运动控制复习要点
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
运动控制复习要点(SZT)1.直流调速系统用的三种可控直流电源和各自的特点。
2.电流连续和断续时,V-M系统机械特性的差别,电流断续有何不良影响。
3.直流调速系统闭环静特性和开环机械特性的联系和区别(画图分析)。
4.电流截止负反馈及其作用。
5.比例调节器、积分调节器、比例积分调节器各自的控制规律和特点。
6.无静差调速系统的稳态结构图和稳态结构参数关系。
7.电压反馈电流补偿的调速系统进行稳态特性和与转速闭环调速系统的主要差别。
8.转速电流双闭环系统中的两个调节器(ASR、ACR)的主要作用。
9.双闭环、单闭环、开环直流调速系统的静特性和机械特性的对比分析(画图)。
10.双闭环直流调速系统起动的特点,起动波形。
11.调节器工程设计法的思路。
12.典型I型、II型系统的结构及其各自的特性。
13.多个小惯性环节的近似处理,大惯性环节的近似处理,高阶系统的降阶处理。
14.转速微分负反馈的作用。
15.V-M系统可逆路线的分类。
16.V-M系统可逆调速系统中的环流分类,利害及其抑制和消除法。
17.α-β配合控制原理、原理图和控制特性。
18.V-M系统可逆调速系统的两大类和各自特点。
19.逻辑无环流控制功能的两种实现方法。
20.D LC应有的四种基本功能和DLC应有的两种延时。
21.单级式、双极式、PMW变换器电路原理和电压、电流波形。
22.双极式PMW(B型及格式)电路对驱动信号的要求(画图分析说明)。
23.泵升电压及其限制方法、电路、工作原理。
24.交流调速系统按转差功率特点分的三种基本类型和各自特点。
25.交流力矩电机与普通电机调压调速时的特点比较(画图分析)。
26.转速闭环交流调压调速系统的静特性、机械特性和各自的特点(画图说明)。
27.变频调速的基本控制方式(基频以上和基频以下)的特点(画图说明)。
28.静止变频装置的两大类和变频范围。
29.电压源型和电流源型变频器和各自特点(作对比分析)。
30.S PWM逆变器及其与普通交-直-交逆变器比较的优点。
1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
运动控制复习资料整理运动控制是机械工程领域中一个重要的研究方向,它涉及到控制系统和机械系统的结合,用于实现精确的运动控制。
具体而言,运动控制涵盖了运动控制算法、控制器设计、运动控制系统模型、传感器和执行器选择以及运动规划等方面的内容。
本文将从这些方面对运动控制的基础知识进行复习资料的整理,帮助读者回顾和加深对运动控制的理解。
一、运动控制算法1. PID控制算法:PID控制算法是最常用的一种运动控制算法,它通过比较设定值和实际值的误差,计算出一个控制量来调节系统的输出。
PID控制算法包括比例项、积分项和微分项,它们分别用来调节系统的静态响应、消除误差累积和改善动态响应。
2. 模糊控制算法:模糊控制算法是一种基于模糊逻辑的控制算法,它能够处理系统模型不确定或复杂的情况。
模糊控制算法通过定义模糊集合和相应的规则,实现对系统状态的模糊描述和控制决策。
3. 最优控制算法:最优控制算法是一种通过优化目标函数,寻找系统最优控制策略的算法。
最优控制算法包括动态规划、最优化和线性二次型控制等方法,它们能够在满足系统限制条件的前提下,最大化或最小化目标函数。
二、控制器设计1. 传统控制器设计:传统控制器设计通常基于数学模型和系统理论,通过建立数学模型和分析系统特性,设计出合适的控制器参数。
传统控制器设计方法包括根轨迹法、频域法和状态空间法等。
2. 自适应控制器设计:自适应控制器设计是一种根据系统的变化自动调整控制器参数的方法,它能够应对系统参数变化、外界干扰和建模误差等情况。
自适应控制器设计方法包括模型参考自适应控制和模型无关自适应控制等。
三、运动控制系统模型1. 开环模型:开环模型是指没有反馈控制的运动控制系统模型,它只根据输入信号直接控制输出信号,缺乏对系统误差的修正。
2. 闭环模型:闭环模型是指具有反馈控制的运动控制系统模型,它通过对输出信号进行反馈比较,根据误差信号调节控制量,使得输出信号稳定在设定值附近。
运动控制系统复习知识点总结1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
第一章1.基于自动控制理论,对作为原动机的电动机加以控制,使其拖动机械负载按照给定的控制规律自动运行的系统,称为电力拖动自动控制系统。
简称为电力拖动控制系统,也被称为运动控制系统。
2.电力拖动自动控制系统的组成:电动机、功率放大与变换装置、控制器及相应的传感器等。
3.运动控制系统转矩控制规律4.转矩控制是运动控制的根本问题要控制转速和转角,唯一的途径就是控制电动机的电磁转矩Te 5.电动:转矩与转速方向一致制动:转矩与转速方向相反6.典型的生产机械的负载转矩特性:①恒转矩负载特性②恒功率负载特性③风机、泵类负载特性第二章1.晶闸管整流器-电动机系统(简称V-M 系统)开环瞬时电压平衡方程式R=R rec +R a +R L U d =K S U C0dd d di u E i R L dt=++2.直流PWM 变换器-电动机系统(不可逆调速系统)改变占空比ρ,即可改变直流电动机电枢平均电压U d ,实现直流电动机的调压调速。
ρ==sonds t UU U TVD 的作用:为电流i d 提供一个续流的通道.电路之所以不可逆是因为平均电压U d 始终大于0。
3.对转速控制的要求:①调速②稳速③加、减速4.稳态调速性能指标①调速范围:生产机械要求电动机提供的最高转速n max 和最低转速n min 之比。
②静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比。
静差率是用来衡量调速系统在负载情况变化下转速的稳定度的。
它和机械特性的硬度有关,机械特性越硬,静差率越小,转速的稳定度就越高。
m a xm i nnD =n ()dN N eI Rn C ∆=100%Nn s n ∆=⨯n max 、n min 是在额定负载的最高和最低转速5.硬度是指机械特性的斜率。
调速范围和静差率必须同时提才有意义。
在调速过程中,若额定速降相同,则转速越低,静差率越大。
第1章绪论1.什么是运动控制?电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:J dωm=Te-TL-Dωm-Kθm d tdθm=ωmd tJ—机械转动惯量(kg⋅m2)ωm —转子的机械角速度(rad/s)θm—转子的机械转角(rad)Te—电磁转矩(N⋅m)TL—负载转矩(N⋅m)D—阻转矩阻尼系数K—扭转弹性转矩系数第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M)系统的组成:纯滞后环节,一阶惯性环节。
2.V-M系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D和静差率s。
D=∆n nNsN (1−s),额定速降∆nN,D=n maxnmin,s=∆n Nn4.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:U=1c∆U d t ⎰τ0nt比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI调节器7.数字测速方法:M法测速、T法测速、M/T法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
三复习纲要直流拖动系统(掌握)控制系统课程贯穿着一个基本方法:理论联系实际来分析问题解决问题。
具体来说就是系统思想和模型化、工程化方法。
本书的基本结构是以学科历史发展过程或者说实际问题为逻辑起点,而一般的理论课程如物理、数学实际上是与科研实际过程相反的,以学习者的知识结构为逻辑起点,从定义、概念、定律再到定理。
这是因为理论的发展意味着概念的创新。
而控制系统是一门技术理论课程,它是从技术角度来总结的。
正因为是技术角度出发的,具有综合性和实践性的特点。
所以对学习者来说,必须具备一定的实践基础和专业理论基础。
而对初学者来说,表现出有一定的难度是不奇怪的,而且,每一部分内容都仅是打下基础,深入的细节方面的知识,需要更进一步地查阅其它书籍和资料,从另一方面来看,这也给大家留下了自学和实践的空间。
从电压平衡方程式,导出调速方法,从反馈控制原理和静态参数的要求导出闭环控制系统;从静态与动态性能的矛盾分析了P调节器和I调节器,发展到PI调节器;从单闭环的调速系统无法控制起、制动动态电流,导出了带饱和非线性的PI调节器构成双闭环的系统结构,而双闭环的结构可以说交直流电动机控制的基本结构;从单向开关的晶闸管不能实现反转和回馈制动导出了可逆系统结构,又从可逆系统引起的环流问题导出有环流和无环流控制策略;再从调压调速的限制和宽调速范围的要求引出带弱磁控制的非独立弱磁控制系统。
问题一步一步深化。
但思考问题的出发点是电压平衡方程式,磁链平衡方程式,转矩平衡方程式,再加半导体开关的特性导致的电力电子电路中的特殊问题(也就是电力电子技术),同时分析时用到了电路和电机中的基本概念如输入功率、输出功率、转差功率、功率因数、效率、损耗等等。
1闭环控制静差率与调速范围重点掌握可控直流电源VM系统的主要问题直流脉宽调速系统的主要问题单闭环稳态分析PI调节器2 双闭环稳态数学模型及动态性能分析非典型系统的典型化弱磁控制实验电路模拟式PI调节器,过电流保护电路3 数字控制(了解)数字测速数字PI调节器及其设计方法4 可逆系统(掌握)5 变压调速及其软起动器(了解)6.1 VVVF 控制方式(掌握)机械特性比较三段式控制6.2 PWM 模式spwm chbpwm svpwm (了解)6.3 变频器的主要类型(了解)6.4 标量控制系统转速开环转速闭环转差频率控制(一般掌握)6.5 矢量控制原理坐标变换转子磁链定向(一般掌握)6.6 矢量控制系统直接矢量控制间接矢量控制转子磁链估计和观测(理解)6.7 直接转矩控制定子磁链的估计和观测(理解)7 串级调速系统(高效率低功率因数)(掌握)双馈调速的5种工况串级调速的工作原理起动停车顺序转子整流电路的特点及对机械特性的影响串级调速系统的功率因数及其改进方案双馈调速系统(了解)8 同步电动机变频调速(了解)特点及其类型他控变频(转速开环,交交变频,气隙磁场定向)自控变频(无刷直流,永磁同步电动机)四复习要点1直流电动机调压可获得恒转矩调速。
知识点:第二章1. 常用的可控直流电源类型:2. 晶闸管整流器-电动机系统1) 相位控制:(用触发脉冲的相位角α控制整流电压的平均值0d U),(0<α<2/π时,0d U >0,整流状态,电功率从交流侧输送到直流侧;2/π<α<max α时,0d U <0,有源逆变状态,电功率反向传送。
)2) 电流波形的脉动,在什么情况下可能出现电流连续和断续?抑制措施?3) 晶闸管触发和整流装置的放大系数和传递函数(1) 放大系数的计算公式:(2) 失控时间的计算(3) 传递函数:动态过程中,可把晶闸管触发与整流装置看成是( )环节,由( )引起,可近似为( )处理。
4) 晶闸管整流器运行中存在的问题?3. 直流脉宽调速系统的主要问题:1) PWM 调速系统优越性?2) 二象限不可逆PWM 表2-33) PWM 控制器与变换器的动态数学模型?4. 稳态调速性能指标和直流调速系统的机械特性1)调速系统的稳态性能指标: 1.调速范围 2.静差率 2)调速系统的静差率指标应以最低速时所能达到的数值为准. 3)调速范围、静差率和额定速降之间的关系公式。
4) 一个调速系统的调速范围,是指在最低速时还能满足所需静差率的转速可调范围。
5. 转速反馈控制的直流调速系统1) 闭环调速系统可以获得比开环调速系统硬的多的稳态特性,从而能保证一定静差率的要求下,能够提高调速范围,代价是增设电压放大器以及检测与反馈装置。
2) 闭环系统能够减少稳态速降的实质。
3) 反馈控制规律的三个基本特征。
4) 比例积分控制的无静差调速系统: P I PI 作用6. 直流调速系统的数字控制:1) 微机数字控制的特殊问题:(离散化)(数字化)2) 采用旋转编码器的数字测速方法:名称和适用范围7. 转速反馈控制直流调速系统的限流保护:采用电流截止负反馈第三章 转速、电流反馈控制的直流调速系统1. 双闭环调速系统的静特性在负载电流小于dm I 时表现为(转速无静差),这时,(转速负反馈)起主要作用,当负载电流达到dm I 时,(电流调节器)起主要调节作用,转速表现为(电流无静差)。
1运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2.运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2•晶闸管可控整流器的特点(1 )晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2 )晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4•最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3 )有制动电流通路的不可逆PWM-直流电动机系统(4 )桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率SoD与s的相互约束关系对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。
复习要点
第二章
直流电动机工作原理、类型、机械特性、调速原理、调速要求和调速指标。
PWM调速原理、逻辑延时电路作用、电流截止负反馈概念。
单闭环调速系统稳态分析和动态分析。
双闭环调速系统稳态分析和动态分析。
(各个反馈系数的计算、启动过程的特点、两个调节器的作用)
无静差调速原理。
第四章
变频调速原理、变频器结构和特性、spwm和svpwm原理、自然采样法、规则采样法
第五章
矢量控制概念、坐标变换
磁链观测器类型
第六章
永磁同步伺服电机控制策略、测速方法、转子初始位置检测、电子齿轮
第七章
位置传感器、换向原理、换向控制逻辑电路逻辑表达式、正反向特种代码
第八章
位置控制系统基本结构、性能指标、位置指令信号形式、变比例系数以及复合控制、增量式光电脉冲编码器
基本复习题
什么是擎住效应?
双闭环调速系统中,ASR和ACR各起什么作用?
闭环系统的静特性相对于开环系统的机械特性有哪些优点?
单闭环调速系统中比例积分调节器代替比例调节器可以消除稳态速差的原因?
分析脉宽调制器中逻辑延时电路的作用。
简述异步电动机矢量控制的基本原理。
简述三相异步电动机空间电压矢量PWM控制方式下“零矢量”的作用。
简述采用增量式光电编码器检测永磁同步电动机转子时,检测其初始位置的目的。
简述三相无刷直流电动机控制系统中位置检测器的类型和必须满足的两个条件。
简述位置控制系统和调速控制系统的异同点。
比较电压源型逆变器和电流源型逆变器在结构和输出上的不同。
根据“定子空间扇区图”来分析无刷直流电动机的换向过程。
简述自然采样法和规则采样法原理。
脉冲间隔法,简称T法,已知高频脉冲的频率为f,一个光电脉冲周期Tf内的高频脉冲个数为m2,光电脉冲编码器的分辨率是Pf , 4倍频输出,试写出电动机的转速n(r/min)的计算表达式。
何为泵升电压?如何解决?
在交-直-交变频器中,在什么情况下,中间直流母线电压会升高,如何解决?
简述SVPWM原理。
画出三相PWM逆变器主电路,并说明各开关状态所对应的电压矢量形式,指出其中的非零电压矢量和零矢量。
比较比例控制、积分控制和比例积分控制各自的特点。
分别根据基频以上和基频以下两种情况分析异步电动机变频调速的原理。
单闭环调速系统中以比例积分调节器代替比例调节器可以消除稳态速差的原因是什么?
在三相无刷直流电动机中,转子位置检测器有什么作用?
在直线插补的方式下,位置控制输入信号是什么类型的函数?在圆弧插补的方式位置控制输入信号又是什么类型的函数?请给出数学表达式。
双闭环调速系统中,ASR和ACR各起什么作用?
闭环系统的静特性相对于开环系统的机械特性有哪些优点?
试推导SPWM的规则采样法的数学公式。
另稳态速降(开环、闭环)、开环增益、比例控制器增益的计算。
电子齿轮的计算。
正反转特种代码辨别以及相应的逻辑表达式、换向控制逻辑电路逻辑表达式。
不同坐标系之间的变换。
(3-2,2-3,动-静,静-动,以及其之间的不同组合)规则采样的计算。