五年级数奥专项练习 行程问题
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
五年级行程问题奥数题一、行程问题基础概念1. 路程、速度、时间的关系路程 = 速度×时间,通常用字母表示为公式。
速度 = 路程÷时间,即公式。
时间 = 路程÷速度,公式。
2. 单位换算在行程问题中,常用的长度单位有千米(公式)、米(公式)、分米(公式)、厘米(公式)、毫米(公式),其中公式,公式,公式,公式。
常用的时间单位有小时(公式)、分钟(公式)、秒(公式),且公式,公式。
速度单位则根据路程和时间单位而定,如米/秒(公式)、千米/小时(公式)等。
1. 相遇问题题目:甲、乙两车分别从A、B两地同时相向开出,甲车的速度是每小时50千米,乙车的速度是每小时40千米。
经过3小时两车相遇,求A、B两地的距离。
解析:这是一个相遇问题,根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙两车的速度和为公式(千米/小时)。
相遇时间是3小时,所以A、B两地的距离为公式(千米)。
2. 追及问题题目:甲、乙两人在环形跑道上跑步,甲的速度是每分钟250米,乙的速度是每分钟200米。
跑道一圈长400米,甲在乙前面50米,多少分钟后甲第一次追上乙?解析:这是追及问题,追及路程为公式米(因为甲在乙前面50米,甲要追上乙需要多跑一圈少50米的距离)。
甲、乙的速度差为公式米/分钟。
根据追及时间 = 追及路程÷速度差,可得追及时间为公式分钟。
3. 行船问题(拓展)题目:一艘轮船在静水中的速度是每小时15千米,它从上游甲地开往乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少小时?解析:从甲地到乙地是顺水行驶,顺水速度 = 静水速度+水速,所以顺水速度为公式千米/小时。
根据路程 = 速度×时间,甲乙两地的距离为公式千米。
从乙地返回甲地是逆水行驶,逆水速度 = 静水速度水速,即公式千米/小时。
那么返回所需时间为公式小时。
銆€銆€琛岀▼闂銆€銆€鐢层€佷箼浜屼汉娌块搧璺浉鍚戣€岃锛岄€熷害鐩稿悓锛屼竴鍒楃伀杞︿粠鐢茶韩杈瑰紑杩囩敤浜?绉掗挓锛岀鐢插悗5鍒嗛挓鍙堥亣涔欙紝浠庝箼韬竟寮€杩囷紝鍙敤浜?绉掗挓锛岄棶浠庝箼涓庣伀杞︾浉閬囧紑濮嬪啀杩囧嚑鍒嗛挓鐢蹭箼浜屼汉鐩搁亣锛?br />銆€銆€瑙o細瑕佹眰杩囧嚑鍒嗛挓鐢层€佷箼浜屼汉鐩搁亣锛屽氨蹇呴』姹傚嚭鐢层€佷箼浜屼汉杩欐椂鐨勮窛绂讳笌浠栦滑閫熷害鐨勫叧绯伙紝鑰屼笌姝ょ浉鍏宠仈鐨勬槸鐏溅鐨勮繍鍔紝鍙湁閫氳繃鐏溅鐨勮繍鍔ㄦ墠鑳芥眰鍑虹敳銆佷箼浜屼汉鐨勮窛绂?鐏溅鐨勮繍琛屾椂闂存槸宸茬煡鐨勶紝鍥犳蹇呴』姹傚嚭鍏堕€熷害锛岃嚦灏戝簲姹傚嚭瀹冨拰鐢层€佷箼浜屼汉鐨勯€熷害鐨勬瘮渚嬪叧绯?鐢变簬鏈棶棰樿緝闅撅紝鏁呭垎姝ヨ瑙e涓嬶細銆€銆€鈶犳眰鍑虹伀杞﹂€熷害V杞︿笌鐢层€佷箼浜屼汉閫熷害V浜虹殑鍏崇郴锛岃鐏溅杞﹂暱涓簂锛屽垯锛?br />銆€銆€锛坕锛夌伀杞﹀紑杩囩敳韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负杩藉強闂锛氭晠l锛濓紙V杞?V 浜猴級×8锛涳紙1锛?br />銆€銆€锛坕i锛夌伀杞﹀紑杩囦箼韬竟鐢?绉掗挓锛岃繖涓繃绋嬩负鐩搁亣闂锛氭晠l=锛圴杞?V 浜猴級×7.锛?锛?br />銆€銆€鐢憋紙1锛夈€侊紙2锛夊彲寰楋細8锛圴杞?V浜猴級锛?锛圴杞?V浜猴級锛?br />銆€銆€鎵€浠ワ紝V杞?l5V浜恒€?br />銆€銆€鈶$伀杞﹀ご閬囧埌鐢插涓庣伀杞﹀ご閬囧埌涔欏涔嬮棿鐨勮窛绂绘槸锛?br />銆€銆€锛?+5×6O锛?times;锛圴杞?V浜猴級=308×16V浜?4928V浜恒€?br />銆€銆€鈶㈡眰鐏溅澶撮亣鍒颁箼鏃剁敳銆佷箼浜屼汉涔嬮棿鐨勮窛绂汇€?br />銆€銆€鐏溅澶撮亣鐢插悗锛屽張缁忚繃锛?+5×60锛夌鍚庯紝鐏溅澶存墠閬囦箼锛屾墍浠ワ紝鐏溅澶撮亣鍒颁箼鏃讹紝鐢层€佷箼浜屼汉涔嬮棿鐨勮窛绂讳负锛?928V浜?2锛?锛?×60锛塚浜?4312V浜恒€?br />銆€銆€鈶f眰鐢层€佷箼浜屼汉杩囧嚑鍒嗛挓鐩搁亣锛?/p>。
五年级奥数行程问题习题答案
题解答案
1.解法1:(60×5+75×2)÷(75—60)=30(分钟),60×(30+5)=2100(米),
或75×(30—2)=2100(米)。
解法2:设路程为x米。
x=2100(米)。
2.解法l:①乙丙相遇时间:
(60+75)×2÷(67.5—60)=36(分钟)。
②东西两镇之间相距多少米?
(67.5+75)×36=5130(米)
解法2:设东西两镇之间相距x米,
x=5130(米)。
3.A、B共行3个全程,则有:
解法1:设全程为x公里,
(x-32+x-64)÷2=32,
x=64+32÷2,
∴x=80(公里)。
解法2:设全程为x公里
x-32=(64+32)÷2,
x=80(公里).
解法3:64—32=32(公里),32+32+32÷2=32+32+16=80(公里)。
4.乙从相遇点C跑回B点时,甲从C过B到A,他比乙多跑了100米.乙从B到C时,甲从A到C,说明A到C比B到C多100米.跑道周长400米,所以B到C是100米,A到C 是200米。
乙每跑100米,甲就多跑100米.要使甲、乙从C点开始,再次相遇,甲要比乙多跑一圈,也就是说,乙跑400米时,甲跑800米与乙第二次相遇,再加上甲从A到C的200米,甲共跑了1000米。
行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
五年级数学行程问题一、行程问题题目。
1. 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?- 解析:这是一个相遇问题,相遇时间 = 总路程÷速度和。
甲、乙的速度和为6 + 4=10千米/小时,总路程是20千米,所以相遇时间为20÷10 = 2小时。
2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?- 解析:根据路程 = 速度×时间,从甲地到乙地的路程为85×6 = 510千米。
返回的路程也为510千米,返回时间是5小时,所以返回速度为510÷5 = 102千米/小时。
3. 小明和小红在周长为400米的环形跑道上跑步,小明每秒跑5米,小红每秒跑3米,他们从同一地点同时出发,同向而行,多少秒后小明第一次追上小红?- 解析:这是一个追及问题,追及时间 = 追及路程÷速度差。
在环形跑道上同向而行,追及路程就是跑道的周长400米,速度差为5 - 3 = 2米/秒,所以追及时间为400÷2 = 200秒。
4. 两列火车从相距720千米的两地同时相对开出,甲车每小时行80千米,乙车每小时行70千米,经过几小时两车相遇?- 解析:相遇时间 = 总路程÷速度和,两车速度和为80+70 = 150千米/小时,总路程720千米,相遇时间为720÷150 = 4.8小时。
5. 一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,客车的速度是75千米/小时,货车的速度是65千米/小时,经过3小时两车还相距40千米,甲、乙两地相距多少千米?- 解析:两车3小时行驶的路程之和为(75 + 65)×3=420千米,再加上相距的40千米,甲、乙两地相距420+40 = 460千米。
6. 甲、乙两人在一条长300米的直路上来回跑步,甲的速度是每秒4米,乙的速度是每秒3米,如果他们同时从路的两端出发,当他们跑了10分钟后,共相遇了几次?- 解析:10分钟=10×60 = 600秒。
第二讲行程(1)相遇问题知识链接:相遇问题是研究两个物体共同走一段路程的运动。
可分为相向,相背,环行运动等相遇问题。
行程问题基本数量关系式:路程=速度×时间相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间超级课堂1. 甲乙两车同时从两地相对开出,经过5小时后相遇。
甲车每小时行70千米,乙车每小时行65千米,问:甲,乙两地相距多少千米?2. 甲,乙两人同时从两地出发,相向而行,距离是50千米。
甲每小时走3千米,乙每小时走2千米。
甲带一只狗,每小时跑5千米,这只狗同甲一起出发,当它碰到乙后便转回头跑向甲…如此下去,直到两人碰到头为止。
问这只狗一共跑了多少千米?3. 甲,乙两辆货车分别同时从A,B两个城市相向开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两城中点25千米处相遇。
那么A,B两个城市间的路程是多少千米?4. A,B两城相距60千米,甲,乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?5. 客车和货车早上8时分别从甲,乙两个城市同时出发相向而行,到上午10时两车相距120千米,两车继续行驶到下午1时,两车又相距120千米,那么甲,乙两城之间路程是多少千米?6. A,B两地相距1100米,甲从A地,乙从B地同时出发,相向而行,甲每分钟行90米,乙每分钟行70米,第一次在C处相遇,AC之间距离是多少米?相遇后继续前进,分别到达A,B两地后立即返回,第二次相遇于D处,CD之间的距离是多少米?超级练习1. 电气机车和磁悬浮列车各一列,从相距298千米的两面地同时相向而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米每小时,半小时后两车相遇。
则电气机车和磁悬浮列车的速度分别是多少?2. 两支部队从相距50千米的甲,乙两地同时相对而行,一名通信员骑车以每小时20千米的速度在两支部队间不断往返联络。
五年级奥数行程问题练习题有关五年级奥数行程问题练习题大全行程问题是小学奥数中的一大基本问题。
行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。
行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。
以下是店铺为大家整理的有关五年级奥数行程问题练习题大全相关内容,仅供参考,希望能够帮助大家。
一、甲、乙两地相距1800千米,一列快车和一列慢车同时从两地开出,相向而行,15小时相遇。
已知快车每小时比慢车多行10千米,慢车每小时行多少千米?_____________________________________二、大、小两辆汽车同时从甲地开往乙地,小车行4.5小时到达乙地后立即原路返回,在离乙地31.5千米处与大车相遇,已知小车每小时比大车多行12千米,求小车每小时行多少千米?_____________________________________三、甲、乙两车从相距737千米的东西两市同时相向而行,甲车每小时行75千米,乙车比甲车每小时慢10千米,途中甲车修车用1小时,两车从出发到相遇用了多少小时?_____________________________________四、甲、乙两船从大连开往青岛。
甲船每小时行60千米,乙船每小时行80千米。
甲船开出1小时后乙船才出发,乙船经过几小时才追上甲船?_____________________________________五、甲、乙两运动员练习长跑,同时同地绕环形跑道同向出发,甲每分跑120米,乙每分钟跑100米,已知甲第一次追上乙时用了20分钟,求跑道的一圈长多少米?_____________________________________六、一列火车长160米,全车通过440米的桥需要30秒。
这列火车每秒行多少米?七、甲火车200米长,以每秒25米的速度行驶,车上一人向窗外看风景,对面驶过180米长的乙火车,已知4秒后此人又看到风景,乙火车每秒行多少米?_____________________________________八、一只船在一条河中顺水用了6小时行了108千米到达目的地,返回原处用了9小时,水流速度是多少?_____________________________________九、两地相距240千米,一艘慢船顺水用4小时,返回时用6小时,一艘快船顺水航行用3小时,返回时用多少小时?_____________________________________十、甲、乙两辆旅游车同时从东、西两个景点出发,相向而行,20分钟相遇,相遇后,甲车继续行驶15分钟到达西面景点。
行程问题(一)邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32=64(千米)。
两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米?因为甲车每小时比乙车多行56-48=8(千米)。
64=8(时),所以两车各行了8小时,求东西两地的路程只要用(56+48)8=832(千米)练习:1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇。
求两地之间的路程是多少千米?2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离?3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?思路导航:快车3小时行驶403=120(千米),这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行633=21(千米)练习:1、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
奥数思维训练100题五年级姓名:__________ 班级:__________ 得分:__________一、行程问题1.甲、乙两人分别从相距 180 千米的两地同时出发相向而行,甲每小时行 12 千米,乙每小时行 15 千米,几小时后相遇?2.一辆汽车从 A 地开往 B 地,每小时行 70 千米,5 小时到达。
返回时每小时多行 10 千米,几小时能回到 A地?3.小明和小刚同时从学校和家出发相向而行,小明每分钟走 80 米,小刚每分钟走 70 米,两家相距 1500 米,几分钟后相遇?4.甲、乙两车分别从相距 240 千米的两地同时出发,甲车每小时行 60 千米,乙车每小时行 40 千米,几小时后两车相遇?5.一辆摩托车从甲地到乙地每小时行 45 千米,4 小时到达。
返回时每小时行 36 千米,需要几小时?6.小红和小明分别从公园的两端同时出发,小红每分钟走 50 米,小明每分钟走 60 米,公园长 1100 米,几分钟后相遇?7.甲、乙两人同时从相距 140 千米的两地出发,相向而行,甲每小时行 18 千米,乙每小时行 14 千米,几小时相遇?8.一辆汽车以每小时 80 千米的速度从甲地开往乙地,6 小时到达。
按原路返回时速度降低 20 千米/小时,返回需要几小时?9.小强和小亮从相距 168 千米的两地同时出发,小强每小时行 14 千米,小亮每小时行 12 千米,几小时相遇?10.一辆自行车从 A 地到 B 地每小时行 16 千米,3 小时到达。
返回时每小时行 12 千米,几小时能回到 A地?二、工程问题11.一项工程,甲队单独做 15 天完成,乙队单独做 20 天完成。
两队合作,几天能完成这项工程?12.修一条路,甲工程队单独修要 30 天,乙工程队单独修要 40 天。
两队合修 12 天后,还剩几分之几没修?13.一件工作,甲单独做 24 小时完成,乙单独做 30 小时完成。
甲乙合作 8 小时后,还剩下几分之几?14.一项工程,甲队单独做 18 天完成,乙队单独做 24 天完成。
思维训练——行程问题
姓名()1÷50+2÷50+……+98÷50+99÷50 2×(18.5-3.15)+6.6÷(0.75-0.2)
7.甲乙丙三人,甲每分走50米,乙每分走60米,丙每分走70米。
甲、乙两人从东镇,丙一人从西镇同时相向出发,丙遇到乙后2分钟再遇到甲,两镇距离是多少米?
8.甲、乙两人同时骑自行车从学校出发到少年宫。
甲骑车的速度是15千米/时,半小时后甲返回学校取了一封信,
然后马上按原速赶往少年宫。
最后,甲、乙两人同时到达少年宫。
学校与少年宫相距多少千米?
9. AB两地相距38千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲每小时行8千米,乙每小时行1
1千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中第二次相遇?这时距A地多远?
10.强强从家到学校,先用每分钟50米的速度走了2分钟,如果这样走下去,他上课就要迟到8分钟;后来他改
用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的距离是多少?
11.A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站85千米处相遇,相遇后继续前进,各自到达对方车站后立即返回,第二次在距甲站75千米处相遇。
甲、乙两地相距多少千米?
12.甲、乙两人同时从两地出发,相向而行,距离是 100千米。
时行 6 千米,乙每小时行 4 千米。
甲带着一只狗,狗每小时10千米,这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇时。
这只狗一共走了多少千米?
家作:
1.两队同学同时从相距 30 千米的甲、乙两地相向出发,一只鸽子以每小时 20 千米的速度在两队同学之间不断往返送信如果鸽子从同学们出发到相遇共飞行了 30 千米,而甲队同学比乙队同学每小时多走0.4 千米求两队同学的行走速度.
2.A、B两地相距260千米,甲、乙两车分别从A、B两地同时出发。
甲车速度是72.5千米/时,乙车速度是65.4千米/时,1.5小时后两车相距多少千米?(考虑各种不同情况,分别计算)。