第四版-磷脂、CH代谢
- 格式:ppt
- 大小:543.50 KB
- 文档页数:141
目录第一章磷脂代谢 (3)第一节磷脂的分类、分布和性质 (3)一、甘油磷脂类 (5)二、神经磷脂类(SM) (9)三、磷脂的分布 (10)第二节磷脂的合成 (10)一、甘油磷脂的合成 (10)二、神经磷脂的合成(鞘磷脂的合成) (13)第三节磷脂的分解 (14)一、甘油磷脂的降解 (15)二、神经鞘磷脂的降解 (15)第四节磷脂分子的重组与更新 (16)第二章磷脂的生物学作用 (17)第一节生物膜脂质组成与结构 (17)一、膜脂质双层结构 (17)二、膜脂质的流动性 (17)三、脂质双层中磷脂的运动 (17)第二节磷脂与膜酶的相互作用 (17)第三节心磷脂与线粒体 (18)一、线粒体结构与功能 (18)二、CL与其分布 (18)三、CL与线粒体内膜的流动性 (18)四、CL与线粒体内膜蛋白的相互作用 (18)第四节、肌醇脂质信使系统 (18)一、肌醇磷脂与肌醇磷脂酸 (18)二、肌醇磷脂循环 (19)三、肌醇脂质信使系统 (20)四、肌醇磷脂与血小板活化 (20)五、肌醇磷脂与中性粒细胞的氧化爆发 (20)六、肌醇磷脂与细胞增殖及癌变 (20)第三章磷脂与疾病 (21)第一节红细胞磷脂含量及其测定方法 (21)一、脂质的萃取方法:、 (21)二、总脂质的比色测定法:微量和半微量法。
(21)三.总磷脂的测定方法: (21)四、磷脂组成薄层色谱分析 (21)第二节冠心病(冠状动脉粥样硬化性心脏病) (21)一、冠心病人细胞膜的改变 (21)二、磷脂防治动脉粥样硬化的作用 (21)三、控制磷脂代谢对心肌细胞膜的影响 (21)第三节肺泡表面活性物质缺乏病 (21)一、肺表面活性物质缺乏病 (22)二、影响肺表面活性物质分泌的因素 (22)三、肺表面活性物质替代疗法 (22)第四节磷脂酶A与急性胰腺炎 (23)一、磷脂酶A性质 (23)二、PLA2与胰腺炎的关系 (23)三、PLA2与胰腺炎时多发脏器衰竭的关系 (23)四、PLA2抑制剂 (23)五、PLA2测定方法 (23)第五节大骨节病 (23)第六节克山病 (23)第七节血栓形成 (23)一、血小板在血栓形成中的作用 (23)二、RBC膜与血栓形成的关系 (24)第八节磷脂与皮肤病 (24)一、伤口愈合中磷脂的作用 (24)二、磷脂对毛发生长的作用 (24)三、磷脂对几种皮肤病的作用 (24)四、磷脂抗衰老 (24)第九节胆结石 (24)第十节肝脏病 (24)一、肝脏疾病磷脂的构成改变 (24)二、磷脂对肝硬化的防治 (24)第十一节糖尿病 (24)一、糖尿病人RBC膜组分的改变 (24)二、磷脂在糖尿病中的应用 (24)第十二节神经系统疾病 (24)一、磷脂对神经组织的作用 (24)二、磷脂对老年性痴呆的作用 (24)三、磷脂对其它神经系统疾病的作用 (24)第十三节血液疾病 (24)第十四节碘缺乏病 (24)第四章磷脂的过氧化及抗氧化体系 (26)第一节脂质过氧化作用(LPO) (26)一、脂质过氧化的产生 (26)二、自由基的概念、种类、产生与清除 (26)三、脂质过氧化对细胞的损伤 (26)四、脂质过氧化与衰老 (27)第二节机体的抗脂质过氧化系统 (27)一、SOD的种类和分布 (27)二、SOD的开发 (27)三、SOD的临床应用 (27)四、SOD与衰老 (28)五、SOD分析方法 (28)第五章大豆磷脂的制备与应用 (29)第五章、蛋白质的定量测定 (30)第一章磷脂代谢磷脂是生物膜的重要组分,作为膜的结构和功能单位,膜磷脂以其规律的结构保证细胞的正常形态和功能,如生长、繁殖、细胞识别与消除、细胞间信息传递、细胞防御、能量转换等功能,影响血液粘滞性、血液凝固和红细胞形态,参与脂蛋白的组成.磷脂是膜上的各种脂类依赖性酶类起催化作用不可缺少的物质.衰老及多种疾病的发生与膜磷脂构成改变有关。
细胞生物学需要掌握的名词概念上次老师说我们考试的时候不能写的一样,你们可以找一下我后面标的页码,自己整理归纳,根据自己的理解来背。
1、lipid rafts model脂筏模型:该模型认为在甘油磷脂维生物膜的主体上,胆固醇、鞘磷脂等富集区域形成相对有序的脂相,如同漂浮在脂双层上的“脂筏”一样载着某些特定生物学功能的各种膜蛋白。
P55在生物膜上胆固醇富集而形成有序脂相,如同脂筏一样载着各种蛋白.脂筏是质膜上富含胆固醇和鞘磷脂的微结构域。
大小约70nm 左右,是一种动态结构,位于质膜的外小页。
2、p53 protein,P53蛋白:313页p53蛋白能调节细胞周期和避免细胞癌变发生。
3、Hayflick limitation Hayflick界限:细胞停止分裂是由细胞自身因素决定的,与环境条件无关,正常细胞具有有限分裂次数,而癌细胞能够在体外无限增殖。
P356细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick界线。
4、cell line细胞系:原代培养的细胞一般传至10代左右就不易传下去,细胞生长出现停滞,大部分细胞衰老死亡,但有极少数细胞可能渡过“危机”而传下去。
这些存活的细胞一般又可顺利地传40-50代次,并且仍保持原来染色体的二倍数量及接触抑制的行为。
P435、Nuclear localization signal (NLS);核定位信号:亲核蛋白一般都含有特殊的氨基酸序列,这些内含的特殊短肽保证了整个蛋白质能够通过核孔复合体被转运到细胞核内,这段具有“定向”“定位”作用的序列被命名为核定位信号。
P2326、programmed cell death (PCD)细胞程序性死亡:无论是单细胞生物还是多细胞生物,细胞死亡往往受细胞内由遗传机制决定的“死亡程序”控制,要求特定基因表达,是“主动”而非“被动”的过程。
P3417、biomembrane生物膜:真核生物内部存在由膜围绕构建的各种细胞器。
一、分解:(一)磷脂酶有以下4类:1. 磷脂酶A1:水解C12. 磷脂酶A2:水解C23. 磷脂酶C:水解C3,生成1,2-甘油二酯,与第二信使有关。
4. 磷脂酶D:生成磷脂酸和碱基5. 磷脂酶B:同时水解C1和C2,如点青霉磷脂酶。
(二)溶血磷脂:只有一个脂肪酸,是强去污剂,可破坏细胞膜,使红细胞破裂而发生溶血。
某些蛇毒含溶血磷脂,所以有剧毒。
溶血磷脂酶有L1和L2,分别水解C1和C2。
(三)产物去向:甘油和磷酸参加糖代谢,氨基醇可用于磷脂再合成,胆碱可转甲基生成其他物质。
二、合成:(一)脑磷脂的合成:1. 乙醇胺的磷酸化:乙醇胺激酶催化羟基磷酸化,生成磷酸乙醇胺。
2. 与CTP生成CDP-乙醇胺,由磷酸乙醇胺胞苷转移酶催化,放出焦磷酸。
3. 与甘油二酯生成脑磷脂,放出CMP。
由磷酸乙醇胺转移酶催化。
该酶位于内质网上,内质网上还有磷脂酸磷酸酶,水解分散在水中的磷脂酸,用于磷脂合成。
肝脏和肠粘膜细胞的可溶性磷脂酸磷酸酶只能水解膜上的磷脂酸,合成甘油三酯。
(二)卵磷脂合成:1. 节约利用途径:与脑磷脂类似,利用已有的胆碱,先磷酸化,再连接CDP 作载体,与甘油二酯生成卵磷脂。
2. 从头合成途径:将脑磷脂的乙醇胺甲基化,生成卵磷脂。
供体是S-腺苷甲硫氨酸,由磷脂酰乙醇胺甲基转移酶催化,生成S-腺苷高半胱氨酸。
共消耗3个供体。
(三)磷脂酰肌醇的合成1. 磷脂酸与CTP生成CDP-二脂酰甘油,放出焦磷酸。
由磷脂酰胞苷酸转移酶催化。
2. CDP-二脂酰甘油:肌醇磷脂酰转移酶催化生成磷脂酰肌醇。
磷脂酰肌醇激酶催化生成PIP,PIP激酶催化生成PIP2。
磷脂酶C催化PIP2水解生成IP3和DG,IP3使内质网释放钙,DG增加蛋白激酶C对钙的敏感性,通过磷酸化起第二信使作用。
(四)其他:磷脂酰丝氨酸可通过脑磷脂与丝氨酸的醇基交换生成,由磷酸吡哆醛酶催化。
心磷脂的合成先生成CDP-二酰甘油,再与甘油-3-磷酸生成磷脂酰甘油磷酸,水解掉磷酸后与另一个CDP-二脂酰甘油生成心磷脂。
磷脂酰肌醇代谢过程-概述说明以及解释1.引言1.1 概述磷脂酰肌醇代谢过程是指磷脂酰肌醇在生物体内发生的一系列化学反应,包括其合成、降解和转运等过程。
磷脂酰肌醇作为一种重要的次级信号分子,在细胞内起着调控多种生理生化过程的关键作用。
磷脂酰肌醇代谢过程的研究对于解析细胞信号传导、细胞增殖和存活、细胞周期调控等生物学过程具有重要的意义。
通过研究磷脂酰肌醇的合成、降解和转运途径,我们可以深入了解其在细胞内的作用机制,从而为疾病的发生和治疗提供理论依据。
本文将对磷脂酰肌醇代谢过程进行全面综述,包括磷脂酰肌醇的定义和作用、磷脂酰肌醇的合成过程以及磷脂酰肌醇的代谢途径等内容。
通过对这些方面的系统介绍和分析,我们可以对磷脂酰肌醇代谢过程有一个全面的了解,为进一步的研究和应用提供基础。
总之,磷脂酰肌醇代谢过程的研究具有重要的科学意义和应用价值。
通过深入了解磷脂酰肌醇的代谢途径,我们可以对其在细胞信号传导和生物学过程中的作用机制有更为清晰的认识,为疾病治疗和新药开发提供理论指导。
希望本文的介绍和分析能够对读者对磷脂酰肌醇代谢过程有所启发,并促进相关领域的研究进展。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下顺序介绍磷脂酰肌醇的代谢过程:1. 引言:本部分将对磷脂酰肌醇的概述进行介绍,包括其定义和作用。
同时,还将介绍本文的目的,即阐述磷脂酰肌醇的合成过程和代谢途径。
2. 正文:本部分将详细介绍磷脂酰肌醇的合成过程和代谢途径。
2.1 磷脂酰肌醇的定义和作用:本部分将介绍磷脂酰肌醇的概念和在细胞中的重要作用,包括信号传导、细胞生存和代谢调节等方面。
2.2 磷脂酰肌醇的合成过程:在本部分中,将详细介绍磷脂酰肌醇的合成途径和相关的酶催化反应,包括从原料到中间产物再到最终产物的步骤。
2.3 磷脂酰肌醇的代谢途径:本部分将探讨磷脂酰肌醇在细胞内的代谢途径,包括通过酶的催化以及相关的调控机制来介绍其代谢途径。
磷脂代谢知识点总结大全一、磷脂的结构1.1 磷脂的基本结构磷脂是一类衍生自甘油的脂质,其基本结构包括甘油、酸基、磷酸及其他基团。
甘油分子中有三个羟基,其中两个羟基与脂肪酸形成脂肪酰基,第三个羟基与磷酸和其他基团连接,形成磷脂的磷酰胆碱。
1.2 磷脂的种类磷脂包括磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇等多种类型,它们的结构差异决定了它们在生物体内的不同功能作用。
1.3 磷脂在细胞膜中的分布磷脂主要存在于细胞膜的双分子层中,其中磷脂分布在细胞膜的内部,其疏水脂肪酸部分向内,亲水的甘油磷酸胆碱部分向外。
这种分布有利于维持细胞膜的稳定性和功能。
二、磷脂代谢途径2.1 磷脂的合成磷脂主要是在肝脏、肠道和肺部合成的,合成途径主要包括甘油3-磷酸途径、肌醇磷酸途径等。
在甘油3-磷酸途径中,甘油和两分子磷酸化合生成甘油3-磷酸,再通过一系列反应生成磷脂。
肌醇磷酸途径则是通过肌醇进行磷酸化反应生成肌醇磷酸胆碱,然后与脂肪酸结合生成磷脂。
2.2 磷脂的降解磷脂的降解途径主要包括磷脂酸水解途径和酰基水解途径。
在磷脂酸水解途径中,磷脂通过酸水解酶水解生成甘油和脂肪酸,再被用于新的脂质合成。
而在酰基水解途径中,磷脂被磷脂酰水解酶水解为肌醇磷酸,在经过进一步反应后生成细胞内信号分子。
2.3 磷脂的转运磷脂在细胞内外通过多种载体蛋白进行转运。
例如,磷脂酰胆碱通过脂蛋白、磷脂酰肌醇通过PI3K激酶等进行转运。
2.4 磷脂代谢调控磷脂代谢由多种酶参与,如磷脂合成过程中的甘油-3-磷酸酯转移酶、CDP-胆碱胆碱磷酸酯转移酶等,这些酶对磷脂代谢具有重要的调控作用。
三、磷脂的生理作用3.1 细胞膜结构磷脂是细胞膜的重要构成成分,通过形成双分子层维持了细胞膜的结构和功能,保证了物质的通透性和稳定性。
3.2 信号传导磷脂及其代谢产物可通过信号通路参与多种生理过程,如细胞凋亡、增殖等,调控细胞内外的信号传导。
3.3 能量代谢磷脂可以作为能量的来源,通过降解分解成为脂肪酸和甘油可以提供生物体所需的能量。