2019届高三优生精品卷(一)数学(文)卷
- 格式:doc
- 大小:1.19 MB
- 文档页数:11
第I卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)r、Z [、X1 •已知集合A = {x|log2(x+l)<l},B = k - >1[,则A B=( )(3丿-XA. (—1,0)B. (―oo,0)C.(0,1)D. (l,4~oo)2.下列函数中,既是偶函数,又在区间(0,-boo)单调递减的函数是()A. y = -x3B. y = ]n xC. y = cosxD. y = 2*cin x3•函数的图象可能是()4.设d〉0且Q工1,贝ij “函数/(兀)=ci x在R上是减函数”是“函数g(兀)=(2 —Q*在尺上递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 |5.已知。
=2弓,方=45,(? = 253 ,贝9( )A. c<a<bB. a<b<cC. b<a<cD. b<c<a6.若实数d,方满足2" =3,3" =2,则函数f(x) = a x^x-b的零点所在的区间是()A. (―2,—1)B. (-l,0)C.(0,1)D. (1,2)7.已知命题p:u3x0e/?,使得xj + 2關+ l<0成立”为真命题,则实数。
满足( )A. [-L1)B. (—00,—l)k_J(l,+oo)C. (1,+ 8)D. (―oo,—1)8.定义在/?上的奇函数/(尢)满足/(尢-4) = -/(兀),且在区间[0,2]上递增,贝9()A. /(-25)</(ll)</(80)B. /(80)</(11)</(-25)C. /(-25) </(80) </(I 1)D. /(I 1) < /(80) < /(-25)9.已知函数y = /(x+l)是定义域为/?的偶函数,M/(x)在[l, + oo)上单调递减,则不等式10•若曲线Q:y = a^(x>0)与曲线C 2:y = e x 存在公共点,则d 的取值范围是()11. 函 数/(x) = 2m^ - 3nx" +10(m > 0, M > 0)有 两 个 不同的 零点,则5(lgm)2 +9(lgn)2 的最小值是()12. 函数/(兀)是定义在(0,+oo )上的可导函数,导函数记为/(X ),当X 〉0且兀H1时,2/E + U 〉0,若曲线y = f (x )在x = l 处的切线斜率为一纟,则/(1)=() x-\52 3 4 A. —B. —C. —D. 1 5 5 5 第II 卷(非选择题满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点则函数/(x ) = n4-\og a (x-m )(6? >^1)经过定点 _____ . 14. __________________________________________________ 函数/(x ) = \nx-ax 在[l, + oo )上递减,则d 的取值范围是 ___________________________ .w' — x — 2 兀 > 0 . '■的零点个数为. x~ +2x,x<0丫2 _1_ y 1 16. 若函数/(兀)满足:办w 7?, /(兀)+ /(-%) = 2,则函数g (兀)=—-—— + f (兀)的最大 x +\值与最小值的和为.三、解答题(本大题共6个小题,共70分)17. (本小题满分10分)已知命题〃:方程x 2+ax + — = 0有两个不相等的负实数根;命题q :关于。
2018~2019年度高三全国Ⅰ卷五省优创名校联考数学(文科)一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,则下列能正确表示集合和关系的韦恩(Venn)图是A. B. C. D.【答案】A【解析】因为,,所以集合和只有一个公共元素0.故选A.2.设复数z=2+i,则A. -5+3iB. -5-3iC. 5+3iD. 5-3i【答案】C【解析】【分析】利用复数的乘法运算法则,以及除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.【详解】,故选C【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是()A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长【答案】D【解析】【分析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A: 2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B: 2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.设,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.函数的图象大致为A. B.C. D.【答案】C【解析】【分析】根据奇偶性排除;由,排除;由,排除,从而可得结果.【详解】由,得为偶数,图象关于轴对称,排除;,排除;,排除,故选C.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.某几何体的三视图如图所示,其中正视图中的曲线为圆弧,则该几何体的体积为A. B. C. D.【答案】B【解析】【分析】首先确定空间几何体的结构特征,然后利用体积公式确定其体积即可.【详解】由题意可知,题中的结合体是一个正方体去掉四分之一圆柱所得的组合体,其中正方体的棱长为4,圆柱的底面半径为2,高为4,则组合体的体积:.本题选择B选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A. i<6B. i<7C. i<8D. i<9【答案】B【解析】【分析】运行流程图,结合选项确定空白的判断框内可以填入的的内容即可.【详解】程序运行过程如下:首先初始化数据:,此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值大于,应跳出循环,即时程序不跳出循环,时程序跳出循环,结合选项可知空白的判断框内可以填入的是.本题选择B选项.【点睛】本题主要考查流程图的运行过程,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.8.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A. B. C. D.【答案】C【解析】【分析】从18组随机数中,找到恰好第三次就停止的有4组,由古典概型概率公式可得结果.【详解】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.【点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.9.△ABC的内角A,B,C所对的边分别为a,b,c,已知,则B=A. B. C. D.【答案】D【解析】【分析】由结合余弦定理可得,再由正弦定理可得,由辅助角公式可得,从而可得结果.【详解】,,,即,,又,,故选D.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.10.在直角坐标系中,是椭圆:的左焦点,分别为左、右顶点,过点作轴的垂线交椭圆于,两点,连接交轴于点,连接交于点,若是线段的中点,则椭圆的离心率为( )A. B. C. D.【答案】C【解析】【分析】由题意结合几何性质找到a,c的关系即可确定椭圆的离心率。
2019届高三优生精品卷(二)数学文科试卷本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,仅有一个正确)1. 已知全集,集合,集合,则( )A.B.C.D.2. 已知复数,则的虚部为()A. B. C. D.3. 已知张老师家一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则张老师家一星期的鸡蛋开支占总开支的百分比为()A.30%B.10%C.3%D.不能确定4.已知向量,则( )A.B.C.D.5.正项等比数列中,为其前项和,若,则公比为()A.B.C.D.6.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A.B.C.D.7. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等。
下图是源于其思想的一个程序框图,若输入的a、b分别为8、2,则输出的=( )A. B. C. D.8. 已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则双曲线的渐近线方程为()9. 将函数的图像向左平移个单位得到函数,则下列结论正确的是()A.函数的最小正周期为B.函数的图像关于原点对称C.函数在区间上单调递增D.函数在上的最小值为10. 过抛物线的焦点的直线交于两点,若,则()A.3 B.2 C.D.112.已知函数,当时,。
2019年高三第一次调研考试数学(文)试题含答案一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.已知集合,则()A. B. C. D.2.复数等于()A. B. C. D.3.在数列中,,公比,则的值为()A.7 B.8 C.9 D.164.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.205.下列函数中,既是偶函数,又是在区间上单调递减的函数是()A.B.C.D.6.已知平面向量的夹角为,且,,则等于()A. B. C. D.7.若正三棱柱的三视图如图所示,该三棱柱的表面积是()A. B. C. D.8.执行如图所示程序框图.若输入,则输出的值是()A.B.C.D.9.圆与直线相切于第三象限,则的值是().A.B.C.D.10.设函数有三个零点,且则下列结论正确的是()A. B. C. D.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11.在中,若,则= .12.不等式组表示的平面区域的面积是.13.定义映射,其中,,已知对所有的有序正整数对满足下述条件:①,②开始输入是否输出若,;③,则 .14.(坐标系与参数方程选做题)在极坐标系中,为极点,直线过圆:的圆心,且与直线垂直,则直线的极坐标方程为 .15.(几何证明选讲选做题) 如图示,是半圆周上的两个三等分点,直径,,垂足为,则的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数.(1)求函数的最小正周期和最小值;(2)若,,求的值. 17.(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:(1)估计这60名乘客中候车时间少于10分钟的人数; (2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率. 18.(本小题满分14分)在正方体中,棱长为2,是棱上中点,是棱中点,(1)求证:面;(2)求三棱锥的体积.19.(本小题满分14分)设数列的前项和为,点在直线上,.(1)证明数列为等比数列,并求出其通项;(2)设,记,求数列的前和.20.(本小题满分14分)如图,,是椭圆的两个 顶点, ,直线的斜率为.(1) 求椭圆的方程;(2)设直线平行于, 与轴分别交于点,与椭圆相交于,证明:△的面积等于△的面积.21.(本小题满分14分)已知函数,,(1)若,求函数的极值;(2)若函数在上单调递减,求实数的取值范围;(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.惠州市xx 届高三第一次调研考试试题数 学(文科)答案BC一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 C D B C D C A C C C【解析】1. ,故,选C2. ,选D3.数列为,等比数列,,选B4.设从乙社区抽取户,则,解得 ,选C5.不是偶函数,是周期函数,在区间上不是单调递减,在区间上单调递增,故选D 。
2019届高三优生精品卷(二)数学文科试卷本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|1},{|2}A x x B y y x =>==-+,则A B =( )A .(1,2]B .(,2]-∞C .(,1)(1,2]-∞- D .(,1]-∞-2. 已知复数z z =是z 的共轭复数,则z z ⋅= ( )A .14 B .12C .1D .2 3. 已知等差数列{}n a 中,21a =,前5项和515S =- ,则数列{}n a 的公差为( ) A .3- B .52-C .2-D .1- 4. 已知ln x π=,5log 2y =,12z e-=,则下列大小关系正确的是( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<5. 定义某种运算:S m n ⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=( ) A .3 B .1 C .4 D .06. 中国古代数学家名著《九章算术》中记载了一中名为“堑堵”的几何体,其三视图如图所示,则其外接球的表面积为( ) A .43π B .4π C .8π D .64π7. 设,x y 满足约束条件20220480x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则3z x y =+ 的最大值为( )A .15B .13C .3D .2 8. 将函数()4cos()13f x x π=++的图象上所有点的横坐标缩短到原来的12(纵坐标不变)再把图像向左平移6π个单位,得到函数()y g x =的图象,则函数()y g x =图象的一个对称中心为( ) A .11(,1)12π- B .11(,1)12π C .7(,1)12π- D .7(,1)12π9. 2018年行平昌冬季奥运会与2月9~2月25日举行,为了解奥运会五环所占面积与单独五个环面积和的比例P ,某学生设计了如下的计算机模拟,通过计算机模拟项长为8,宽为5的长方形内随机取了N 个点,经统计落入五环及其内部的点数为n 个,圆环半径为1,则比值P 的近似值为( ) A .325n N π B .32n N π C .8n N π D .532nNπ10. 函数1sin y x x=+的部分图象大致为( )11. 已知12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 的直线l 与双曲线左右两支分别交于,A B 两点,若2ABF ∆是等边三角形,则该双曲线的离心率为( )A .2B 12. 已知a R ∈,若()()xa f x x e x=+在区间(0,1)上有且只有一个极值点,则a 的取值范围是( )A .0a >B .1a ≤C .1a >D .0a ≤第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量1,a b a ==与b 夹角为045,则(2)a b a +⋅= .14.若过点(2,0)有两条直线与圆222210x y x y m +-+++=相切,则实数m 的取值范围是 .15. 14.如图1所示是一种生活中常见的容器,其结构如图2,其中ABCD 是矩形,ABFE 和CDEF 都是等腰梯形,且AD ⊥平面CDEF ,现测得20,15,30AB cm AD cm EF cm ===,AB 与EF 间的距离为25cm ,则几何体EF ABCD -的体积为 3cm .16.已知数列的前{}n a 的前n 项和为1222,log (2)n a n n n n S b a +==⋅,数列的{}n b 的前n 项和为n T ,则满足1024n T >的最小n 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角,,A B C 的对边分别为,,,(sin cos )a b c a b C C =+。
绝密★启用前
2019届高三全国I 卷五省优创名校联考
数学(文科)试题
第Ⅰ卷
一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集U =R ,则下列能正确表示集合M ={0,1,2}和N ={x|x 2+2x =0}关系的韦恩(Venn )图是
A .
B .
C .
D .
2.设复数z =2+i ,则
25z z
+= A .-5+3i
B.-5-3i
C.5+3i
D.5-3i
3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是
A.2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B.2018年1~4月的业务量同比增长率均超过50%,在3月最高
C.从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D.从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
4.设x,y满足约束条件
60
3
30
x y
x
x y
-+
⎧
⎪
⎨
⎪+-
⎩
≥
≤
≥
,则
1
y
z
x
=
+
的取值范围是
A.(-∞,-9]∪[0,+∞)B.(-∞,-11]∪[-2,+∞)。
2018~2019年度高三全国Ⅰ卷五省优创名校联考数学(文科)一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,则下列能正确表示集合和关系的韦恩(Venn)图是A. B. C. D.【答案】A【解析】因为,,所以集合和只有一个公共元素0.故选A.2.设复数z=2+i,则A. -5+3iB. -5-3iC. 5+3iD. 5-3i【答案】C【解析】【分析】利用复数的乘法运算法则,以及除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.【详解】,故选C【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是()A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长【答案】D【解析】【分析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A: 2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B: 2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误. 本题选择D选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.设,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】由约束条件作出可行域,目标函数为两点连线的斜率,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数,利用数形结合得结论.【详解】画出表示的可行域,表示可行域内的点与点连线的斜率,由,得,,由图知,的范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.函数的图象大致为A. B.C. D.【答案】C 【解析】 【分析】根据奇偶性排除;由,排除;由,排除,从而可得结果.【详解】由,得为偶数,图象关于轴对称,排除;,排除; ,排除,故选C.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.某几何体的三视图如图所示,其中正视图中的曲线为圆弧,则该几何体的体积为A. B. C. D.【答案】B 【解析】 【分析】首先确定空间几何体的结构特征,然后利用体积公式确定其体积即可.【详解】由题意可知,题中的结合体是一个正方体去掉四分之一圆柱所得的组合体,其中正方体的棱长为4,圆柱的底面半径为2,高为4,则组合体的体积:.本题选择B选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A. i<6B. i<7C. i<8D. i<9【答案】B【解析】【分析】运行流程图,结合选项确定空白的判断框内可以填入的的内容即可.【详解】程序运行过程如下:首先初始化数据:,此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值不大于,应执行:,;此时的值大于,应跳出循环,即时程序不跳出循环,时程序跳出循环,结合选项可知空白的判断框内可以填入的是.本题选择B选项.【点睛】本题主要考查流程图的运行过程,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.8.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A. B. C. D.【答案】C【解析】【分析】从18组随机数中,找到恰好第三次就停止的有4组,由古典概型概率公式可得结果.【详解】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.【点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.9.△ABC的内角A,B,C所对的边分别为a,b,c,已知,则B=A. B. C. D.【答案】D【解析】【分析】由结合余弦定理可得,再由正弦定理可得,由辅助角公式可得,从而可得结果.【详解】,,,即,,又,,故选D.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.10.在直角坐标系中,是椭圆:的左焦点,分别为左、右顶点,过点作轴的垂线交椭圆于,两点,连接交轴于点,连接交于点,若是线段的中点,则椭圆的离心率为( )A. B. C. D.【答案】C【解析】【分析】由题意结合几何性质找到a,c的关系即可确定椭圆的离心率。
2019届高三优生精品卷(三)数学(文科)试卷本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 的共轭复数为z ,且()310z i +=(i 是虚数单位),则在复平面内,复数z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{|25}A x x =-<<,{B x y ==,则A B = ( )A . (2,1)-B .(0,1]C .[1,5)D .(1,5) 3.阅读如下框图,运行相应的程序,若输入n 的值为10,则输出n 的值为( )A .0B .1C .3D .4 4.已知函数(),0()21,0g x x f x x x >⎧=⎨+≤⎩是R 上的奇函数,则(3)g =( )A .5B .-5C .7D .-7 5.“1a =”是“直线20ax y +-=和直线70ax y a -+=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知函数sin(2)y x ϕ=+在6x π=处取得最大值,则函数cos(2)y x ϕ=+的图像( )A .关于点(0)6π,对称B .关于点(0)3π,对称 C.关于直线6x π=对称 D .关于直线3x π=对称7.若实数a 满足142log 1log 3aa >>,则a 的取值范围是( ) A.2,13⎛⎫ ⎪⎝⎭ B.23,34⎛⎫⎪⎝⎭ C.3,14⎛⎫ ⎪⎝⎭ D.20,3⎛⎫ ⎪⎝⎭8.在ABC △中,角B 为34π,BC 边上的高恰为BC 边长的一半, 则cos A =( )C.239.某几何体的三视图如图所示,则该几何体的外接球的表面积为( ) A .136π B .144π C .36π D .34π 10.若函数()f x x =,则函数12()log y f x x =-的零点个数是( )A .5个B .4个 C. 3个 D .2个11.已知抛物线2:4C y x =的焦点为F ,准线为l ,点A l ∈,线段AF 交抛物线C 于点B ,若3FA FB = ,则AF =( )A .3B .4 C.6 D .712.已知ABC ∆是边长为2的正三角形,点P 为平面内一点,且CP = 则()PC P A P B ⋅+的取值范围是( )A .[]0,12B .30,2⎡⎤⎢⎥⎣⎦C .[]0,6D .[]0,3二.填空题(每题5分,满分20分,将答案填在答题纸上)13.计算:=-3log 87732log .14.若x ,y 满足约束条件001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则12y z x +=+的最大值为 .15.已知2)4tan(=-πα,则=-)22sin(πα . 16.已知双曲线C 的中心为坐标原点,点(2,0)F 是双曲线C 的一个焦点,过点F作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E ,若3F M M E =,则双曲线C 的方程为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题满分12分)已知数列{}n a 的前n 项和是n S ,且()21n n S a n =-∈*N .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令2log n n b a =,求数列(){}21nnb -前2n 项的和T .18.(本大题满分12分)2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:[)20,30,[)30,40,[)40,50,[)50,60,[)60,70,[]70,80,得到如图所示的频率分布直方图.问: (Ⅰ)求这80名群众年龄的中位数;(Ⅱ)若用分层抽样的方法从年龄在[)2040,中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在[)3040,的概率.19.(本大题满分12分)如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=,E 是DP 中点.(Ⅰ)证明://PB 平面ACE ;(Ⅱ)若AP PB ==2AB PC ==,求三棱锥C PAE -的体积.20.(本大题满分12分)已知动点(,)M x y (Ⅰ)求动点M 的轨迹E 的方程;(Ⅱ)设过点(1,0)N -的直线l 与曲线E 交于,A B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合),证明:直线BC 恒过定点,并求该定点的坐标.21.(本大题满分12分)已知函数()ln f x x =,()(1)g x a x =-(Ⅰ)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(Ⅱ)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (Ⅲ)若数列{}n a 满足11n n a a +=+,33a =,记{}n a 的前n 项和为n S ,求证:ln(1234)n n S ⨯⨯⨯⨯⨯< .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本大题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,抛物线C 的方程为24y x =.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是2cos sin x t y t αα=+⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,AB =求l的倾斜角.23.(本大题满分10分)选修4-5:不等式选讲 已知函数()|3||2|f x a x x =--+. (Ⅰ)若2a =,解不等式()3f x ≤;(Ⅱ)若存在实数a ,使得不等式()14|2|f x a x --+≤成立,求实数a 的取值范围.文数学答案1-5:ACCAA 6-10:ACADD 11-12:BA13.34- 14.2 15.54 16.1322=-y x 17.解:(Ⅰ)由112121n n n n S a S a --=-⎧⎨=-⎩得()12,1n n a a n n -=∈≥*N ,于是{}n a 是等比数列.令1n =得11a =,所以12n n a -=. (Ⅱ)122log log 21n n n b a n -===-, 于是数列{}n b 是首项为0,公差为1的等差数列.2222221234212n n T b b b b b b -=-+-+--+L 123212n n bb b b b -=+++++L , 所以()()221212n n T n n -==-.18. 解(Ⅰ)设80名群众年龄的中位数为x ,则()0.005100.010100.020100.030500.5x ⨯+⨯+⨯+⨯-=,解得55x =,即80名群众年龄的中位数55.(Ⅱ)由已知得,年龄在[20,30)中的群众有0.0051080=4⨯⨯人,年龄在[30,40)的群众有0.011080=8⨯⨯人, 按分层抽样的方法随机抽取年龄在[20,30)的群众46248⨯=+人,记为1,2;随机抽取年龄在[30,40)的群众86=448⨯+人, 记为,,,a b c d .则基本事件有:()()()()(),,,,,,,,1,,,2,,,,a b c a b d a b a b a c d()()()(),,1,,,2,,,1,,,2a c a c a d a d ,()()()()(),,,,,1,,,2,,,1,,,2,b c d b c b c b d b d()(),,1,,,2,c d c d ()()()(),1,2,,1,2,,1,2,,1,2a b c d 共20个,参加座谈的导游中有3名群众年龄都在[30,40)的基本事件有:()()(),,,,,,,,,a b c a b d a c d (),,,b c d 共4个,设事件A 为“从这6名群众中选派3人外出宣传黔东南,选派的3名群众年龄都在[30,40)”,则41()205p A == 19.(Ⅰ)证明:如图,连接BD ,BD AC F = ,连接EF , ∵四棱锥P ABCD -的底面为菱形,∴F 为BD 中点,又∵E 是DP 中点, ∴在BDP △中,EF 是中位线,//EF PB ∴,又∵EF ⊂平面ACE ,而PB ⊄平面ACE ,//PB ∴平面ACE . (Ⅱ)解:如图,取AB 的中点Q ,连接PQ ,CQ ,∵ABCD 为菱形,且60ABC ∠=︒,∴ABC △为正三角形,CQ AB ⊥∴,AP PB ==∵,2AB PC ==,CQ =∴,且PAB △为等腰直角三角形,即90APB ∠=︒, PQ AB⊥,且1PQ =,222PQ CQ CP +=∴,PQ CQ ⊥∴,又AB CQ Q = ,PQ ⊥∴平面ABCD ,111112122232C PAE E ACP D ACP P ACD V V V V ----=====∴.20.解:(Ⅰ)由已知,动点M 到点(1,0)P -,(1,0)Q 的距离之和为且PQ <M 的轨迹为椭圆,而a =1c =,所以1b =,所以,动点M 的轨迹E 的方程:2212x y +=.(Ⅱ)设11(,)A x y ,22(,)B x y ,则11(,)C x y -,由已知得直线l 的斜率存在,设斜率为k ,则直线l 的方程为:(1)y k x =+由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+,直线BC 的方程为:212221()y y y y x x x x +-=--,所以2112212121y y x y x y y x x x x x ++=---, 令0y =,则1221121212122112122()2()2()2()2x y x y kx x k x x x x x x x y y k x x k x x +++++====-+++++,所以直线BC 与x 轴交于定点(2,0)D -.21.解:(Ⅰ)由2a =,得()()()l n 22h x f x g x x x x =-=-+>.所以'112()2x h x x x-=-= 令'()0h x <,解得12x >或0x <(舍去),所以函数()()()h x f x g x =-的单调递减区间为 1(,)2+∞ (Ⅱ)由()()f x g x <得,(1)ln 0a x x -->当0a ≤时,因为1x >,所以(1)ln 0a x x -->显然不成立,因此0a >.令()(1)ln F x a x x =--,则'1()1()a x a F x a x x-=-=,令'()0F x =,得1x a =. 当1a ≥时,101a<≤,'()0F x >,∴()(1)0F x F >=,所以(1)ln a x x ->,即有()()f x g x <.因此1a ≥时,()()f x g x <在(1,)+∞上恒成立. ②当01a <<时,11a >,()F x 在1(1,)a 上为减函数,在1(,)a+∞上为增函数, ∴min ()(1)0F x F <=,不满足题意.综上,不等式()()f x g x <在(1,)+∞上恒成立时,实数a 的取值范围是[1,)+∞(III )证明:由131,3n n a a a +=+=知数列{}n a 是33,1a d ==的等差数列,所以3(3)n a a n d n =+-=所以1()(1)22n n n a a n n S ++== 由(Ⅱ)得,ln (1)1x a x x x <-≤-<在(1,)+∞上恒成立.所以ln 22,ln33,ln 44,,ln n n <<<⋅⋅⋅<. 将以上各式左右两边分别相加,得ln 2ln 3ln 4ln 234n n +++⋅⋅⋅+<+++⋅⋅⋅+.因为ln101=<所以(1)ln1ln 2ln 3ln 4ln 12342n n n n n S +++++⋅⋅⋅+<++++⋅⋅⋅+== 所以ln(1234)n n S ⨯⨯⨯⨯⋅⋅⋅⨯<22.解:(1)∵cos sin x y ρθρθ=⎧⎨=⎩,代入24y x =,∴2sin 4cos 0ρθθ-=(2)不妨设点A ,B 对应的参数分别是1t ,2t ,把直线l 的参数方程代入抛物线方程得:22sin 4cos 80t t αα-⋅-=,∴12212224cos sin 8sin 1616sin 0t t t t αααα⎧+=⎪⎪-⎪=⎨⎪⎪∆=+>⎪⎩,则12AB t t =-==sin α=4πα=或34πα=. 23.解:(Ⅰ)不等式()3f x ≤化为|23||2|3x x --+≤,则22323x x x -⎧⎨-++⎩≤≤或2232323x x x ⎧-<⎪⎨⎪---⎩≤≤,或233223x x x ⎧>⎪⎨⎪---⎩≤, 解得3742x -≤≤,所以不等式()3f x ≤的解集为37{|}42x x -≤≤;(Ⅱ)不等式()14|2|f x a x --+≤等价于|3|3|2|1a x x a -++-≤ 即|3|3|2|1a x x a -++-≤,因为|3|3|2||3||63||363||6|a x x a x x a x x a -++=-++-++=+≥, 若存在实数a ,使不等式()14|2|f x a x --+≤成立, 则|6|1a a +-≤,解得:52a-≤,实数a的取值范围是5(]2-∞-,- 11 -。
2019届高中毕业班第一次质量检测数学(文科)试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题 5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卷的相应区域答题.............)1. 设集合,则()A. B. C. D.【答案】B【解析】求解一元二次不等式可得:,结合交集的定义可得:.本题选择B选项.2. 已知是虚数单位,则()A. B. C. D.【答案】A【解析】由题意结合复数的运算法则可得:.本题选择A选项.3. 在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是()A. 若的观测值为,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌.B. 由独立性检验可知,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有的可能患有肺癌.C. 若从统计量中求出在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,是指有的可能性使得判断出现错误.D. 以上三种说法都不正确.【答案】C【解析】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.结合所给选项可得:若从统计量中求出在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,是指有的可能性使得判断出现错误.本题选择C选项.4. 在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A. B. C. D.【答案】C【解析】由题意可得,该问题为长度型几何概型,则所求问题的概率值为:.本题选择C选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.5. 将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()A. B. C. D.【答案】B【解析】试题分析:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,在右侧的射影是正方形的对角线,在右侧的射影也是对角线是虚线.如图B.故选B.考点:简单空间图形的三视图.视频6. 在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线斜率的最小值为()A. 2B. 1C.D.【答案】C【解析】试题分析:画出可行域如图:分析可知当点与点重合时直线的斜率最小为.故C正确.考点:线性规划.视频7. 若抛物线上一点到其焦点的距离为10,则点的坐标为()A. B. C. D.【答案】C【解析】由抛物线的标准方程可得其准线方程为,设点P的坐标为,由抛物线的定义有:,结合抛物线方程可得:,据此可得点的坐标为.本题选择C选项.8. 已知图①中的图象对应的函数为,则图②中的图象对应的函数为()A. B. C. D.【答案】B【解析】观察函数图象可得,②的图象是由①的图象保留左侧图象,然后将左侧图象翻折到右侧所得,结合函数图象的平移变换可得函数的解析式为.本题选择B选项.9. 已知函数,若关于的方程有两个相异实根,则实数的取值范围是()A. B.C. D.【答案】B【解析】方程根的个数即函数与函数的交点的个数,很明显函数是偶函数,当时,,则,则函数在区间上单调递增,且,绘制函数图象如图所示,观察可得实数的取值范围是.本题选择B选项.10. 数列中,已知对任意正整数,有,则等于()A. B. C. D.【答案】D【解析】由递推关系可得:,,两式作差可得:,则,故数列是首项为,公比为的等比数列,结合等比数列前n项和公式有:.本题选择D选项.11. 某程序框图如图所示,若该程序运行后输出的值是,则()A. B. C. D.【答案】A【解析】由题意结合所给的流程图可知:该流程图的功能是计算的值,裂项求和可得:,据此可得:,求解关于实数的方程可得:.本题选择A选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.12. 已知椭圆和双曲线有共同焦点,是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为()A. B. C. 2 D. 3【答案】A【解析】考查一般性结论,当时:设,椭圆的长半轴长为,双曲线的长半轴长为,两曲线的焦距为,结合题意有:,两式平方相加可得:,两式平方作差可得:,由余弦定理有:,则:,,即,结合二倍角公式有:.本题中,,则有:,即,则,当且仅当时等号成立,据此可得的最大值为.本题选择A选项.点睛:圆锥曲线的离心率是圆锥曲线最重要的几何性质,求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).第Ⅱ卷(非选择题满分90分)二、填空题(本题共4小题,每小题5分,共20分.请在答题卷的相应区域答题.............)13. 已知平面上三点,,,则的坐标是_______.【答案】(-3,6)【解析】由题意可得:,,则:.14. 已知,则=_________.【答案】1【解析】由题意可得:,令可得:,则:.15. 已知,则_____________.【答案】3或【解析】由题意结合同角三角函数基本关系有:,解方程可得:或:,则:或.16. 已知数列满足,且,则__________.【答案】【解析】由递推关系可得:,则:,即,据此可得,数列是首项为,公比为的等比数列,故,则,据此可得,数列的通项公式为.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请在答题卷的相应........区域答题.....)17. 已知函数.(1)求的单调递增区间;(2)设的内角的对边分别为,且,若,求的值.【答案】(1);(2).【解析】试题分析:(1)整理函数的解析式有.结合正弦函数的性质可得函数的单调递增区间为.(2)由,可得,则.结合正弦定理、余弦定理得到关于a,b的方程组,求解方程组可得.试题解析:(1).由,得∴函数的单调递增区间为.(2)由,得,,.又,由正弦定理得①;由余弦定理得,即,②由①②解得.18. 如图,在三棱锥中,,平面平面,、分别为、的中点.(1)求证:平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由三角形中位线的性质可得DE∥BC,结合线面平行的判断定理可得DE∥平面PBC.(2)连接PD,由等腰三角形三线合一可知PD⊥AB.且DE⊥AB.利用线面垂直的判断定理有AB⊥平面PDE,故AB⊥PE.(3)转换顶点,将三棱锥看作以点P为顶点的三棱锥,计算可得,且PD是三棱锥P-BEC的高,计算可得由三棱锥体积公式可得其体积.试题解析:(1)证明:∵在△ABC中,D、E分别为AB、AC的中点,∴DE∥BC.∵DE⊄平面PBC且BC⊂平面PBC,∴DE∥平面PBC.(2)证明:连接PD.∵PA=PB,D为AB的中点,∴PD⊥AB.∵DE∥BC,BC⊥AB,∴DE⊥AB.又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE.∵PE⊂平面PDE,∴AB⊥PE.(3)解:∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,∴PD⊥平面ABC,可得PD是三棱锥P-BEC的高.又∵,.19. 编号分别为的16名篮球运动员在某次训练比赛中的得分记录如下:(1)将得分在对应区间内的人数填入相应的空格:(2)从得分在区间[20,30)内的运动员中随机抽取2人.(ⅰ)用运动员编号列出所有可能的抽取结果;(ⅱ)求这2人得分之和大于50的概率.【答案】(1)答案见解析;(2)(i)答案见解析;(ii).【解析】第一问中,利用表格中的数据得到了人数第二问中,得分在区间【20,30)内的运动员编号为从中随机抽取2人,所有可能的抽取结果有15种,“从得分在区间【20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:,共5种。
2019届高三优生精品卷(四)数学试卷(文科)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题,共60分)一、选择题(共12小题,每小题5分,共60分.每小题有四个选项,只有一个是正确的) 1、已知全集U R =,集合{|2}A x x =>,{1,2,3,4}B =,那么()B A C U ⋂=( ) A.{}4,3 B.{}3,2,1 C.{}2,1 D. {}4,3,2,1 2、已知复数z 满足(1)5i z i -=+,则z =( )A. 23i +B. 23i -C. 32i +D. 32i -3、等比数列{}n a 的前n 项和n S ,1234,2,a a a 成等差数列,11a =,则4S =( ) A.15 B.-15 C.4 D.-44、设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++= 5、下列命题正确的是( )A .命题2000,13x R x x ∃∈+>的否定是:2,13x R x x ∀∈+<B .命题ABC ∆中,若A B >,则cos cos A B >的否命题是真命题 C .如果p q ∨为真命题,p q ∧为假命题,则p 为真命题,q 为假命题D .1=ω是函数()sin cos f x x x ωω=-的最小正周期为2π的充分不必要条件6、若如右图所示的程序框图输出的S 是30, 则①可以为 ( )A .?2≤nB .?3≤nC .?4≤nD .?5≤n7、已知函数12cos 2sin 3)(+-=x x x f , 下列结论中错误的是( ) A .)(x f 的图像关于)1,12(π中心对称 B .)(x f 在)1211,125(ππ上单调递减 C .)(x f 的图像关于3π=x 对称D .)(x f 的最大值为38、若23log (log )a =34log (log )b =42log (log )c =1,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .a >c >b D .b >c >a9、已知,x y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,2z x y =+的最大值为m ,若正数,a b 满足a b m +=,则14a b+的最小值为( ) A. 9 B. 32C.34D.5210、如图,网格纸上小正方形的边长为1,粗线画的是 一个几何体的三视图.则该几何体的体积为( )11A.3 .3B .7C 23.3D11、抛物线28y x =的焦点为F ,设1122(,),(,)A x y B x y 是抛物线上的两个动点,若124x x ++=,则AFB ∠的最大值为( ) A.3π B. 34π C. 56π D. 23π12、已知函数ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩,若m n <,且()()f m f n =,则n m -的取值范围是( )A. [32ln 2,2)-B. [32ln 2,2]-C. [1,2]e -D. [1,2)e -第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题5分,共20分)13、已知实数y x ,满足条件⎪⎩⎪⎨⎧≤≥+≤-100y y x y x ,则52-+=y x z 的最小值为 .14、已知动点A 在圆221:P x y +=上运动,点Q 为定点()34,B -与点A 距离的中点,则点Q的轨迹方程为15、三棱锥D-ABC 中,DC ⊥平面ABC ,且AB=BC=CA=DC=2,则该三棱锥的外接球 的表面积是16、定义{}max ,a b 为,a b 中的最大值,函数()(){}()2max log 1,2,1f x x x x =+->-的最小值为c ,如果函数()()321,4,x c m x x g x m x c ≥⎧-+⎪=⎨⎪<⎩在R 上单调递减,则实数m 的范围为三、解答题(共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤)17(12分)已知()2sin()26x f x π=+ (1)若向量(3cos,cos )44x x m =,(cos ,sin )44x xn =-,且m ∥n ,求()f x 的值(2)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足)cos cos c B b C -=, 求()f A 的取值范围18(12分)2017年5月27日当今世界围棋排名第一的柯洁在与AlphaGo 的人机大战中中盘弃子认输,至此柯洁与AlphaGo 的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面22⨯列联 表,并据此资料你是否有95%的把握认为 “围棋迷”与性别有关?(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率. 参考数据:22()=()()()()n ad bc K a b c d a c b d -++++19(12分)如下图,四梭锥-P ABCD 中,PA ⊥底面ABCD ,//,3,4AD BC PA AB AC AD BC =====,M 为线段AD 上一点,2AM MD =,N 为PB 的中点.(1) 证明://MN 平面PCD ; (2)求四面体M BCN -的体积.20(12分)已知椭圆2215x y +=的右焦点为F ,坐标原点为O .椭圆C 的动弦AB 过右焦点F且不垂直于坐标轴,AB 的中点为N ,过F 且垂直于线段AB 的直线交射线ON 于点M (I)证明:点M 在直线52x =上; (Ⅱ)当四边形OAMB 是平行四边形时,求MAB ∆的面积.21(12分)已知函数()32693f x x x x =-+-(1)求函数()f x 的极值(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“美丽区间”.试问函数()f x 在()3,+∞上是否存在“美丽区间”?若存在,求出所有符合条件的“美丽区间”;若不存在,请说明理由请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时写清题号22(10分)选修:坐标系与参数方程选讲在平面直角坐标系xoy 中,曲线1C 过点(),1P a ,其参数方程为1x a y ⎧=⎪⎨=⎪⎩(t 为参数,a R ∈).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(Ⅰ)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(Ⅱ)已知曲线1C 与曲线2C 交于A 、B 两点,且2PA PB =,求实数a 的值.23(10分)选修:不等式选讲已知关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M 的值;(2)正数 a b c ,,满足2a b c M ++=,求证:111a b b c+≥++.数学(文科)试题答案一、选择题1C 2B 3A 4B 5D 6C 7B 8D 9B 10A 11D 12A 二、填空题13、 -6 14、223460x y x y ++-+= 15、 283π 16、10,4⎛⎤⎥⎝⎦三、解答题17(1)211//3cos sin cos cos 044422222x x x x x m n ⇔+=++=,………2分即1sin 262x π⎛⎫+=-⎪⎝⎭,所以()1f x =- ……………5分(2)因为()C b B c a cos cos 2=-,由正弦定理得:()C B B C A cos sin cos sin sin 2=-……………6分cos sin cos cos sin sin()A B B C B C B C =+=+……………7分又ABC ∆中A B C π++=cos sin A B A =……………8分∵,(0,)A B π∈,∴cos 2B =,则4πB =, ……………9分因此34A C π+=,于是30,4A π⎛⎫∈ ⎪⎝⎭,… ………10分 由()2sin 26x f x π⎛⎫=+⎪⎝⎭, ∴()132sin ,2662624A A f A ππππ⎛⎫=+<+<⎪⎝⎭, …………11分 故()f A 的取值范围为(1,2] …………12分18(1)由频率分布直方图可知,(0.0200.005)1010025+⨯⨯= 所以在抽取的100人中,“围棋迷”有25人,从而22⨯列联表如下22()()()()()n ad bc K a b c d a c b d -=++++2100(30101545)100 3.0304555752533⨯-⨯==≈⨯⨯⨯ 因为3.030 3.841<,所以没有95%的把握认为“围棋迷”与性别有关.…………6分 (2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为123,,B B B ,有女生2名,记为12,G G . 则从5名学生中随机抽取2人出赛,基本事件有:12(,)B B ,13(,)B B ,11(,)B G ,12(,)B G ,23(,)B B ,21(,)B G ,22(,)B G ,31(,)B G ,32(,)B G ,12(,)G G ,共10种; 其中2人恰好一男一女的有:11(,)B G ,12(,)B G ,21(,)B G ,22(,)B G ,31(,)B G ,32(,)B G ,共6种; 故2人恰好一男一女的概率为63105P ==.…………12分 19(1)由已知得113AM AD ==,2,DM ∴= 取CP 的中点T ,连接,DT TN ,由N 为PB 中点知//TN BC ,221==BC TN . 又//AD BC ,故TN //DM ,四边形DMNT 为平行四边形,于是//MN DT . 因为DT ⊂平面PCD ,⊄MN 平面PCD ,所以//MN 平面PCD …………5分 (Ⅱ)因为⊥PA 平面ABCD ,N 为PB 的中点, 所以N 到平面ABCD 的距离为1322PA =. 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由//C AM B 得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S . 所以四面体M BCN -的体积132M BCN N BCMBCM PA V V S --∆==⨯⨯=…………12分 20(Ⅰ)易知(2,0)F ,设AB 所在直线为:(2)y k x =-(0)k ≠,11(,)A x y ,22(,)B x y联立方程组2215(2)x y y k x ⎧+=⎪⎨⎪=-⎩,化简得2222(51)20(205)0k x k x k +-+-=由韦达定理得21222051k x x k +=+,212220551k x x k -=+, 则222102(,)5151k kN k k -++,从而ON 所在直线方程为15y x k =- 又FM 所在直线方程为1(2)y x k =--,联立两直线方程解得52M x =. 所以点M 在直线52x =上.…………5分 (Ⅱ)∵点N 是AB 的中点,且四边形OAMB 是平行四边形 ∴点N 是OM 的中点由(Ⅰ)知222102(,)5151k k N k k -++,51(,)22M k -,则22210515143k k k =⇒=+ 此时121255,28x x x x +==12|||AB x x =-==||1FM ==.从而1||||22MAB S AB FM ∆=⋅=…………12分 21(1)因为()32693f x x x x =-+-, 所以()23129f x x x '=-+()()313x x =--.令'()0f x =,可得1x =或3x =. 则'(),()f x f x 在R 上的变化情况为:所以当1x =时,函数()f x 有极大值为1,当3x =时,函数()f x 有极小值为3-.…5分(2)假设函数()f x 在()3,+∞上存在“美丽区间”[],s t ()3s t <<,由(1)知函数()f x 在()3,+∞上单调递增.所以()(),.f s s f t t =⎧⎪⎨=⎪⎩即3232693,693.s s s s t t t t ⎧-+-=⎪⎨-+-=⎪⎩ 也就是方程32693x x x x -+-=有两个大于3的相异实根. 设32()683g x x x x =-+-()3x >,则2()3128g x x x '=-+. 令()g x '0=,解得123x =<,223x =. 当23x x <<时,()g x '0<,当2x x >时,()g x '0>,所以函数()g x 在区间()23,x 上单调递减,在区间()2,x +∞上单调递增. 因为()3 60g =-<,()()230g x g <<,()5120g =>, 所以函数()g x 在区间()3,+∞上只有一个零点.这与方程32693x x x x -+-=有两个大于3的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()3,+∞上不存在“美丽区间”. ………12分 22题:(Ⅰ)曲线1C参数方程为1x a y ⎧=⎪⎨=⎪⎩,∴其普通方程10x y a --+=,- 2分由曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=,∴222cos 4cos 0ρθρθρ+-= ∴22240x x x y +--=,即曲线2C 的直角坐标方程24y x =.------- 5分(Ⅱ)设A 、B 两点所对应参数分别为12,t t,联解241y xx a y ==+=⎧⎪⎪⎨⎪⎪⎩得22140t a -+-=要有两个不同的交点,则242(14)0a ∆=-⨯->,即0a >,由韦达定理有1212142t t a t t +=-⋅=⎧⎪⎨⎪⎩根据参数方程的几何意义可知122,2PA t PB t ==,又由2PA PB =可得12222t t =⨯,即122t t =或122t t =- ------- 7分- 11 - ∴当122t t =时,有2122212311036422t t t a t t t a ⎧⎪⇒=>⎨⎪⎩+==-⋅==,符合题意.------- 8分 当122t t =-时,有21222121442902t t t t t a a t ⎧⎪⇒=>⎨⎪+=-=-⋅=-=⎩,符合题意.------- 9分 综上所述,实数a 的值为136a =或94.------- 10分 23.题:解:(1)()()23235x x x x --+≤--+=, 若不等式231x x m --+≥+有解,则满足15m +≤,解得64m -≤≤,∴4M =.…………4分(2)由(1)知正数 a b c ,,满足24a b c ++=, ∴()()111114a b b c a b b c a b b c ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭ 124b c a b a b b c ++⎛⎫=++ ⎪++⎝⎭124⎛≥+ ⎝ 1=.当且仅当a c =,2a b +=时,取等号.…………10分。
2019届高三优生精品卷(一)数学(文科)试卷本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数21z i=+(其中i 为虚数单位),则z =(2)已知集合{}220A x R x x =∈-≥,1 12B ⎧⎫=-⎨⎬⎩⎭,,则()C R A B =A.∅B.12⎧⎫-⎨⎬⎩⎭C.{}1D. 1 12⎧⎫-⎨⎬⎩⎭,(3)已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是A.-1,3B.13,3C.-1,13,3D.13,12,3(4)若正项等比数列{}n a 满足212n n n a a a ++=+,则其公比为A.12B.2或-1C.2D.-1 (5)运行如图所示的程序框图,则输出的s 等于A.10-B.3-C.3D.1(6)若l m ,是两条不同的直线,α为平面,直线l ⊥平面α,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(7)右图是一个正六边形及其内切圆,现采取随机模拟的方法估计圆周率的值:随机撒一把豆子,若落在正六边形内的豆子个数为N 个,落在圆内的豆子个数为M 个,则估计圆周率π的值为3MN(8)函数()cos sin f x x x x =-的图象大致为(9)若ABC ∆的三个内角A B C ,,所对的边分别是a b c ,,,若()1s i n s i n 2C A B -=,且4b =,则22c a -=A.10B.8C.7D.4(1 0)已知双曲线2222: 1y x C a b-=(0a >,0b >)的上焦点为F ,M 是双曲线虚轴的一个端点,过F ,M 的直线交双曲线的下支于A 点.若M 为AF 的中点,且6AF =,则双曲线C 的方程为A.22128y x -=B.22182y x -= C.2214x y -= D.2214y x -=(11)我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.16+16+(12)若函数()ln af x x a x x=+-在区间[]1 2,上是非单调函数,则实数a 的取值范围是A.14 23⎛⎫ ⎪⎝⎭,B.4 +3⎛⎫∞ ⎪⎝⎭,C.4 +3⎡⎫∞⎪⎢⎣⎭,D.14 23⎡⎤⎢⎥⎣⎦,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置.(13)已知23x =,24log 3y =,则x y +的值等于_________. (14)若实数x y ,满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为______.(15)已知()()2 0 0 2OA OB == ,,,,AC t AB t R =∈ ,.当OC最小时,t = .(16)已知数列{}n a 的前n 项和为n S ,且数列n S n ⎧⎫⎨⎬⎩⎭为等差数列.若21S =,201820165S S -=,则2018S = .三、解答题:解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分) 将函数()y f x =的图象向左平移12π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,可以得到函数cos 2y x =的图象.(Ⅰ)求()f x 的解析式; (Ⅱ)比较()1f 与()f π的大小.(18)(本小题满分12分)(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取多少人?(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(19)(本小题满分12分)如图,侧棱与底面垂直的四棱柱1111ABCD A B C D -的底面是梯形,AB CD ,AB AD ⊥,14AA =,2DC AB =,3AB AD ==,点M 在棱11A B 上,且11113A M AB =.点E 是直线CD 的一点,1AM BC E 平面.(Ⅰ)试确定点E 的位置,并说明理由; (Ⅱ)求三棱锥1M BC E -的体积.(20)(本小题满分12分)记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆2211612x y E +=:,以椭圆E 的焦点为顶点作相似椭圆M .(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆E 交于A B ,两点,且与椭圆M 仅有一个公共点,试判断ABO ∆的面积是否为定值(O 为坐标原点)?若是,求出该定值;若不是,请说明理由.(21)(本小题满分12分)已知函数()2x f x ae x a =++(e 为自然对数的底数).(Ⅰ)若函数()f x 的图象在0x =处的切线为l ,当实数a 变化时,求证:直线l 经过定点; (Ⅱ)若函数()f x 有两个极值点,求实数a 的取值范围.请考生在第(22)、 (23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.(22)(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于A B ,两点,求cos AOB ∠的值.(23)(本小题满分10分)选修4-5:不等式选讲 已知函数()13f x x x =-+-. (Ⅰ)解不等式()1f x x ≤+;(Ⅱ)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.数学试题(文科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)2 (14)8 (15)12(16)3027三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)(Ⅰ)将函数cos 2y x =的图象上所有点的横坐标缩短到原来的12,得到函数cos 4y x =的图象,再将所得图象向右平移12π个单位长度,得到函数cos4cos 4123y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象, 即()cos 43f x x π⎛⎫=- ⎪⎝⎭. (6)分(Ⅱ)()cos 4cos 33f ππππ⎛⎫=-= ⎪⎝⎭,而()1cos 43f π⎛⎫=- ⎪⎝⎭.∵423πππ<-<,∴()()10f f π<<. ……………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生3864⨯=人,女生1824⨯=人,所以选取的8人中,男生有6人,女生有2人. ………………………8分 (ⅱ)从8人中,选取2人的所有情况共有N=7+6+5+4+3+2+1=28种, 其中恰有一名男生一名女生的情况共有M=6+6=12种,所以,所求概率123287P ==. ………………………12分(19)(本小题满分12分)(Ⅰ)如图,在棱11C D 上取点N ,使得111D N A M ==. 又∵11//D N A M ,∴11////MN A D AD . ∴四边形AM ND 为平行四边形,∴//D AM N . 过1C 作1//C E DN 交CD 于E ,连结BE , ∴//DN 平面1BC E ,//AM 平面1BC E ,∴平面1BC E 即为所求,此时1CE =. ………………6分(Ⅱ)由(Ⅰ)知,//AM 平面1BC E ,∴11111334632M BC E A BC E C ABE V V V ---⎛⎫===⨯⨯⨯⨯= ⎪⎝⎭. ………………12分(20)(本小题满分12分)(Ⅰ)由条件知,椭圆M 的离心率12e =,且长轴的顶点为(-2,0),(2,0), ∴椭圆M 的方程为22143x y += ……………………4分(Ⅱ)当直线l 的斜率存在时,设直线:l y kx b =+. 由22143y kx b x y =+⎧⎪⎨+=⎪⎩得,()2223484120k x kbx b +++-=.令()()2222644344120k b k b ∆=-+-=得,2234b k =+.联立y kx b =+与2211612x y +=,化简得()2223484480k x kbx b +++-=.设A(11x y ,),B(22x y ,),则1222212228834448448.34kb k x x b k b b x x k b -⎧+=-=⎪⎪+⎨--⎪⋅==⎪+⎩,∴12AB x =-=,而原点O 到直线l的距离d =∴162ABO S AB d ∆=⋅=. 当直线l 的斜率不存在时,:2l x =或2x =-,则6AB =,原点O 到直线l 的距离2d =,∴6ABO S ∆=.综上所述,ABO ∆的面积为定值6. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()2x f x ae x a =++,∴()2x f x ae x '=+,()0f a '=. 又∵()02f a =,∴直线l 的方程为2y ax a =+,∴直线l 经过定点(-2,0). ……………………………4分 (Ⅱ)∵()2x f x ae x a =++,∴()2x f x ae x '=+. 设()2x g x ae x =+,则()2x g x ae '=+.当0a ≥时,()0g x '>,即()g x 在R 上单调递增,则()2x f x ae x '=+最多有一个零点,函数()f x 至多有一个极值点,与条件不符;当0a <时,由()20x g x ae '=+=,得2ln x a ⎛⎫=- ⎪⎝⎭.当2 ln x a ⎛⎫⎛⎫∈-∞- ⎪ ⎪⎝⎭⎝⎭,时,()0g x '>;当2ln x a⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,时,()0g x '<. ∴()g x 在2 ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,上单调递增,在2ln a⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭,上单调递减, ∴()2ln g x g a ⎛⎫⎛⎫≤- ⎪ ⎪⎝⎭⎝⎭,即()max 22ln 2ln 1g x g a a⎛⎫⎛⎫⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.令22ln 10a ⎛⎫⎛⎫--> ⎪ ⎪⎝⎭⎝⎭,解得2 0a e ⎛⎫∈- ⎪⎝⎭,.∵()00g a =<,2 0a e ⎛⎫∈- ⎪⎝⎭,,∴22ln 2ln 10g a a ⎛⎫⎛⎫⎛⎫⎛⎫-=--> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∵()()g x f x '=在2 ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,上单调递增,∴()()g x f x '=在2 ln a⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,上有唯一零点1x ,当()1x x ∈-∞,时,()0f x '<;当12 ln x x a ⎛⎫⎛⎫∈- ⎪ ⎪⎝⎭⎝⎭,时,()0f x '>. ∴()f x 在2 ln a⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,上有唯一极值点. 又∵当2 0a e ⎛⎫∈- ⎪⎝⎭,时,2122ln 4ln g a aa ⎛⎫⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.设()ln 2x h x x =-,其中()2x e a =-∈+∞,,则()112022xh x x x-'=-=<,∴()()102e h x h e <=-<,∴()12244ln 2ln 0h x g a a a ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-< ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭.即当2 0a e ⎛⎫∈- ⎪⎝⎭,时,2122ln 4ln 0g a aa ⎛⎫⎡⎤⎛⎫⎛⎫-=+-< ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,而 22ln 2ln 10g a a⎛⎫⎛⎫⎛⎫⎛⎫-=--> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∵()()g x f x '=在2ln a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭,上单调递减,∴()()g x f x '=在2ln a⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭,上有唯一零点2x ,当22ln x x a⎛⎫⎛⎫∈- ⎪ ⎪⎝⎭⎝⎭,时,()0f x '>;当()2x x ∈+∞,时,()0f x '<.∴()f x 在2ln a⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭,上有唯一极值点. 综上所述,当()f x 有两个极值点时,2 0a e ⎛⎫∈- ⎪⎝⎭,. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--.设()x g x e x a =--,则()1x g x e '=-. 令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分 (Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a e e x ---=+-=-+.设()2x x h x e e x -=-+,0x >, 则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减,∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-.∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->.设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->, ∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分 (Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=,整理得2sin cos 3cos θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且tan =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+. (1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;- 11 - (2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤.∴原不等式的解集为[]1 5,. …………………5分 (Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=,∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,,()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。