第九章 期权定价的有限差分方法[精品文档]
- 格式:doc
- 大小:380.50 KB
- 文档页数:25
有限差分法有限差分法(Finite Differential Method, FDM )什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。
按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
有限差分法的基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
(1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格)进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻和股票价格,用变量f i ,j 表示(i,j )点的期权价格。
2.建立差分格式(1)内含的有限差分方法其步骤可分为以下几步:(1)求前向差分近似:(2) 后向差分格式:(3)将(2),(3)式平均可更加对称地求出的近似,即(4)(2)求用前向差分近似:(5)(3)求(6)(4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式:+ b j f i,j−c j f i,j + 1 = f i + 1,j(7)aj f i,j− 1其中:i=0,1,…,N-1。
j=0,1…,M-1针对看跌期权和看涨期权可分别求出方程的边界条件:看跌期权:看涨期权:(5)利用边界条件和(7)式可以给出M-1个联立方程组:+ b j f N− 1,j + c j f N− 1,j + 1j=1,2…,M-1aj f N− 1,j− 1求解这M-1个联立方程组即可以求出期权价格,但对美式看跌期权时我们必须考虑其提前执行的情况。
美式期权定价方法综述【摘要】本文介绍了几种主要的美式期权定价方法。
其中,对叉树法、蒙特卡洛法和有限差分法进行了较详细的分类综述。
最后,简单介绍了有限元法,近似解析公式法和提前执行权利金法在美式期权定价方面的应用。
【关键词】美式期权;叉树法;蒙特卡洛;有限差分1 叉树方法叉树方法是将期权的基础资产价格过程在风险中性条件下离散化,在利用动态规划的方法求解该期权的价格。
该方法由Cox,Ross和Rubinstein于1979年提出,因此我们将该模型简称为CRR模型。
Hsia(1983)证明在中心极限定理及某些参数下,二叉树模型将收敛为连续的BS模型。
二叉树方法简单易行,迄今已被广泛扩展。
Hull和White(1988)利用控制变异来修正二叉树模型,并用于美式期权定价,发现此法收敛速度更快。
Breen(1991)通过修正二叉树模型发展出加速二叉树模型,研究表明时间间隔固定时,此法可加速二叉树收敛,并提高精确性。
Boyle(1986)发展出三叉树模型,即一段时间内股价可能上涨,下跌之外或持平。
三叉树定价原理与二叉树类似,因而适用于美式及欧式期权定价,且资产预期价格变动或投资者的风险偏好差异不会影响期权价格。
Rubinstein (2000)比较了三叉树与二叉树模型,发现前者的优越性在于比后者多一个自由度,使股价变化与时间分割相互独立。
2 蒙特卡洛方法蒙特卡洛方法是使用计算机来模拟基础资产价格变动的随机过程,并求期权价格的方法。
Hull和White(1993)提出蒙特卡洛法时,认为只适用于欧式期权定价。
Tilley(1993)则提出用蒙特卡洛法解决美式期权的提前执行,通过记录基础资产价格路径,并比较提前执行收益与期权价格,判断是否提前执行。
此后学者对这一方法提出新扩展,较为著名的有Barraquand和Martineau(1995)提出的BM模型,和Raymar和Zwecher(1998)提出的RZ模型。
两个模型的提前执行决策都是比较执行价和持有价,但分隔区域的数量不足会造成每一区域持有价格的估计偏差。
对期权定价的有限差分法分析摘要:期权定价是所有金融应用领域数学上最复杂的问题之一。
第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。
B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。
不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。
现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。
这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用,该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
关键词:期权定价;有限差分方法;1、引言期权,也即期货合约的选择权,指的是其购买者在交付一定数量的权利金之后,所拥有的在未来一定时间内以一定价格买进或卖出一定数量相关商品合约(不论是实物商品,金融证券或期货)的权利,但不负有必须买进或卖出的义务。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
2、期权定价2.1期权定价的概念期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。
此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。
70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
第九章期权定价的有限差分方法在本章中,我们将给出几个简单的例子来说明基于偏微分方程(PDE)框架的期权定价方法。
具体的方法的是利用第五章中讲述的有限差分方法来解决Black-scholes偏微分方程。
在9.1节中,我们会回顾衍生品定价的数值解法以及指出如何利用适当的边界条件来模拟一个特定的期权。
在9.2节中我们将会应用简单的显式(差分)方法来求解一个简单的欧式期权。
正如你已熟知的那样,这种方法只能解出一些可以从金融角度来解释的不稳定的数值解。
在9.3节中我们将可以看到使用完全的隐式方法可以解决这种不稳定问题。
在9.4节中我们将介绍Crank-Nicolson方法在障碍期权定价中的应用,它可以看做是一种显式与完全隐式方法的混合。
最后,在9.5节中,我们会看到迭代松弛方法可以用于解决使用全隐式方法来解决美式期权定价时由于存在提前执行的可能性而导致的自由边界问题。
9.1 使用有限差分法解BS方程在2.6.2节中,我们给出了一个标的资产在时间t的价格为)(tS的期权,该期权的价格是一个函数),S(tf满足偏微分方程(tSf,且),(9.1)通过不同的边界条件可以让这个方程刻画不同的期权的特征。
在某些地方可能因为假设的改变或者对路径依赖的改变而导致方程式的具体形式改变,但是此处仅仅作为一个起点,帮助读者了解如何应用基于有限差分方法来解决期权定价的问题。
正如我们在第五章中遇到的情况那样,要用有限差分方法来解偏微分方程,在此处我们必须建立资产价格和时间的离散网格。
设T是期权的到期日,而Smax是一个足够大的资产价格,在我们所考虑的时间范围内,)(tS的数值不能超过Smax。
设定Smax是因为偏微分方程的区域关于资产价格是无边界的。
但是为了达到计算的目的,必须要求它是有界的。
Smax相当于+∞。
网格通过点(S,t)取得,其中(S,t)满足δ,M=S=SS,Sδ,Sδ2,……,maxδ。
tN=t, tδ,tδ22,……,T=本章中使用网格符号为,我们回顾一下(9.1)方程式的几种不同解法:向前差分向后差分中心(或对称)差分对于第二个差分式子,有至于究竟采用哪种方法进行离散化,我们将在后面的实际操作过程中对显式和隐式的方法作出详细的阐述说明。
第九章期权定价的有限差分方法在本章中,我们将给出几个简单的例子来说明基于偏微分方程(PDE)框架的期权定价方法。
具体的方法的是利用第五章中讲述的有限差分方法来解决Black-scholes偏微分方程。
在9.1节中,我们会回顾衍生品定价的数值解法以及指出如何利用适当的边界条件来模拟一个特定的期权。
在9.2节中我们将会应用简单的显式(差分)方法来求解一个简单的欧式期权。
正如你已熟知的那样,这种方法只能解出一些可以从金融角度来解释的不稳定的数值解。
在9.3节中我们将可以看到使用完全的隐式方法可以解决这种不稳定问题。
在9.4节中我们将介绍Crank-Nicolson方法在障碍期权定价中的应用,它可以看做是一种显式与完全隐式方法的混合。
最后,在9.5节中,我们会看到迭代松弛方法可以用于解决使用全隐式方法来解决美式期权定价时由于存在提前执行的可能性而导致的自由边界问题。
9.1 使用有限差分法解BS方程在2.6.2节中,我们给出了一个标的资产在时间t的价格为)(t S的期权,该期权的价格是一个函数),(t Sf满足偏微分方程f,且),(t S(9.1)通过不同的边界条件可以让这个方程刻画不同的期权的特征。
在某些地方可能因为假设的改变或者对路径依赖的改变而导致方程式的具体形式改变,但是此处仅仅作为一个起点,帮助读者了解如何应用基于有限差分方法来解决期权定价的问题。
正如我们在第五章中遇到的情况那样,要用有限差分方法来解偏微分方程,在此处我们必须建立资产价格和时间的离散网格。
设T 是期权的到期日,而Smax是一个足够大的资产价格,在我们所考虑的时间范围内,)(t S的数值不能超过Smax。
设定Smax是因为偏微分方程的区域关于资产价格是无边界的。
但是为了达到计算的目的,必须要求它是有界的。
Smax相当于+∞。
网格通过点(S,t)取得,其中(S,t)满足δ,M=S=SS,Sδ,Sδ2,……,maxδ。
N=t=t, tδ,tδ22,……,T本章中使用网格符号为,我们回顾一下(9.1)方程式的几种不同解法:向前差分向后差分中心(或对称)差分对于第二个差分式子,有至于究竟采用哪种方法进行离散化,我们将在后面的实际操作过程中对显式和隐式的方法作出详细的阐述说明。
第九章期权定价的有限差分方法
在本章中,我们将给出几个简单的例子来说明基于偏微分方程(PDE)框架的期权定价方法。
具体的方法的是利用第五章中讲述的有限差分方法来解决Black-scholes偏微分方程。
在9.1节中,我们会回顾衍生品定价的数值解法以及指出如何利用适当的边界条件来模拟一个特定的期权。
在9.2节中我们将会应用简单的显式(差分)方法来求解一个简单的欧式期权。
正如你已熟知的那样,这种方法只能解出一些可以从金融角度来解释的不稳定的数值解。
在9.3节中我们将可以看到使用完全的隐式方法可以解决这种不稳定问题。
在9.4节中我们将介绍Crank-Nicolson方法在障碍期权定价中的应用,它可以看做是一种显式与完全隐式方法的混合。
最后,在9.5节中,我们会看到迭代松弛方法可以用于解决使用全隐式方法来解决美式期权定价时由于存在提前执行的可能性而导致的自由边界问题。
9.1 使用有限差分法解BS方程
在2.6.2节中,我们给出了一个标的资产在时间t的价格为)(t
S的期权,该期权的价格是一个函数),
(t
f满足偏微分方程
S
(t
S
f,且),
(9.1)通过不同的边界条件可以让这个方程刻画不同的期权的特征。
在某些地方可能因为假设的改变或者对路径依赖的改变而导致方程式的具体形式改变,但是此处仅仅作为一个起点,帮助读者了解如何应用基于有限差分方法来解决期权定价的问题。
正如我们在第五章中遇到的情况那样,要用有限差分方法来解偏
微分方程,在此处我们必须建立资产价格和时间的离散网格。
设T是期权的到期日,而Smax是一个足够大的资产价格,在我们所考虑的时间范围内,)(t
S的数值不能超过Smax。
设定Smax是因为偏微分方程的区域关于资产价格是无边界的。
但是为了达到计算的目的,必须要求它是有界的。
Smax相当于+∞。
网格通过点(S,t)取得,其中(S,t)满足
δ,
M=
=
S
S
S,Sδ,Sδ2,……,max
δ。
N=
t
t, tδ,tδ22,……,T
=
本章中使用网格符号为,我们回顾一下(9.1)方程式的几种不同解法:
向前差分
向后差分
中心(或对称)差分
对于第二个差分式子,有
至于究竟采用哪种方法进行离散化,我们将在后面的实际操作过程中对显式和隐式的方法作出详细的阐述说明。
另一个值得我们注意的问题是如何设置边界条件。
对于执行价格为K的欧式看涨期权,其终值条件为
对于执行价格为K的欧式看跌期权,其终值条件为
但是当我们涉及到资产价格的边界问题时,这个问题就变得复杂了。
因为在数学上要求必须在一个有界区域里来解这个方程,而资产价格的区域是无界的。
我们可以通过一些例子来说明这个问题。
例9.1我们首先考虑一支简单的欧式看跌期权。
当资产的价格)(t
S非常大时,看跌期权几乎是一文不值,因为我们几乎可以肯定的是其执行价低于现价:
Smax的值必须足够大才能使得假设的边界条件是合理的。
当资产的价格0
S时,鉴于资产的价格符合几何布朗运动的动力学模
t
)
(=
型,我们可以认为资产的价格会保持为0;因此到期收益为K,在时间t贴现值为
其边界条件可以写为:
例9.2我们可以从9.1推导出处理普通欧式看涨期权的方法。
不妨设资产的价格0
S,那么在任何时刻t,我们都可以知道该期权
)
t
(=
价值为0:
而对于一个足够大的资产价格)(t
S,我们可以肯定的是该期权一定为价内期权,即具有大于零的价值的期权,那么期满行权我们可以得到收益为K
)
(。
将终值K贴现到t时刻,并且考虑标的资产的价
S
T
格是一个函数)(t
S,那么我们根据无套利定价原理可以得到其边界条件如下:
具体条件可以写为:
对于资产价格S较大时,需要一个替代的边界条件,但这时候必须要求期权的Δ为1;在这种情况下,我们所提出的边界条件一般针对未知函数的倒数,而非函数本身。
这便是数学物理方程中所谓的Neumann边界条件。
我们不会采取这种做法,因为这将使得数值解法复杂化了。
当我们面对障碍式期权时,事情可能就变得简单了。
对敲出期权来说,例如一个向下触及失效看跌期权,在标的资产价格触碰到障碍时期权作废,价值为0。
向上触及失效看涨期权的情况也是类似的,它们的优点都在于我们计算必须涉及到的边界即域是自然有界的(显然存在的)。
美式期权的定价就显得更加复杂难以处理了,因为这涉及到了提前执行边界的问题。
我们必须考虑什么水平的资产价格和在什么时间是期权的最佳实施点。
因此,在我们解决问题的过程中必然产生一个自由边界。
这就需要为不同的奇异期权设定不同的边界条件。
如何计算出正确的边界条件以及使用数值方法逼近正确的结果,
这依赖于对具体期权的选择。
利用显式法求解欧式期权
由于初次尝试解方程(9.1),我们不妨考虑一个简单的欧式看跌期权。
我们分别用中心差分对S 进行求导,用向后差分对时间进行求导来逼近求解。
这并不是唯一的方法,但是无论采取什么样的方法都必须保证边界条件是符合特定期权模型的。
例9.1中的边界条件差分后的结果可以用以下的方程式来表示: (9.2)
需要特别指出说明的是,由于存在终点条件的假设,因此方程必须适当地用回推法求解。
不妨设(9.2)式中有j=N ,由于存在给定的终点条件,我们有一个未知量,1i N f ,可以认为它是关于三个已知量的函数。
对其他的每个时间层(i )作同样的考虑。
整理方程,我们可以得到:
(9.3)
此时有。