流体力学绪论
- 格式:pptx
- 大小:4.96 MB
- 文档页数:50
(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
第一章绪论1、什么叫流体?流体与固体的区别?流体是指可以流动的物质,包括气体和液体。
与固体相比,流体分子间引力较小,分子运动剧烈,分子排列松散,这就决定了流体不能保持一定的形状,具有较大流动性。
2、流体中气体和液体的主要区别有哪些?(1)气体有很大的压缩性,而液体的压缩性非常小;(2)容器内的气体将充满整个容器,而液体则有可能存在自由液面。
3、什么是连续介质假设?引入的意义是什么?流体充满着一个空间时是不留任何空隙的,即把流体看作是自由介质。
意义:不必研究大量分子的瞬间运动状态,而只要描述流体宏观状态物理量,如密度、质量等。
4、何谓流体的压缩性和膨胀性?如何度量?压缩性:温度不变的条件下,流体体积随压力变化而变化的性质。
用体积压缩系数βp表示,单位Pa-1。
膨胀性:压力不变的条件下,流体体积随温度变化而变化的性质。
用体积膨胀系数βt表示,单位K-1。
5、何谓流体的粘性,如何度量粘性大小,与温度关系?流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。
用粘度µ来表示,单位N·S/m2或Pa·S。
液体粘度随温度的升高而减小,气体粘度随温度升高而增大。
6、作用在流体上的力怎样分类,如何表示?(1)质量力:采用单位流体质量所受到的质量力f表示;(2)表面力:常用单位面积上的表面力Pn表示,单位Pa。
7、什么情况下粘性应力为零?(1)静止流体(2)理想流体第二章流体静力学1、流体静压力有哪些特性?怎样证明?(1)静压力沿作用面内法线方向,即垂直指向作用面。
证明:○1流体静止时只有法向力没有切向力,静压力只能沿法线方向;○2流体不能承受拉力,只能承受压力;所以,静压力唯一可能的方向就是内法线方向。
(2)静止流体中任何一点上各个方向静压力大小相等,与作用方向无关。
证明:2、静力学基本方程式的意义和使用范围?静力学基本方程式:Z+gP=C 或 Z1+gP1=Z2+gP 2(1)几何意义:静止流体中测压管水头为常数物理意义:静止流体中总比能为常数(2)使用范围:重力作用下静止的均质流体 3、等压面及其特性如何?在充满平衡流体的空间里,静压力相等的各点组成的平面称为等压面。
第一章绪论一、学习导引1.主要概念质量力,表面力,粘性,粘滞力,压缩系数,热障系数。
注:(1)绝大多数流动问题中质量力仅是重力。
其单位质量力F在直角坐标系内习惯选取为:F =(0,0,-g)(2)粘性时流动介质自身的物理属性,而粘滞力是流体在产生剪切流动时该属性的表现。
2.主要公式牛顿剪切公式:或二、难点分析1.用欧拉观点描述流体流动,在对控制体内流体进行表面力受力分析时,应包括所有各个可能的表面的受力。
这些表面可能是自由面或与周围流体或面壁的接触面。
2.牛顿剪切公式反映的应力与变形率的关系仅仅在牛顿流体作所谓的纯剪切运动时才成立,对于一般的流动则是广义牛顿公式。
三、习题详解例1-1. 一底面积为40cm×45cm,高1cm的木块,质量为5kg,沿着涂有润滑油的斜面等速向下运动。
已知速度v=1/s,δ=1mm,求润滑油的动力粘滞系数。
解:设木块所受的摩擦力为T。
∵木块均匀下滑,∴T - Gsinα=0T=Gsinα=5×9.8×5/13=18.8N又有牛顿剪切公式得:μ=Tδ/(Av)=18.8×0.001/(0.40×0.45×1)=0.105Pa·S例1-2. 一圆锥体绕其铅直中心轴等速旋转,椎体与固定壁间的距离δ=1mm,全部为润滑油(μ=0.1Pa·S)充满。
当旋角速度ω=16s-1, 椎体底部半径R=0.3m,高H=0.5m时,求作用于圆锥的阻力矩。
解:设圆锥体表面微元圆台表面积为ds,所受切应力为dT,阻力矩为dM。
ds=2πr(H2+R2)1/2dh由牛顿剪切公式:dT=μ×ds×du/dy=μ×ds×ωr/δdM=dT×rr=Rh/H圆锥体所受阻力矩M:M==0.5(πμω/δ) (H2+R2)1/2 R3=0.5π×0.1×16/0.001×(0.52+0.32)1/2×0.33=39.6N·m。
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。