆的离心率,椭圆经过点M和隐含条件a2=b2+c2联立解方程组可求得椭圆的标准方程;(2)直接把直线方程和椭圆方程联立,化为关于x的一元二次方程后由判别式大于0即可求得m的取值范围;(3)设出两直线斜率,把两直线的斜率和转化为直线与椭圆的两个交点的坐标之间的关系,利用根与系数关系代入化简整理即可得到答案.【解答】解:(1)设椭圆的方程为x2a2+y2b2=1,因为e=√32,所以c2a2=a2−b2a2=34,所以a2=4b2,又因为M(4, 1)在椭圆上,所以16a2+1b2=1,两式联立解得b2=5,a2=20,故椭圆方程为x220+y25=1;(2)将y=x+m代入x220+y25=1并整理得5x2+8mx+4m2−20=0,△=(8m)2−20(4m2−20)>0,解得−5<m<5;(3)设直线MA,MB的斜率分别为k1,k2,只要证明k1+k2=0即可.设A(x1, y1),B(x2, y2),则x1+x2=−8m5,x1x2=4m2−205.k1+k2=y1−1x1−4+y2−1x2−4=(y1−1)(x2−4)+(y2−1)(x1−4)(x1−4)(x2−4).分子=(x1+m−1)(x2−4)+(x2+m−1)(x1−4)=2x1x2+(m−5)(x1+x2)−8(m−1)=2(4m2−20)5−8m(m−5)5−8(m−1)=0.所以直线MA、MB的斜率互为相反数.【答案】(1)解:显然a n=n+1,a n+a n+1>a n+2对任意正整数都成立,即{a n}是三角形数列.因为k>1,显然有f(a n)<f(a n+1)<f(a n+2)<…,由f(a n)+f(a n+1)>f(a n+2)得k n+k n+1>k n+2第21页 共22页 ◎ 第22页 共22页解得1−√52<k <1+√52.所以当k ∈(1,1+√52)时,f(x)=k x 是数列{a n }的保三角形函数.…(2)证明:由4s n+1−3s n =8052,得4s n −3s n−1=8052, 两式相减得4c n+1−3c n =0,所以c n =2013(34)n−1…经检验,此通项公式满足4s n+1−3s n =8052. 显然c n >c n+1>c n+2,因为c n+1+c n+2=2013(34)n +2013(34)n+1=2116⋅2013(34)n−1>c n , 所以{c n }是三角形数列.…(3)解:g(c n )=lg [2013(34)n−1]=lg 2013+(n −1)lg (34),所以{g(c n )}单调递减.由题意知,lg 2013+(n −1)lg (34)>0①且lg c n−1+lg c n >lg c n−2②, 由①得(n −1)lg 34>−lg 2013,解得n <27.4, 由②得n lg 34>−lg 2013,解得n <26.4. 即数列{b n }最多有26项.… 【考点】数列与不等式的综合 数列的应用【解析】(1)确定{a n }是三角形数列,再利用函数的单调性,可得不等式,即可求k 的取值范围; (2)求得数列{c n }的通项,再利用定义进行证明即可;(3)确定{g(c n )}单调递减,利用定义可得不等式lg 2013+(n −1)lg (34)>0且lg c n−1+lg c n >lg c n−2,由此可得n 的范围,从而可得结论.【解答】(1)解:显然a n =n +1,a n +a n+1>a n+2对任意正整数都成立,即{a n }是三角形数列. 因为k >1,显然有f(a n )<f(a n+1)<f(a n+2)<…, 由f(a n )+f(a n+1)>f(a n+2)得k n +k n+1>k n+2 解得1−√52<k <1+√52.所以当k ∈(1,1+√52)时,f(x)=k x 是数列{a n }的保三角形函数.…(2)证明:由4s n+1−3s n =8052,得4s n −3s n−1=8052, 两式相减得4c n+1−3c n =0,所以c n =2013(34)n−1… 经检验,此通项公式满足4s n+1−3s n =8052. 显然c n >c n+1>c n+2,因为c n+1+c n+2=2013(34)n +2013(34)n+1=2116⋅2013(34)n−1>c n ,所以{c n }是三角形数列.…(3)解:g(c n )=lg [2013(34)n−1]=lg 2013+(n −1)lg (34), 所以{g(c n )}单调递减.由题意知,lg 2013+(n −1)lg (34)>0①且lg c n−1+lg c n >lg c n−2②,由①得(n −1)lg 34>−lg 2013,解得n <27.4, 由②得n lg 34>−lg 2013,解得n <26.4.即数列{b n }最多有26项.…。
石景山区2012—2013学年第一学期期末考试试卷 高三数学(文) 本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡. 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合,,,则( ) A. B. C. D.2. 若复数, ,则( ) A. B.C.D. 3.为平行四边形的一条对角线,( ) A. B. C.D.4.下列函数中,既是偶函数,又是在区间上单调递减的函数是( ) A.B.C.D. 5.设是不同的直线,是不同的平面,下列命题中正确的是 A.若,则 若,则 若,则⊥ 若,则 6.执行右面的框图,若输出结果为3, 则可输入的实数值的个数为( ) A.1B.2C.3D.4 7.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A.B.C.D. 8. 在整数集中,被除所得余数为的所有整数组成一个类,记为,即.给出如下四个结论: ①; ② ; ③ ; ④ 整数属于同一类的充要条件是”. 其中,正确结论的个数为( ). A. B. C. D. 第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分. 9. 不等式的解集为 10.直线被圆截得的弦长为 . 11.已知不等式组表示的平面区域的面积为, ;若点,则 的最值为 12. 在等比数列中,,则公比; 13.在中,若,则 . 14. 给出定义:若为整数),则叫做离实数最近的整数,记作,即. 在此基础上给出下列关于函数的四个命题 ①的定义域是,值域是; 是的图像; 函数最小正周期; 函数在上是增函数 则中真命题是 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 已知函数. (Ⅰ)求的定义域及最小正周期; (Ⅱ)求在区间上的最大值和最小值. 16.(本小题共14分) 如图1,中,,D、E上的点,,沿折起到的位置,,2. (Ⅰ)求证: ; : ; 当点在何处时,的长度最小,并求出最小值 17.(本小题共13分) 一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是?.现从盒子中随机抽取卡片. (Ⅰ)若一次抽取张卡片,求张卡片上数字之和大于的概率; (Ⅱ)若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率. 18.(本小题共13分) 已知函数是常数. (Ⅰ)求函数的图象在点处的切线的方程; (Ⅱ)证明函数的图象在直线的下方; (Ⅲ)若函数有零点,求实数的取值范围. 19.(本小题共14分) 已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)若直线不经过椭圆上的点,求证:直线的斜率互为相反数. 20.(本小题共13分) 定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形数列使得仍为一个“三角形”数列,则称是数列的“保三角形函数”. (Ⅰ)已知是首项为,公差为的等差数列,若是数列的“保三角形函数”,求的取值范围; (Ⅱ)已知数列的首项为,是数列的前n项和,且满足,证明是“三角形”数列; (Ⅲ)若是(Ⅱ)中数列的“保三角形函数”,问数列最多有多少项? (解题中可用以下数据 :) 石景山区2012—2013学年第一学期期末考试 高三数学(文)参考答案 一、选择题共8小题,每小题5分,共40分. 题号12345678答案BADDCCBC 二、填空题共6小题,每小题5分,共30分. 题号91011121314答案2;63 ①③(9题、11题第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分) (Ⅰ)因为,所以. 所以函数的定义域为 ………2分 ……………5分 ……………7分 (Ⅱ)因为,所以 ……………9分 当时,即时,的最大值为; ……………11分 当时,即时,的最小值为. ………13分 16.(本小题共14分) (Ⅰ)证明: …………………………4分 (Ⅱ)证明: 在△中, .又. 由 . …………………………9分 (Ⅲ)设则 由(Ⅱ)知,△,△均为直角三角形. ………………12分 当时, 的最小值是. 即当为中点时, 的长度最小,最小值为.…………………14分 17.(本小题共13分) (Ⅰ)设表示事件“抽取张卡片上的数字之和大于”,任取三张卡片,三张卡片上的数字全部可能的结果是,,,. 其中数字之和大于的是,, 所以. …………6分 (Ⅱ)设表示事件“至少一次抽到”, 第一次抽1张,放回后再抽取一张卡片的基本结果有: ,共个基本结果. 事件包含的基本结果有, 共个基本结果. 所以所求事件的概率为. …………………13分 18.(本小题共13分) (Ⅰ) …………………2分 ,,所以切线的方程为 ,即. …………………4分 (Ⅱ)令则 最大值,所以且,,,即函数的图像在直线的下方. …………………9分 (Ⅲ)有零点,即有解, . 令 ,, 解得. ………11分 则在上单调递增,在上单调递减, 当时,的最大值为, 所以. …………………13分 19.(本小题共14分) (Ⅰ)由题意知, ,又因为,解得 故椭圆方程为. …………………4分 (Ⅱ)将代入并整理得, 解得. …………………7分 (Ⅲ)设直线的斜率分别为和,只要证明.设,, 则. …………9分 所以直线的斜率互为相反数. …………………14分 20.(本小题共13分) (Ⅰ)显然对任意正整数都成立,即是三角形数列. 因为,显然有, 由得 解得. 所以当时, 是数列的保三角形函数. …………………3分 (Ⅱ)由,得, 两式相减得,所以 …………5分 经检验,此通项公式满足. 显然, 因为, 所以是三角形数列. …………………8分 (Ⅲ), 所以是单调递减函数. 由题意知,①且②, 由①得,解得, 由②得,解得. 即数列最多有26项. ………13分 【注:若有其它解法,请酌情给分.】 高考学习网: 高考学习网: B A1 图2 图1 E D C B A 1 3 2 3 2 2 俯视图 侧(左)视图 正(主)视图 结束 是 否 输入x 输出y 开始 C D E。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( )A . {}2,1B . {}4,32,C . {}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i --B .i +2C .13i +D .i +33.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ5.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .46.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种7.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38 B .4 C .2 D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k , 即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”. 其中,正确结论的个数为( ).A .1B .2C .3D .4正(主)视图 侧(左)视图俯视图22 3231开始 输出y 输入x否是结束>2x2=-1y x 2=log y x第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 . 10.如右图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知1,2,3PA AB PO ===,则圆O 的半径等于 . 11.在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .12. 在ABC ∆中,若2,60,7a B b =∠=︒=,则BC 边上的高等于 .13.已知定点A 的坐标为(1,4),点F 是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题: ①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1; ④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .PA BCO•D三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ;(Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.A BCD E图1图2A 1B CDE甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p 、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、.(Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、的斜率互为相反数.定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)石景山区2012—2013学年第一学期期末考试高三数学(理科)参考答案一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BADCCABC二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2s i n s i n +c o s =2s i n +s i n 2x x x x x =2 2s i n (2-)14x π=+ ……………5分π=T ……………7分 (Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为-2+1. ………13分16.(本小题共14分)(Ⅰ)证明: 在△ABC 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D DE ∴⊥.又11,,A D CD CD DE D A D BCDE ⊥⋂=∴⊥面.题号 9 10111213 14 答案2;6611222n ;---3329①③由1,.BC BCDE A D BC ⊂∴⊥面1,,BC CD CD BC C BC A DC ⊥⋂=∴⊥面. …………………………4分(Ⅱ)如图,以C 为原点,建立空间直角坐标系. ……………………5分1(2,0,0),(2,2,0),(0,3,0),(2,0,4)D E B A .设(,,)x y z =n 为平面1A BC 的一个法向量,因为(0,3,0),CB =1(2,0,4)CA =所以30240y x z =⎧⎨+=⎩,令2x =,得=0,=1y z -. 所以(2,0,1)=-n 为平面1A BC 的一个法向量. ……………………7分设BE 与平面1A BC 所成角为θ.则44sin =cos 555BE θ<⋅>==⋅n . 所以BE 与平面1A BC 所成角的正弦值为45. …………………9分 (Ⅲ)设(,0,0)D x ,则1(,0,6)A x x -,2221(-0)(0-3)(6--0)A B x x =++22-1245x x =+ …………………12分当=3x 时,1A B 的最小值是33.即D 为AC 中点时, 1A B 的长度最小,最小值为33. …………………14分 17.(本小题共13分)记“甲、乙、丙三人各自破译出密码”分别为事件321,,A A A ,依题意有12311(),(),(),23P A P A P A p ===且321,,A A A 相互独立.(Ⅰ)甲、乙二人中至少有一人破译出密码的概率为A 1BCD Exzy121()P A A -⋅1221233=-⨯=. …………………3分(Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233pp -⨯⨯-=, …………………5分 所以1134p -=,14p =. ……………………7分 (Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==, (1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=, (2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, (3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯= . ……………………11分X 分布列为:X 0 1 2 3 P14 1124 14 124……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ………………13分 2.(本小题共13分) (Ⅰ)1()=f x a x'- …………………1分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………3分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x x x''--, 解得x)1 , 0(1) , 1(∞+()F x ' +-)(x F↗最大值↘…………………6分(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………8分(Ⅲ)令()=ln +1=0f x x ax -,ln +1=x a x. 令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x -''-,则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减,当=1x 时,()g x 的最大值为(1)=1g .所以若>1a ,则()f x 无零点;若()f x 有零点,则1a ≤.………………10分若=1a ,()=ln +1=0f x x ax -,由(Ⅰ)知()f x 有且仅有一个零点=1x . 若0a ≤,()=ln +1f x x ax -单调递增,由幂函数与对数函数单调性比较,知()f x 有且仅有一个零点(或:直线=1y ax -与曲线=ln y x 有一个交点).若0<<1a ,解1()==0f x a x '-得1=x a ,由函数的单调性得知()f x 在1=x a处取最大值,11()=ln >0f a a,由幂函数与对数函数单调性比较知,当x 充分大时()<0f x ,即()f x 在单调递减区间1(,+)a ∞有且仅有一个零点;又因为1()=<0af e e -,所以()f x 在单调递增区间1(0)a,有且仅有一个零点.综上所述,当>1a 时,()f x 无零点; 当=1a 或0a ≤时,()f x 有且仅有一个零点;当0<<1a 时,()f x 有两个零点. …………………13分19.(本小题共14分)(Ⅰ)设椭圆的方程为22221x y a b +=,因为32e =,所以224a b =, 又因为(4,1)M ,所以221611a b+=,解得225,20b a ==, 故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=, 22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分 (Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y , 则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列。
石景山区2012—2013学年第一学期期末考试试卷高三数学(理)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( ) A . {}2,1B . {}4,32,C . {}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i --B .i +2C .13i +D .i +33.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD 则===( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4. 设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥ ks5uB .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ5.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .46.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种7A .38 B .4 C .2 D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k , 即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”. 其中,正确结论的个数为( ).A .1B .2C .3D .4第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 . 10.如右图,从圆O 外一点P 引圆O 的割线PAB 和PCD ,PCD 过圆心O ,已知1,2,3PA AB PO ===,PA BC O•D则圆O 的半径等于 . 11.在等比数列{}n a 中,141=,=42a a ,则公比=q ;123++++=n a a a a .12. 在ABC ∆中,若2,60,a B b =∠=︒=BC 边上的高等于 .13.已知定点A 的坐标为(1,4),点F 是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题:①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1;④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2.(Ⅰ)求证: BC ⊥平面1A DC ;(Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.17.(本小题共13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p 、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.图1 图2A 1BCDE19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为2,且经过点(4,1)M ,直线:=+l y x m 交椭圆于不同的两点A B 、.(Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不过点M ,求证:直线MA MB 、的斜率互为相反数.20.(本小题共13分)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)xf x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)ks5u石景山区2012—2013学年第一学期期末考试高三数学(理科)参考答案二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分)三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2sin sin +cos =2sin +sin2x x x x x =2 -)14x π=+ ……………5分π=T ……………7分 (Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分2当2--42x ππ=时,即8x π=-时,)(x f的最小值为. ………13分16.(本小题共14分)(Ⅰ)证明: 在△ABC 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D DE ∴⊥.又11,,A D CD CD DE D A D BCDE ⊥⋂=∴⊥面.由1,.BC BCDE A D BC ⊂∴⊥面1,,BC CD CD BC C BC A DC ⊥⋂=∴⊥面. …………………………4分(Ⅱ)如图,以C 为原点,建立空间直角坐标系.1(2,0,0),(2,2,0),(0,3,0),(2,0,4)D E B A .设(,,)x y z =n 为平面1A BC 的一个法向量, 因为(0,3,0),CB =1(2,0,4)CA = 所以30240y x z =⎧⎨+=⎩,令2x =,得=0,=1y z -. 所以(2,0,1)=-n 为平面1A BC 的一个法向量. ……………………7分 设BE 与平面1A BC 所成角为θ. 则4sin =cos 5BE θ<⋅>==n . 所以BE 与平面1A BC 所成角的正弦值为45. …………………9分 (Ⅲ)设(,0,0)D x ,则1(,0,6)A x x -,1A B ==…………………12分当=3x 时,1A B 的最小值是即D 为AC 中点时, 1A B 的长度最小,最小值为 …………………14分 17.(本小题共13分)记“甲、乙、丙三人各自破译出密码”分别为事件321,,A A A ,依题意有12311(),(),(),23P A P A P A p ===且321,,A A A 相互独立.(Ⅰ)甲、乙二人中至少有一人破译出密码的概率为121()P A A -⋅1221233=-⨯=. …………………3分(Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233pp -⨯⨯-=, …………………5分 所以1134p -=,14p =. ……………………7分(Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==, (1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=, (2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, (3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯=. ……………………11分 X 分布列为:……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ………………13分 2.(本小题共13分) (Ⅰ)1()=f x a x'- …………………1分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………3分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x x x''--, 解得…………………6分(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………8分(Ⅲ)令()=ln +1=0f x x ax -,ln +1=x a x. 令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x -''-, 则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减,当=1x 时,()g x 的最大值为(1)=1g .所以若>1a ,则()f x 无零点;若()f x 有零点,则1a ≤.………………10分若=1a ,()=ln +1=0f x x ax -,由(Ⅰ)知()f x 有且仅有一个零点=1x .若0a ≤,()=ln +1f x x ax -单调递增,由幂函数与对数函数单调性比较,知()f x 有且仅有一个零点(或:直线=1y ax -与曲线=ln y x 有一个交点).若0<<1a ,解1()==0f x a x '-得1=x a ,由函数的单调性得知()f x 在1=x a处取最大值,11()=ln >0f a a,由幂函数与对数函数单调性比较知,当x 充分大时()<0f x ,即()f x 在单调递减区间1(,+)a ∞有且仅有一个零点;又因为1()=<0af e e -,所以()f x 在单调递增区间1(0)a,有且仅有一个零点.综上所述,当>1a 时,()f x 无零点; 当=1a 或0a ≤时,()f x 有且仅有一个零点;当0<<1a 时,()f x 有两个零点. …………………13分 19.(本小题共14分)(Ⅰ)设椭圆的方程为22221x y a b+=,因为e =224a b =,又因为(4,1)M ,所以221611a b+=,解得225,20b a ==,故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=, 22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分(Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分 20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列。
北京市石景山区2012-2013学年高三第一学期期末考试数学(文)试卷本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( ) A . {}2,1B . {}4,32,C .{}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( ) A . 13i --B .i +2C .13i +D .i +33.AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD ===则( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )A .ln y x =B .2y x =C .cos y x =D .||2x y -=5.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ 6.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .47.某三棱锥的三视图如图所示,该三棱锥的体积是()A.38B.4C.2D.348.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[]k,即[]{}5k n k n=+∈Z,0,1,2,3,4k=.给出如下四个结论:①[]20133∈;②[]22-∈;③[][][][][]01234Z=∪∪∪∪;④整数,a b属于同一“类”的充要条件是“[]0a b-∈”.其中,正确结论的个数为().A.B.2C.3D.4第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 不等式2560x x-+≤的解集为 .10.直线+0x y=被圆22+4+0x x y=截得的弦长为.11.已知不等式组y xy xx a≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S的面积为4,则=a;若点SyxP∈),(,则yxz+=2的最大值为 .12.在等比数列{}na中,141=,=42a a-,则公比=q;123++++=na a a aL.13.在ABC∆中,若2,60,a B b=∠=︒=c=.14.给出定义:若11< +22m x m-≤(其中m为整数),则m叫做离实数x最近的整数,记作{}x,即{}=x m.在此基础上给出下列关于函数()={}f x x x -的四个命题:①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为;④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: //BC 平面1A DE ; (Ⅱ)求证: BC ⊥平面1A DC ;(Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.图1图2A 1BCDE17.(本小题共13分)一个盒子中装有4张卡片,每张卡片上写有个数字,数字分别是、2、、4.现从盒子中随机抽取卡片. (Ⅰ)若一次抽取张卡片,求张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率. 18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线的下方; (Ⅲ)若函数=()y f x 有零点,求实数a 的取值范围. 19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为:=+l y x m 交椭圆于不同的两点A B 、. (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线不经过椭圆上的点(4,1)M ,求证:直线MA MB 、的斜率互为相反数. 20.(本小题共13分)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为的等差数列,若()(1)xf x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)石景山区2012—2013学年第一学期期末考试高三数学(文)参考答案一、选择题共二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2sin sin +cos =2sin +sin2x x x x x =2s i n (2-)14x π=+ ……………5分π=T ……………7分(Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为. ………13分16.(本小题共14分)(Ⅰ)证明:11//,,DE BC DE A DE BC A DE ⊂⊄ 面面 1//BC A DE ∴面 ……4分 (Ⅱ)证明:在△ABC 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D DE ∴⊥.又11,,A D CD CD DE D A D BCDE ⊥⋂=∴⊥面.由1,.BC BCDE A D BC ⊂∴⊥面1,,BC CD CD BC C BC A DC ⊥⋂=∴⊥面. ……………9分 (Ⅲ)设DC x =则16A D x =-由(Ⅱ)知,△1ACB ,△1A DC 均为直角三角形.1A B =1A B =………………12分当=3x 时,1A B 的最小值是即当D 为AC 中点时, 1A B 的长度最小,最小值为14分 17.(本小题共13分)(Ⅰ)设A 表示事件“抽取张卡片上的数字之和大于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1,2,3),(1,2,4),(1,3,4),(2,3,4). 其中数字之和大于7的是(1,3,4),(2,3,4), 所以1()2P A =. …………………6分 (Ⅱ)设B 表示事件“至少一次抽到”,第一次抽1张,放回后再抽取一张卡片的基本结果有: (1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4),共16个基本结果.事件B 包含的基本结果有(1,3)(2,3)(3,1)(3,2)(3,3)(3,4)(4,3), 共7个基本结果.所以所求事件的概率为7()16P B =. …………………13分 18.(本小题共13分) (Ⅰ)1()=f x a x'- …………………2分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………4分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x ''--, 解得(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………9分 (Ⅲ)=()y f x 有零点,即()=ln +1=0f x x ax -有解,ln +1=x a x.令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x -''-,解()=0g x '得=1x . …………………11分则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减, 当=1x 时,()g x 的最大值为(1)=1g ,所以1a ≤. …………………13分 19.(本小题共14分)(Ⅰ)由题意知,2a =2e =,解得a b c 故椭圆方程为221205x y +=. …………………4分 (Ⅱ)将y x m =+代入221205x y +=并整理得22584200x mx m ++-=, 22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分 (Ⅲ)设直线,MA MB 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分 12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线MA MB 、的斜率互为相反数. …………………14分 20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列.因为1k >,显然有12()()()n n n f a f a f a ++<<< ,由12()()()n n n f a f a f a +++>得12n n n k k k +++>k <所以当k ∈时, ()x f x k =是数列{}n a 的保三角形函数. …………………3分(Ⅱ)由1438052n n s s +-=,得1438052n n s s --=,两式相减得1430n n c c +-=,所以1320134n n c -⎛⎫= ⎪⎝⎭…………………5分经检验,此通项公式满足1438052n n s s +-=. 显然12n n n c c c ++>>,因为1112332132013201344164n n n n n n c c c +-+++==⋅>()+2013()(), 所以{}n c 是三角形数列. …………………8分(Ⅲ)133()lg[2013]=lg2013+(n-1)lg 44n n g c -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以(n g c )是单调递减函数.由题意知,3lg2013+(n-1)lg >04⎛⎫⎪⎝⎭①且12lg lg lg n n n c c c --+>②,由①得3-1lg >-lg 20134n (),解得27.4n <, 由②得3lg>-lg 20134n ,解得26.4n <. 即数列{}n b 最多有26项. …………………13分 【注:若有其它解法,请酌情给分.】。
石景山区2012—2013学年第一学期期末考试试卷高二数学(文科)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合要求的.把所选项前的字母填在题后括号内. 1.复数i z 21+-=所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.复数11i i-=+( )A .1B .1-C .iD .i -3.抛物线28y x =的焦点坐标为( )A .(20),B .(20)-,C .(02),D .(02)-,4.已知直线经过点(04)A ,和点(12)B ,,则直线AB 的斜率为( ) A .2B .2-C .12-D .不存在5. 已知某几何体的三视图如图所示,则该几何体的表面积是( )6.双曲线22144xy-=的渐近线方程为()A .12B .3+C . 2+D .6A .y x =±B .y =C .2y x =±D .4y x =±左视图俯视图7.已知命题2:10q x x ∀∈+>R ,,则q ⌝为( )A .210x x ∀∈+≤R ,B .210x x ∃∈+<R ,C .210x x ∃∈+≤R , D .210x x ∃∈+>R ,8.过点(12)P -,与直线210x y +-=垂直的直线的方程为( )A .032=++y xB .052=+-y xC .032=-+y xD .240x y -+= 9.已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件10.过点(11),的直线l 与圆224x y +=交于A B ,两点,若||=A B l 的方程为( ) A .+2=0x y -B .2+1=0x y -C .21=0x y --D .1=0x y --11.已知三条不同直线m n l ,,,两个不同平面αβ,,有下列命题:①m α⊂,n α⊂,m ∥β,n ∥β,则α∥β ②m α⊂,n α⊂,l m ⊥,l n ⊥,则l α⊥ ③αβ⊥,=m αβ ,n β⊂,n m ⊥,则n α⊥ ④m ∥n ,n α⊂,则m ∥α 其中正确的命题是( ) A .①③ B .②④C .③D .①②④12.若椭圆1C :1212212=+b y a x(011>>b a )和椭圆2C :1222222=+b y a x(022>>b a )的焦点相同,且12a a >,则下面结论正确的是( )① 椭圆1C 和椭圆2C 一定没有公共点 ② 22212221b b a a -=-③1122a b a b > ④ 1212a a b b -<-A .②③④B . ①③④C .①②④D . ①②③二、填空题:本大题共4小题,每小题3分,共12分.把答案填在题中横线上. 13.如果复数i z +-=2,则z =________,3i z +=________.14.命题“a b ∀∈R ,,如果a b >,则33a b >”的逆命题是____________________.15.椭圆22192xy+=的焦点为12F F ,,点P 在椭圆上,若1||4PF =,则2||PF =_________;12F PF ∠的小大为__________.16.如图,正方体1111ABC D A B C D -中,E ,F 分别为棱1DD ,A B 上的点.已知下列判断:①1A C ^平面1B EF ;②1B EF D 在侧面11BCC B 上的正投影是面积为定值的三角形;③在平面1111A B C D 内总存在与平面1B EF 平行的直线. 其中正确结论的序号为__________(写出所有正确结论的序号).A BCD FE1A1B1C 1D三、解答题:本大题共6个小题,共40分.解答题应写出文字说明,证明过程或演算步骤.17.(本小题满分5分)实数x 取何值时,复数i x x x x z )23()2(22+++-+=是实数?是虚数?是纯虚数?18.(本小题满分6分)已知直线l 与直线3470x y +-=的倾斜角相等,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程.已知直线1:20l x y +=,直线2:20l x y +-=和直线3:3450l x y ++=. (Ⅰ)求直线1l 和直线2l 交点C 的坐标;(Ⅱ)求以C 点为圆心,且与直线3l 相切的圆C 的标准方程.如图,四棱锥P A B C D-中,底面A B C D是正方形,O是正方形A B C D的中心,P O⊥底面A B C D,E是P C的中点.求证:(Ⅰ)P A∥平面BD E;(Ⅱ)平面PAC⊥平面BD E.A B CDO EP如图,在四棱锥P A B C D -中,底面A B C D 是菱形,60A B C ∠=︒,P A ⊥平面A B C D ,点M N ,分别为BC PA ,的中点,且2==AB PA .(Ⅰ)证明:B C ⊥平面A M N ; (Ⅱ)求三棱锥AMC N -的体积;(Ⅲ)在线段P D 上是否存在一点E ,使得//N M 平面AC E ;若存在,求出P E 的长;若不存在,说明理由.PABCDN M已知椭圆的两个焦点1F (0),2F 0),过1F 且与坐标轴不平行的直线m 与椭圆相交于M ,N 两点,如果2M N F ∆的周长等于8.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(10),的直线l 与椭圆交于不同两点P ,Q ,试问在x 轴上是否存在定点E (0)m ,,使PE Q E ⋅ 恒为定值?若存在,求出E 的坐标及定值;若不存在,请说明理由.石景山区2012—2013学年第一学期期末考试试卷高二数学(文科) 参考答案与评分标准一、选择题:本大题共12小题,每小题4分,共48分.二、填空题:本大题共4小题,每小题3分,共12分.(一题两空的题目第一问1分,第二问2分.第16题答对一个给1分,但有多答或答错不给分.)三、解答题:本大题共6个小题,共40分.解答题应写出文字说明,证明过程或演算步骤.17.(本小题满分5分)解: 令022=-+x x ,解得21x x =-=,;令0232=++x x ,解得21x x =-=-,. ……………2分 所以 当2-=x 或1-=x 时,复数z 是实数; ……………3分 当2-≠x 且1-≠x 时,复数z 是虚数; ……………4分 当1=x 时,复数z 是纯虚数. ……………5分 18.(本小题满分6分)解:直线3470x y +-=的斜率为34-.因为直线l 与直线3470x y +-=的倾斜角相等, 所以3=4l k -. ……………1分设直线l 的方程为3=+4y x b -,令=0y ,则4=3x b . ……………2分因为直线l 与两坐标轴围成的三角形的面积为24, 所以14=||||=2423S b b ⋅,所以=6b ±. ……………4分 所以直线l 的方程为3=64y x -±,即3+4+24=0x y 或3+424=0x y -. ……………6分 19.(本小题满分6分) 解:(Ⅰ)由2020x y x y +=⎧⎨+-=⎩,,得24x y =-⎧⎨=⎩,,所以直线1l 和直线2l 交点C 的坐标为()24-,. ……………3分 (Ⅱ)因为圆C 与直线3l 相切,所以圆的半径351543516622==+++-=r , ……………5分所以圆C 的标准方程为()()94222=-++y x . ……………6分20.(本小题满分7分) 证明:(Ⅰ)连结O E .因为O 是A C 的中点,E 是P C 的中点,所以O E ∥A P . ……………2分 又因为O E ⊂平面BD E ,P A ⊄平面BD E ,所以P A ∥平面BD E . ……………3分 (Ⅱ)因为P O ⊥底面A B C D ,所以P O ⊥B D . ……………4分 又因为A C ⊥B D ,且A C P O =O , ……………5分 所以B D ⊥平面PAC . ……………6分 而B D ⊂平面BD E ,所以平面PAC ⊥平面BD E . ……………7分21.(本小题满分8分)证明:(Ⅰ) 因为A B C D 为菱形,所以=A B BC ,又60ABC ∠=,所以==A B B C A C . 因为点M 为B C 的中点,所以B C A M ⊥, 而P A ⊥平面A B C D ,B C ⊂平面A B C D , 所以P A B C ⊥.又PA AM A = ,所以B C ⊥平面A M N . ……………2分(Ⅱ)因为111222AM C S AM C M ∆=⋅=⨯=,PABCDN ME又P A ⊥底面A B C D , 2PA =,所以1A N =. 所以三棱锥N A M C -的体积31=V AM C S AN ∆⋅11326=⨯=. ……………4分(Ⅲ)在P D 上存在一点E ,使得//N M 平面AC E . ……………5分取P D 中点E ,连结N E ,E C ,A E . 因为N ,E 分别为P A ,P D 中点, 所以AD NE 21//.又在菱形A B C D 中,1//2C M AD ,所以MC NE //,即M C E N 是平行四边形, ……………6分所以EC NM //.又⊂EC 平面AC E ,⊄NM 平面AC E ,所以M N //平面AC E , ……………7分 即在P D 上存在一点E ,使得//N M 平面AC E ,此时12P E P D ==……………8分22.(本小题满分8分)解:(Ⅰ)由题意知c 4=8a ,所以 =2a ,=1b , 所以 椭圆的方程为22+=14xy . ……………2分(Ⅱ)当直线l 的斜率存在时,设其斜率为k ,则l 的方程为=(1)y k x -, 因为点(1,0)在椭圆内,所以直线l 与椭圆有两个交点,k ∈R .由22+=14=(1)x y y k x ⎧⎪⎨⎪-⎩,,消去y 得2222(4+1)8+44=0k x k x k --, ……………3分设P 11()x y ,,Q 22()x y ,, 则由根与系数关系得21228+=4+1kx x k ,212244=4+1k x x k -,所以21212=(1)(1)y y k x x --, ……………4分则=PE11()m x y --,,=Q E 22()m x y --,, 所以PE Q E ⋅=1212()()+m x m x y y --=2121212(+)++m m x x x x y y -=22121212(+)++(1)(1)m m x x x x k x x --- =2222222222844448++(+1)4+14+14+14+1k m k k km k k k k k ----=2222(48+1)+44+1m m k m k -- ……………5分要使上式为定值须2248+14=41m m m --,解得17=8m ,所以PE Q E ⋅ 为定值3364. ……………6分当直线l 的斜率不存在时P (12,,Q (12-,,由E 17(0)8,可得=PE 9(82-,,=Q E 9(82,, 所以81333==64464PE Q E ⋅- , ……………7分 综上所述当E 17(0)8,时,PE Q E ⋅ 为定值3364. ……………8分(如有不同解法,请参考评分标准酌情给分)。
石景山区2012—2013学年第一学期期末考试试卷高三数学(文)本试卷共6页,150分.考试时长120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后上交答题卡.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}4,3,2,1=U ,{}2,1=A ,{}4,2=B ,则=⋃B A C U )(( )A . {}2,1B . {}4,32,C .{}4,3D .{}4,3,2,12. 若复数i Z =1, i Z -=32,则=12Z Z ( )A . 13i --B .i +2C .13i +D .i +33.A C 为平行四边形A B C D 的一条对角线,(2,4),(1,3),A B A C A D ===则( )A .(2,4)B .(3,7)C .(1,1)D .(1,1)--4.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数是( )A .ln y x =B .2y x =C .cos y x =D .||2x y -=5.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ6.执行右面的框图,若输出结果为3, 则可输入的实数x 值的个数为( )A .1B .2C .3D .4开始输入x否是>2x2=-1y x 2=log y x7.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .38B .4C .2D .348. 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k , 即[]{}5k n k n =+∈Z ,0,1,2,3,4k =.给出如下四个结论: ① []20133∈; ② []22-∈;③ [][][][][]01234Z =∪∪∪∪;④ 整数,a b 属于同一“类”的充要条件是“[]0a b -∈”.其中,正确结论的个数为( ).A .1B .2C .3D .4第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. 不等式2560x x -+≤的解集为 .10.直线+0x y =被圆22+4+0x x y =截得的弦长为 .11.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 .正(主)视图侧(左)视图俯视图2 2 323112. 在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .13.在ABC ∆中,若2,60,7a B b =∠=︒=,则c = .14. 给出定义:若11< +22m x m -≤ (其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}=x m . 在此基础上给出下列关于函数()={}f x x x -的四个命题: ①=()y f x 的定义域是R ,值域是11(,]22-; ②点(,0)k 是=()y f x 的图像的对称中心,其中k Z ∈; ③函数=()y f x 的最小正周期为1; ④ 函数=()y f x 在13(,]22-上是增函数. 则上述命题中真命题的序号是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数sin 2(sin cos )()cos x x x f x x+=.(Ⅰ)求)(x f 的定义域及最小正周期; (Ⅱ)求)(x f 在区间⎥⎦⎤⎢⎣⎡-46ππ,上的最大值和最小值.16.(本小题共14分)如图1,在Rt A B C ∆中,90C ∠=︒,36B C A C ==,.D 、E 分别是A C A B 、上的点,且//D E B C ,将AD E ∆沿D E 折起到1A D E ∆的位置,使1A D C D ⊥,如图2. (Ⅰ)求证: //B C 平面1A D E ;(Ⅱ)求证: B C ⊥平面1A D C ;(Ⅲ) 当D 点在何处时,1A B 的长度最小,并求出最小值.17.(本小题共13分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4.现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.18.(本小题共13分)已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)若函数=()y f x 有零点,求实数a 的取值范围.ABCDE图1 图2A 1B CDE19.(本小题共14分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,长轴长为45,直线:=+l y x m交椭圆于不同的两点A B 、. (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围;(Ⅲ)若直线l 不经过椭圆上的点(4,1)M ,求证:直线M A M B 、的斜率互为相反数.20.(本小题共13分)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg 20.301,lg30.477,lg2013 3.304≈≈≈)石景山区2012—2013学年第一学期期末考试高三数学(文)参考答案一、选择题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BADDCCBC二、填空题共6小题,每小题5分,共30分.(9题、11题第一空2分,第二空3分) 三、解答题共6小题,共80分. 15.(本小题共13分)(Ⅰ)因为cos 0x ≠,所以+,2x k k Z ππ≠∈.所以函数)(x f 的定义域为{+,}2x x k k Z ππ≠∈| ……………2分sin 2sin cos ()cos x x x f x x+=()()2s i n s i n +c o s=2s i n+s i n 2x x x x x =2 2s i n (2-)14x π=+ ……………5分π=T ……………7分(Ⅱ)因为46ππ≤≤-x ,所以7-2-1244x πππ≤≤ ……………9分 当2-44x ππ=时,即4x π=时,)(x f 的最大值为2; ……………11分当2--42x ππ=时,即8x π=-时,)(x f 的最小值为-2+1. ………13分16.(本小题共14分)(Ⅰ)证明:11//,,D E BC D E A D E BC A D E ⊂⊄ 面面1//BC A D E ∴面 …………………………4分(Ⅱ)证明: 在△A B C 中,90,//,C DE BC AD DE ∠=︒∴⊥1A D D E ∴⊥.又11,,A D CD CD D E D A D BCD E ⊥⋂=∴⊥面.由1,.BC BCD E A D BC ⊂∴⊥面1,,BC CD CD BC C BC A D C ⊥⋂=∴⊥面. …………………………9分(Ⅲ)设D C x =则16A D x =-由(Ⅱ)知,△1A C B ,△1A D C 均为直角三角形. 22222111=A B A C BCA D D C BC+=++题号 910 11 121314 答案[]2,3222;611222n ;---3①③22213(6)A B x x =++-221245x x =-+ ………………12分当=3x 时,1A B 的最小值是33.即当D 为A C 中点时, 1A B 的长度最小,最小值为33.…………………14分 17.(本小题共13分)(Ⅰ)设A 表示事件“抽取3张卡片上的数字之和大于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1,2,3),(1,2,4),(1,3,4),(2,3,4). 其中数字之和大于7的是(1,3,4),(2,3,4), 所以1()2P A =. …………………6分(Ⅱ)设B 表示事件“至少一次抽到3”,第一次抽1张,放回后再抽取一张卡片的基本结果有:(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4),共16个基本结果.事件B 包含的基本结果有(1,3)(2,3)(3,1)(3,2)(3,3)(3,4)(4,3), 共7个基本结果.所以所求事件的概率为7()16P B =. …………………13分18.(本小题共13分) (Ⅰ)1()=f x a x'- …………………2分(1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. …………………4分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x x x''--, 解得x)1 , 0(1) , 1(∞+()F x ' +0 -)(x F↗最大值↘(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………9分 (Ⅲ)=()y f x 有零点,即()=ln +1=0f x x ax -有解,ln +1=x a x .令 ln +1()=x g x x,22ln +11(ln +1)ln ()=()==x x x g x xxx-''-,解()=0g x '得=1x . …………………11分则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减, 当=1x 时,()g x 的最大值为(1)=1g ,所以1a ≤. …………………13分19.(本小题共14分)(Ⅰ)由题意知, 245a =,又因为32e =,解得=25,=5,=15a b c 故椭圆方程为221205xy+=. …………………4分(Ⅱ)将y x m =+代入221205xy+=并整理得22584200x mx m ++-=,22=(8)-20(4-20)>0m m ∆,解得55m -<<. …………………7分(Ⅲ)设直线,M A M B 的斜率分别为1k 和2k ,只要证明120k k +=.设11(,)A x y ,22(,)B x y ,则212128420,55m m x x x x -+=-=. …………………9分12122112121211(1)(4)(1)(4)44(4)(4)y y y x y x k k x x x x ----+--+=+=----122112122(1)(4)(1)(4)2(5)()8(1)2(420)8(5)8(1)055x m x x m x x x m x x m m m m m =+--++--=+-+----=---=分子所以直线M A M B 、的斜率互为相反数. …………………14分 20.(本小题共13分)(Ⅰ)显然121,n n n n a n a a a ++=++>对任意正整数都成立,即{}n a 是三角形数列.因为1k >,显然有12()()()n n n f a f a f a ++<<< , 由12()()()n n n f a f a f a +++>得12n n n k k k +++>解得1-515<22k +<.所以当15(1,)2k +∈时,()xf x k =是数列{}n a 的保三角形函数. …………………3分(Ⅱ)由1438052n n s s +-=,得1438052n n s s --=,两式相减得1430n n c c +-=,所以1320134n n c -⎛⎫= ⎪⎝⎭…………………5分经检验,此通项公式满足1438052n n s s +-=. 显然12n n n c c c ++>>,因为1112332132013201344164nn n n n n c c c +-+++==⋅>()+2013()(),所以{}n c 是三角形数列. …………………8分(Ⅲ)133()lg [2013]=lg 2013+(n-1)lg 44n n g c -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以(n g c )是单调递减函数. 由题意知,3lg 2013+(n-1)lg >04⎛⎫⎪⎝⎭①且12lg lg lg n n n c c c --+>②, 由①得3-1lg >-lg 20134n (),解得27.4n <,由②得3lg>-lg20134n,解得26.4n .即数列{}nb最多有26项.…………………13分【注:若有其它解法,请酌情给分.】。