单节锂离子电池保护芯片
- 格式:pdf
- 大小:262.61 KB
- 文档页数:6
单节锂离子电池保护芯片的设计前言锂离子电池保护芯片的设计与其封装结构密切相关,为封装在锂离子电池内部的保护电路的基本结构。
在正常情况下,充电控制端CO 和放电控制端DO 为高电位,N型放电控制管FET1和充电控制管FET2处于导通状态,电路的工作方式可以是电池向负载放电,也可以是充电器对电池进行充电;当保护电路检测到异常现象(过充电、过放电和过电流)时,使CO 或DO输出低电平,从而切断充电或放电回路,实现保护功能。
为了有效利用放电电流或充电电流,FET1和FET2采用导通电阻很小的功率管。
它们的选择原则除了导通电阻要小,还要求体积小,并且关闭时源漏击穿电压要能经受不匹配充电器的影响。
从理论上说,FET1和FET2可以用N 管也可以用P 管。
但由于单节锂离子电池保护电路的电源电压较低,为了减小导通电阻,一般都采用N管。
图1中二极管是FET1和FET2的寄生二极管,它们的存在使系统在过放电状态下能对电池充电,在过充电状态下能对负载放电。
图1 3.6V 锂离子电池保护电路封装结构锂离子电池保护芯片的应用场合要求其具有低电流驱动、高精度检测的特点,另外由于保护电路的供电电源即为电池电压,因此在电池电压的变化范围内,保护电路必须正常工作,本文根据图1 所示的连接关系,设计一种低功耗单节锂离子电池保护芯片,其电池电压可以在1V—5.5V范围内变化。
系统结构设计锂离子电池保护芯片的基本功能是进行过充电保护、过放电保护和过电流保护,其中过电流保护包括充电过流保护和放电过流保护。
下面以保护电路的基本功能为出发点,分析其系统的组成。
检测异常现象锂离子电池保护电路为了实现其基本功能,首先需要检测异常现象。
过充电和过放电检测是将电池电压进行分压(采样)后与基准电压比较实现的;而对于过流检测,保护芯片首先将充放电过程中的电流转化为在功率管FET1、FET2上的电压,然后通过VM与基准电压比较完成,放电过流检测的是正电压,充电过流检测的是负电压。
DP4056替代LTC4056TP4056锂电池充电保护芯⽚_1000mADP4056是⼀款完整的单节锂离⼦电池采⽤恒定电流/恒定电压线性充电器。
其底部带有散热⽚的SOP8/MSOP封装与较少的外部元件数⽬使得DP4056成为便携式应⽤的理想选择。
DP4056适合USB电源和适配器电源⼯作。
由于采⽤了内部PMOSFET架构,加上防倒充电路,所以不需要外部隔离⼆极管。
热反馈可对充电电流进⾏⾃动调节,以便在⼤功率操作或⾼环境温度条件下对芯⽚温度加以限制。
充电电压固定于4.2V,⽽充电电流可通过⼀个电阻器进⾏外部设置。
当充电电流在达到最终浮充电压之后降⾄设定值1/10时,DP4056将⾃动终⽌充电循环。
当输⼊电压(交流适配器或USB电源)被拿掉时,⾃动进⼊⼀个低电流状态,将电池漏电流降⾄2uA以下。
在有电源时也可置于停机模式,以⽽将供电电流降⾄55uA。
的其他特点包括电池温度检测、⽋压闭锁、⾃动再充电和两个⽤于指⽰充电、结束的LED 状态引脚。
最⼤额定值⊙输⼊电源电压(Vcc):-0.3V~9.6V⊙ PROG:-0.3V~Vcc+0.3V⊙ BAT:-0.3V~7V⊙ CHRG:-0.3V~10V⊙ STDBY:-0.3V~10V⊙ TEMP:-0.3V~10V⊙ CE:-0.3V~10V⊙ BAT短路持续时间:连续⊙ BAT引脚电流:1200mA⊙ PROG引脚电流:1200uA⊙最⼤结温:145℃⊙⼯作环境温度范围:-40℃~85℃⊙贮存温度范围:-65℃~125℃⊙引脚温度(焊接时间10秒):260℃DP4056芯⽚特性替代LTC4056替代TP4056⊙⾼达1000mA的充电电流⊙⽆需MOSFET、检测电阻或隔离⼆极管⊙⽤于单节锂离⼦电池、采⽤SOP封装的完整线性充电器⊙恒定电流/恒定电压操作,并具有可在⽆过热危险的情况下实现充电速率最⼤化的热调节功能⊙稳定的 1A 恒流充电,⼤幅减少 5000mAh 锂电池充电时间⊙精度达到±1%的 4.2V 预设充电电压⊙⽤于电池电量检测的充电电流监控器输出⊙⾃动再充电⊙充电状态双输出、⽆电池和故障状态显⽰⊙ C/10充电终⽌⊙待机模式下的供电电流为55uA⊙ 2.9V涓流充电⊙软启动限制了浪涌电流⊙电池温度监测功能⊙采⽤8引脚ESOP/MSOP封装典型应⽤原理图应⽤领域⊙⼿机⊙ MP3、MP4播放器⊙数码相机⊙电⼦词典⊙ GPS⊙便携式设备、各种充电器。
DW02D (文件编号:S&CIC0921)二合一锂电池保护IC一、概述DW02D 产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。
DW02D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。
DW02D 具有非常小的SOT23-6的封装并且只需要一个外部元器件,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。
DW02D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。
该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
二、特点内部集成等效70mΩ的先进的功率MOSFET ; SOT23-6封装;只需要一个外部电容; 过充电流保护;3段过流保护:过放电流1、过放电流2(可选)、负载短路电流;充电器检测功能; 延时时间内部设定; 高精度电压检测;低静态耗电流:正常工作5.0uA (典型值);休眠状态不超过0.1uA ;兼容ROHS 和无铅标准。
封装形式管脚号管脚名称管脚描述VC CGN DVD DNC BA T T T EST 1234561VCC 内部电路供电端2GND 接地端,接电池芯负极3VDD 正电源供电端4NC 悬空5BATT 电池组的负极,内部FET 开关连接到GND 6TEST测试端正常工作模式如果没有检测到任何异常情况,充电和放电过程都将自由转换。
这种情况称为正常工作模式。
过充电压情况在正常条件下的充电过程中,当电池电压高于过充检测电压(VCU),并持续时间达到过充电压检测延迟时间(tCU)或更长,DW02D 将控制MOSFET 以停止充电。
这种情况称为过充电压情况。
以下两种情况下,过充电压情况将被释放:1、当电池电压低于过充解除电压(VCL),DW02D 控制充电的FET 导通,回到正常工作模式下。
2、当连接一个负载并且开始放电,DW02D 控制充电的FET 导通回到正常工作模式下。
XB8886A ______________________________________ ________________________________________________________________________________ One Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe XB8886A Series product is a high integration solution for lithium-ion/polymer battery protection.XB8886A contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.XB8886A is put into an SOP8-PP package and only one external component makes it an ideal solution in limited space of battery pack.XB8886A has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.The device is not only targeted for digital cellular phones, but also for any otherLi-Ion and Li-Poly battery-powered information appliances requiring long-term battery life.FEATURES·Protection of Charger Reverse Connection·Protection of Battery Cell Reverse Connection·Integrate Advanced Power MOSFET with Equivalent of 8.5mΩ R SS(ON)·SOP8-PP Package·Only One External Capacitor Required·Over-temperature Protection ·Overcharge Current Protection ·Two-step Overcurrent Detection: -Overdischarge Current-Load Short Circuiting·Charger Detection Function·0V Battery Charging Function- Delay Times are generated inside ·High-accuracy Voltage Detection ·Low Current Consumption- Operation Mode:7.8μA typ.- Power-down Mode: 4.5μA typ. ·RoHS Compliant and Lead (Pb) FreeAPPLICATIONSOne-Cell Lithium-ion Battery PackLithium-Polymer Battery PackPower BankFigure 1. Typical Application CircuitORDERING INFORMATIONNote: “YW ” is manufacture date code, “Y ” means the year, “W ” means the weekPIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)ELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for T A= 25o C, unless otherwise specifiedThe parameter is guaranteed by design.Figure 3. Functional Block DiagramFUNCTIONAL DESCRIPTIONThe XB8886A monitors the voltage andcurrent of a battery and protects it frombeing damaged due to overcharge voltage,overdischarge voltage, overdischargecurrent, and short circuit conditions bydisconnecting the battery from the loador charger. These functions are required inorder to operate the battery cell withinspecified limits.The device requires only one externalcapacitor. The MOSFET is integrated andits R SS(ON) is as low as8.5mΩtypical.Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (V CU) during charging under normal conditionand the state continues for the overcharge detection delay time (t CU) or longer, theXB8886A turns the charging control FEToff to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (V CL), the XB8886A turns the charging control FETon and returns to the normal condition.2, When a load is connected and discharging starts, the XB8886A turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. TheXB8886A detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (V CU), the XB8886A returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (V CU),the chip does not return to the normal conditionuntil the battery voltage drops below the overcharge detection voltage (V CU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (V CU) andthe battery voltage does not drops below the overcharge detection voltage (V CU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent do not work until the battery voltage drops below the overcharge detection voltage (V CU). Since an actual battery has, however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent work. Detection of load short-circuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (V DL) during discharging under normal condition and it continues for the overdischarge detection delay time (t DL) or longer, theXB8886A turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R VMD resistorbetween VM and VDD in XB8886A. Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (I PDN). This condition is called power-down condition. The VM and VDD pins are shorted by theR VMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (V DL) or higher (see note),the XB8886A turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (V CHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (V DU) or higher. Overcurrent ConditionWhen the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage) during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, theXB8886A turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrentincludes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the R VMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load.The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B- pins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R VMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage(V IOV1), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (V CHA) during charging under the normal condition and it continues for the overcharge detection delay time (t CU) or longer, the XB8886A turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (V CHA). When an abnormal charge current flows into a battery in the overdischarge condition, the XB8886A consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t CU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V CHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (V SHORT), the XB8886A will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t SHORT. This status is released when voltage of VM pin is higher than short protection voltage (V SHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting startswhen overdischarge current 1 is detected.As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the XB8886A stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the XB8886A stop discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the XB8886A shifts to power-down.Figure 4. Overcurrent delay time0V Battery Charging Function (1) (2) (3)This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage(V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V DU), the normal condition returns. Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART1.Overcharge and overdischarge detectionV V CU -V V DL +V V DL ONONCHARGEV DDV ov1V SS V VMFigure5-1 Overcharge and Overdischarge Voltage Detection2.Overdischarge current detectionV CU V CU -V HC V DL +V DH V DLONDISCHARGEOFFV DDV V ov2V ov1V SS(1)(4)(1)(1)(1)(4)(4)Figure5-2 Overdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent conditionXB8886A ______________________________________ ____________________________________________________ ___________________________ 3.Charger DetectionVV CU-VV DL+VV DLONV DDVMV SSVFigure5-3 Charger Detection4.Abnormal Charger DetectionVV CU-VV DL+VV DLONONCHARGEV DDVMV SSVFigure5-4 Abnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition)XB8886A ______________________________________ ____________________________________________________ ___________________________ TYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1& R1 is a decoupling capacitor & resistor which should be placed as close as possible toXB8886A.Fig 6 XB8886A in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in XB8886A does not exceed the power dissipation of the package.• Do not apply an electrostatic discharge to this XB8886A that exceeds the performance ratings of the built-in electrostatic protection circuit.XB8886A ______________________________________ ____________________________________________________ ___________________________ - 11 -REV0.3 PACKAGE OUTLINE SOP8-EPAD PACKAGE OUTLINE AND DIMENSIONSIn order to increase the driver current capability of XB8886A and improve the temperature of package, Please ensure Epad and enough ground PCB to release energy.。
单节锂电池保护芯片锂电池是一种重要的电池,广泛应用于手机、电动车和便携式电子设备等领域。
为了保证锂电池的安全和性能,需要使用单节锂电池保护芯片对锂电池进行保护。
单节锂电池保护芯片是一种集成电路,主要用于监测锂电池的电压、电流和温度,并在必要时采取措施保护锂电池。
保护芯片通常由主控芯片、保护单元、电源管理单元和通信接口等组成。
主控芯片是单节锂电池保护芯片的核心部件,负责控制和协调保护单元、电源管理单元和通信接口的工作。
主控芯片能够实时监测锂电池的电压、电流和温度,并根据设定的阈值进行判断和控制。
保护单元是单节锂电池保护芯片的关键部件,负责监测锂电池的电压和电流,并在必要时采取措施进行保护。
保护单元可以通过切断电路、放电保护和过压保护等方式来保护锂电池,避免发生过放电、过充电和短路等危险情况。
电源管理单元是单节锂电池保护芯片的重要组成部分之一,用于管理锂电池的充放电过程。
电源管理单元可以通过控制充电电流和放电电流来保护锂电池,并且可以实现恒流充电和恒压充电等充电模式,提高锂电池的充电效率和充电质量。
通信接口是单节锂电池保护芯片的重要功能之一,用于与外部设备进行通信和数据传输。
通过通信接口,可以实现对锂电池的状态监测和控制,以及对充电器和电池管理系统的通信和控制。
单节锂电池保护芯片具有多种保护功能,可以有效地保护锂电池的安全和性能。
首先,它可以监测锂电池的电压,当电压超出设定的范围时,可以及时切断电路,避免电压过高或过低导致锂电池损坏。
其次,它可以监测锂电池的电流,当电流异常时,可以及时采取措施,避免电流过大导致锂电池过热。
此外,单节锂电池保护芯片还可以监测锂电池的温度,并在必要时控制充电或放电,避免温度过高引发火灾等安全问题。
总之,单节锂电池保护芯片是一种重要的电子元器件,可以有效地保护锂电池的安全和性能。
在使用锂电池的电子设备中,应该广泛应用单节锂电池保护芯片,以提高锂电池的使用寿命和安全性。