初中数学找规律[精品文档]
- 格式:doc
- 大小:2.38 MB
- 文档页数:12
初中数学找规律的方法
初中数学中,找规律常用的方法有以下几种:
1. 数列法:观察数列的前几项,找出数列的通项公式。
常见的数列有等差数列、等比数列、斐波那契数列等。
2. 图形法:观察图形的形状、位置、图案等特征,找出图形的规律。
可以通过绘制表格、拆分图形等方式来帮助分析。
3. 代数法:将题目中的未知数设定为x或n,建立方程式,通过解方程找出规律。
可以通过代入法、消元法、因式分解等方法解方程。
4. 反推法:从结果出发,通过逆向的思维反推出规律。
常用于找等式、判断大小关系等题型。
5. 分类讨论法:针对题目中的不同情况,进行分类讨论,找出每种情况下的规律。
可借助列举法或排除法等帮助分类。
以上方法仅为初中数学中常用的找规律方法,具体应根据题目特点和个人理解选择合适的方法。
在实际解题中,多练习、多思考,对各种类型题目进行归纳总结,是提高找规律能力的有效途径。
初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
初中数学数列的找规律:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b 为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?例2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)例3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差下面是常用的一些求和公式:。
规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
【数字间的规律】规律探索问题通常考查数的变化规律,然后用代数式表示这一规律,或据规律求出相应的数值.解题时,要通过观察、猜想、验证等步骤,应使所得到的规律具有性,只有这样才能应用与解题.+++n+321=4.....1= ++=2+++1004.....321——3——4+......++10099-1+3-5+7-9+11-…-1989+1991-1993= 1+2-3+4+5-6+7+8-9+…+97+98-99+100=1+2-3-4+5+6-7-8+…+97+98-99-100=某一电子昆虫落在数轴上的某点,从点开始跳动,第1次向左跳1个单位长度到,第2次由K1向右跳2个单位长度到,第3次由向左跳3个单位长度到,第4次由向右跳4个单位长度到…依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点表示的数恰好是2013,则电子昆虫的初始位置所表示的数是。
式子“1+2+3+4+5+...+100”表示从1开始的100个连续自然数的和.为了简便起见,我们可将“1+2+3+4+5+ (100)表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”可表示为,请解答下列问题:(1)2+4+6+8+10+…+100用求和符号可表示为;计算:= (填写计算结果);= (结果用n的代数式表示)。
观察前面三个数:2345、3452、4523的规律,写出第四个数为按规律填空:1、7、13、19…照此下去,第10个数应是.观察如下一系列数:按照规律排下去,第10行从左边数第9个数是;第10行从左边数第19个数是如图,观察该三角形数阵,按此规律下去,第10行的第一个数是n行的第一个数是下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;仔细观察:若第一个式子是:149+=;第二个式子是:4925+= 第三个式子是:162581+=;第四个式子是:.......6481289+= 根据规律,第六个式子是:观察下面的数表:......41233241132231122111;;;;;; 根据前4行的规律,第十行倒数第三个数与第四个数的差是观察下列各式及其计算: (15)441544833833322322+=×+=×+=×;;则依次排列下去的第四个式子的计算等式为把数列{2n+1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数…循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第14个括号内的第一个数字为 ;则第14个括号内的各数字之和为观察下列算式:122=,224=,328=,4216=,….根据上述算式中的规律,请你猜想20122的末尾数字是A 、2B 、4C 、8D 、6找规律,再填数:111111*********1===122342125633078456+-=+-+-+-, , , ,······ 则1120112012+- ▲ 120112012=⨯观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;… 请你根据观察得到的规律判断下列各式正确的是A .1005+1006+1007+…+3016=20112B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=20112观察一列单项式:,,,,… 根据你发现的规律,第7个单项式为 ▲ ;第个单项式为 ▲ . a 2,-a 3 2, a 4 3,- a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为 已知……,若(a 、b 为正整数)则 .有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于( )A .2010B .2009C .401D .334有一列数…,那么第7个数是 .一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b + B .1019a b -C .1017a b -D .1021a b -a 22a -34a 48a -n 22223322333388+=⨯+=⨯,,244441515+=⨯,288a a b b +=⨯a b +=1234251017--,,,,观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性在实数范围内定义运算“”,其法则为:,求方程(43)的解.2.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2007a 为( ) A.2007B.2C.12D.1-已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-| a1+1|,a3=-|a2+2|,a4=-|a3+3|,…依次类推,则a2 012的值为( )A.-1 005B.-1 006C.-1 007D.-2 012 猜数字游戏中,小明写出如下一组数:小亮猜想出第六个数字是 根据此规律,第n 个数是______.【图形个数变化规律】用棋子按下列方式摆图形,照此规律,第n 个图形比第(n-1)个图形多 枚棋子.⊕22a b a b ⊕=-⊕⊕24x=6467,2481632,57111935,,,,,将一些半径相同的小圆按如右图所示的规律摆放,请仔细观察,第个图形有个小圆。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
初中数学找规律题型归纳(最新版)目录1.引言:初中数学找规律题型的概述2.数字规律题型3.图形规律题型4.找规律题型的解法和技巧5.结论:学习找规律题型的重要性正文初中数学找规律题型归纳在初中数学的学习过程中,找规律题型是一种常见的题目类型,它主要涉及到数字规律和图形规律两大方面。
通过学习和掌握找规律题型,可以培养学生的观察能力、逻辑思维能力和归纳总结能力,对于提高学生的数学素养和解决实际问题具有重要意义。
一、数字规律题型数字规律题型主要包括数列规律、递推数列、数字组合等。
这类题目要求学生观察给定的数字序列,找出其中的规律,并根据规律推算出下一个数字或数列。
解决这类问题的关键在于发现数字之间的联系,归纳总结出规律,然后再用这个规律去解决具体的问题。
二、图形规律题型图形规律题型主要包括图形的变化、图形的组合等。
这类题目要求学生观察给定的图形,找出图形之间的变化规律,或者根据给定的条件组合出新的图形。
解决这类问题的关键在于观察图形的特征,发现图形之间的联系,然后根据这些联系推导出规律,最后用这个规律去解决具体的问题。
三、找规律题型的解法和技巧解决找规律题型需要运用观察、归纳、推理等方法。
具体来说,可以采用以下几种方法:1.观察法:观察题目中给出的数字或图形,找出它们之间的联系;2.归纳法:根据观察到的规律,归纳总结出一般性的结论;3.推理法:利用已知的规律,推导出题目中未知的数字或图形;4.验证法:通过实际计算或画图,验证自己得出的规律是否正确。
四、结论:学习找规律题型的重要性找规律题型是初中数学中的一个重要组成部分,它对于培养学生的观察能力、逻辑思维能力和归纳总结能力具有重要作用。
同时,找规律题型也是初中数学中一个较为复杂的题目类型,需要学生花费较多的时间和精力去学习和掌握。
初中数学找规律方法)找规律是数学问题解题中常用的问题解决方法之一,通过观察数列、图形或者其他数学对象中的特点和规律,能够找到一个普遍规律,从而解决问题。
下面将介绍一些常见的找规律方法。
1.列举法:通过列举一些例子,观察其中的关系和规律。
比如要求验证一个关系式,可以取几组不同的数值代入进行验证。
2.长度法:通过观察数列中各个项的长度之间的变化规律来确定数列的规律。
例如,观察斐波那契数列中各项的长度,可以发现每一项的长度都是前两项长度之和。
3.变化量法:观察数列中每一项与相邻项之间的差值或者比值的变化规律来确定数列的规律。
例如,观察等差数列中相邻项的差值恒定,可以得出其通项公式。
4.递推法:通过已知的前几项推导出后面的项。
递推法常用于数列、图形等问题中。
例如,要求第n个项的值,可以先求出前几项的值,利用观察到的规律进行递推。
5.图形法:通过观察图形中的形状、大小、颜色等特点来确定规律。
图形法常用于几何图形和图表问题中。
例如,观察等边三角形中边长和内角的关系,可以得出等边三角形的性质。
6.分类法:将问题中的对象进行分类,观察每一类对象之间的关系和规律。
例如,观察一个多边形中正多边形和非正多边形之间的特点和规律。
7.等式法:通过构造等式来推导出规律。
等式法常用于代数问题中。
例如,通过构造等式x+y=y+x,可以推导出交换律。
8.归纳法:通过已知的基本情况推导出全体情况的规律。
归纳法常用于整数、证明等问题中。
例如,通过归纳法证明一个等式对于任意整数n 都成立。
总之,找规律是一种通过观察数学对象的特点和规律来解决问题的方法。
在解题过程中,可以结合不同的方法,多角度观察问题,提高问题解决的效率和准确性。
初中数学找规律方法初中数学考中,常出数列的找律,本文就此的解方法行探索:一、根本方法——看增幅〔一〕如增幅相等〔此等差数列〕:每个数和它的前一个数行比,如增幅相等,第 n 个数可以表示:a+(n-1)b ,其中 a 数列的第一位数, b 增幅, (n-1)b第一位数到第n 位的增幅。
然后再化代数式a+(n-1)b 。
例: 4、 10、 16、 22、 28⋯⋯,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n 位数是:4+(n-1) × 6= 6n- 2〔二〕如增幅不相等,但是,增幅以同等幅度增加〔即增幅的增幅相等,也即增幅等差数列〕。
如增幅分3、 5、 7、9,明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
根本思路是:1、求出数列的第n-1 位到第 n 位的增幅;2、求出第1 位到第 n 位的增幅;3、数列的第 1 位数加上增幅即是第n 位数。
例明: 2、 5、 10、 17⋯⋯,求第n 位数。
分析:数列的增幅分:3、 5、 7,增幅以同等幅度增加。
那么,数列的第n-1 位到第 n 位的增幅是:3+2× (n-2)=2n-1,增幅:〔3+〔2n-1〕〕× (n-1)÷ 2=〔n+1〕×(n-1) = n2-1所以,第 n 位数是: 2+ n2-1=n2+1此解法然,但是此的通用解法,当然此也可用其它技巧,或用分析察凑的方法求出,方法就的多了。
〔三〕增幅不相等,但是,增幅同比增加,即增幅等比数列,如:2、 3、5、 9,17 增幅 1、 2、 4、 8.〔三〕增幅不相等,且增幅也不以同等幅度增加〔即增幅的增幅也不相等〕。
此大概没有通用解法,只用分析察的方法,但是,此包括第二的,如用分析察法,也有一些技巧。
二、根本技巧〔一〕出序列号:找律的目,通常按照一定的序出一系列量,要求我根据些的量找出一般律。
找出的律,通常包括序列号。
初中数学之10大找规律方法总结
找规律是数学研究过程中十分重要的一个环节,下面总结了初
中数学中常用的10种找规律方法,希望能够对同学们的研究有所
帮助。
1. 相邻两项间的关系:找出相邻两个数之间的规律,如公差、
倍数关系等。
2. 累加法:将所求的数字列出来累加,看其和与第几项相关。
3. 累乘法:将所求的数字列出来累乘,看其积与第几项相关。
4. 因式分解法:将数字进行因式分解,观察其因子,找出规律。
5. 奇偶性法:观察数字的奇偶性和结尾数字的规律。
6. 交错相加法:在一串数字中,用加减交替的方法,找出数字
之间的规律。
7. 格式法:观察数字的表达方式,如小数、分数等,找到其规律。
8. 取整型列举法:将数字取整后列举出来进行分析找规律。
9. 归纳法:根据前几项找出规律,得到通项公式,推导出后面
的答案。
10. 逆向思维法:找出已知答案与所求数的关系。
以上10种方法可以根据题目的不同特点和难度灵活组合使用,既可以单独使用其中一种方法,也可以多种方法结合使用,找出有
用的部分,最终得出正确答案。
希望以上总结能够帮助同学们更好地理解并掌握找规律的方法,提高数学解题能力。
中考数学——找规律
班级________姓名___________座号_____________
一、棋牌游戏问题
1. 4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )
A .第一张
B .第二张
C .第三张
D .第四张
2.)小明背对小亮,让小亮按下列四个步骤操作:
第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;
第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.
这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是
.
4.(2004年江西南昌)图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们
约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题
1. (2004年泸州)把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,……,则第n 层有___个正方体.
2.(2004年山东日照)如图(6),都是由边长为1的正方体叠成的图形。
图3
相
帅炮
例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。
依此规律,则第⑤个图形的表面积个平方单位。
3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的
.
4..观察下列由棱长为1的小立方体摆成的图形,寻找规律:
如图(8)①中:共有1个小立方体,其中1个看得见,0个看不见;如图(8)②中:共有8个小立方体,其中7个看得见,1个看不见;如图(8)③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见
...的小立方体有个.
5.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是
……6.木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是。
程
前
你
祝
似锦
图(7)
①②③
图(8)
图(1)图(2)图(3)
∙
∙∙∙∙∙∙
∙∙
∙
∙∙
∙∙∙
∙∙∙
∙
∙∙
∙
∙∙
∙∙∙
∙∙
∙
1
=n 2=n 3
=n 第20题图
8、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n =20)根时,
需要的火柴棍总数为 根。
9. 用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,
搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角形需要S 支火柴棒,那么S 关于n 的函数关系式是 (n 为正整数).
10. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19
个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成。
11. 一个正方体的每个面分别标有数字1,2,3
1中该正方体A 、B 、C 三种状态所
显示的数字,可推出“?”处的数字是 .
12. 下面是用棋子摆成的“上”字:
第一个“上”字 第二个“上”字 第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:
(1)第四、第五个“上”字分别需用 和 枚棋子;(2分) (2)第n 个“上”字需用 枚棋子.(1分)
13. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上
次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n 次,可以得到 条折痕.
14. 下图是某同学在沙滩上用石于摆成的小房子.
……
(第10题图)
(3)(2)(1)
观察图形的变化规律,写出第n 个小房子用了 块石子.
15. 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n + C .44n + D .8n 16. 下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图⑵比图⑴多出2个“树枝”,图⑶比图⑵多出5个“树枝”,图⑷比图⑶多出10个“树枝”,照此规律,图⑺比图⑹多出_________个“树枝”. 17. 柜台上放着一堆罐头,它们摆放的形状见右图:
第一层有23⨯听罐头, 第二层有34⨯听罐头, 第三层有45⨯听罐头, ……
根据这堆罐头排列的规律,第n (n 为正整数)层 有 听罐头(用含n 的式子表示). 18. 按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.
19. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有____颗.
……
第17题图
…… ① ② ③
第16题图
(图4)
第17题图
n=1
n=2
n=3
……
20. 如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字
中的棋子个数是 .
21. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。
依次规律,第5个图案中白色正方
形的个数为 。
22. 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形
的个数是 。
24. 在边长为l 的正方形网格中,按下列方式得到“L ”形图形第1个“L ”形图形的周长是8,第2个“L ”
形图形的周长是12, 则第n 个“L ”形图形的周长是 .
25. 观察下列图形,按规律填空:
● ……
图①
图②
图③
图④
(第20题)
…
第1个
第2个
第3个
第09题图
①
②
③
● ●
● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●。