矢量和张量
- 格式:ppt
- 大小:551.00 KB
- 文档页数:40
附录 矢量与张量运算1标量﹑矢量与张量1.1大体概念在本书中所涉及的物理量可分为标量、矢量和张量。
咱们超级熟悉标量,它是在空间没有取向的物理量,只有一个数就能够够表示其状态。
例如质量、压强、密度、温度等都是标量。
矢量那么是在空间有必然取向的物理量,它既有大小、又有方向。
在三维空间中,需要三个数来表示,即矢量有三个分量。
考虑直角坐标右手系,三个坐标轴别离以1、2和3表示,、2和3别离表示1、2和3方向的单位矢量。
若是矢量a 的三个分量别离为a 1、、a 2、a 3,那么能够表示为也能够用以下符号表示 a =(a 1,a 2,a 3) 矢量a 的大小以a 表示a =(a 12+a 22+a 32)1/2咱们还会碰到张量的概念,可将标量看做零阶张量,矢量看做一阶张量,在此将要紧讨论二阶张量的概念。
二阶张量w 有9个分量,用w ij 表示。
张量w 可用矩阵的形式来表示:w其中下标相同的元素称为对角元素,下标不同的元素称为非对角元素。
假设w ij =w ji ,那么称为对称张量。
若是将行和列互彼此换就组成张量w 的转置张量,记作w T ,则w T =显然,假设w 是对称张量,那么有w =w T 。
另外,若是w T =-w ,w 被称为反对称张量,同时有w ij =-w ji 。
任何一个二阶张量都能够写成两部份之和,一部份为对称张量,另一部份为反对称张量。
w =(w +w T )+ (w -w T )单位张量是对角分量皆为1,非对角分量皆为0的张量是最简单的对称张量。
张量对角分量之和称为张量的迹t r w =张量的迹是标量,若是张量的迹为零,称此张量为无迹张量。
1.2大体运算1.2.1矢量加法与乘法运算在几何上,矢量的加法知足平行四边形法那么和三角形法那么。
如图附-1所示,减法为加法的逆运算。
1e e e a 332211e e e a a a a ++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211w w w w w w w w w ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111w w w w w w w w w 2121δ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001δδ∑iiiw图附-1 矢量加减法在解析上,矢量加法(减法)为对应分量之和(差)。
垐,,AA AAA A A A===(单位矢量)在坐标系中 31i ii A Ae ==∑ 直角系 z yz A A i Aj A k =++方向余弦:cos ,cos cos cos cos x y z Ax Ay Az Ae e e A Aβγαβγ===++321(A A =+二.矢量运算加法: A B B A +=+ 交换律 ()()A B C A B C ++=++ 结合律 31()iiii A B A B e =+=+∑ 满足平行四边形法则标量积:31cos i ii A B A BAB θ=⋅==∑A B B A ⋅=⋅ 交换律()A B C A B A C ⋅+=⋅+⋅ 分配律123123123sin n e e e A B AB e A A A B B B θ⨯== ()A B C A B A C ⨯+=⨯+⨯ 分配律A B B A ⨯=-⨯ 不满足交换律 123123123()()()A A A A B C B C A C A B B B B C C C ⋅⨯=⋅⨯=⋅⨯=3乘2,点2乘3)()()A B C A B C ⨯⨯≠⨯⨯三.矢量微分ˆˆdA dA dAA A dt dt dt=+ ()A B dB dAA B dt dt dt ⋅=⋅+⋅ ()A B dB dAA B dt dt dt⨯=⨯+⨯ 四.并矢与张量并矢: AB (一般 AB BA ≠),有九个分量。
若某个量有九个分量,它被称为张量33,1,i i ijij i ji j i jT AB A B e e T e e====∑∑ i j e e 为单位并矢,矢量与张量的矩阵表示:123,i iA A Ae A A A ⎛ == ⎝∑1211223(,B AB A A A B A B A B ⎛⎫==++T AB = T T T T ⎛ = ⎝单位张量:31i j i e e ==∑0100 = ⎝,i j()()()()AB C A B C A C B AC BC B A C BAB C A B CA⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅()()()C AB C A B B C A B A C BA C ⋅=⋅=⋅=⋅=⋅与矢量叉乘:()()AB C A B C C AB C A B ⎧⨯=⨯⎪⎨⨯=⨯⎪⎩并矢并矢两并矢点乘:()()()AB CD A B C D A B C AD CD AB ⋅=⋅=⋅≠⋅ (并矢) 两并矢二次点乘: ()():AB CD B C A D =⋅⋅ 标量与单位张量点乘:C C C ⋅=⋅=AB AB AB ⋅=⋅=:AB A B =⋅15-20分钟))()A B A B +⨯- ()()2B A =⨯ ()()M b a c a b c =⋅-⋅与矢量C 垂直。
标量矢量张量标量、矢量和张量是物理学中常用的概念。
下面将分章节回答这个问题。
一、标量标量是一个只有大小没有方向的物理量。
例如,温度、密度、电荷量等都是标量。
标量通常用一个字母表示,例如温度用T表示,密度用ρ表示。
标量的单位通常是国际单位制中的基本单位,例如温度的单位是开尔文(K),密度的单位是千克每立方米(kg/m³)。
二、矢量矢量是一个既有大小又有方向的物理量。
例如,速度、加速度、力等都是矢量。
矢量通常用一个带箭头的字母表示,例如速度用v表示,加速度用a表示。
矢量的大小用标量表示,通常用绝对值表示,例如速度的大小用|v|表示,加速度的大小用|a|表示。
矢量的方向用角度或者方向余弦表示,例如速度的方向用角度θ表示,加速度的方向用方向余弦cosα、cosβ、cosγ表示。
矢量的单位通常是国际单位制中的基本单位加上方向单位,例如速度的单位是米每秒(m/s),加速度的单位是米每秒平方(m/s²)。
三、张量张量是一个既有大小又有方向,而且还有多个分量的物理量。
例如,应力张量、惯性张量等都是张量。
张量通常用一个带箭头的字母表示,例如应力张量用σ表示。
张量的大小用标量表示,通常用绝对值表示,例如应力张量的大小用|σ|表示。
张量的方向用多个方向余弦表示,例如应力张量的方向用方向余弦cosα、cosβ、cosγ表示。
张量的分量通常用矩阵表示,例如应力张量的分量用一个3×3的矩阵表示。
总之,标量、矢量和张量是物理学中常用的概念,它们分别表示只有大小、既有大小又有方向、既有大小又有方向而且还有多个分量的物理量。
在物理学中,我们需要根据具体问题选择合适的物理量来描述问题,从而得到准确的结果。
矢量和张量vectors and tensors中山大学理工学院黄迺本教授(2005级,2007年3月)如果不理解它的语言,没有人能够读懂宇宙这本书,它的语言就是数学.——Galileo经典电动力学的研究对象——电磁相互作用的经典场论——狭义相对论——电动力学的相对论协变性主要数学工具微积分、线性代数、矢量与张量分析、数学物理方程、级数等.教材和参考书教材:郭硕鸿《电动力学》(第二版)高等教育出版社,1997参考书:[1]黄迺本,方奕忠《电动力学(第二版)学习辅导书》,高等教育出版社,2004[2]J.D.杰克孙《经典电动力学》人民教育出版社,1978[3]费恩曼物理学讲义,第2卷,上海科技出版社,2005[4]朗道等《场论》人民教育出版社,1959[5]蔡圣善等《电动力学》(第二版),高等教育出版社,2003[6]尹真《电动力学》(第二版),科学出版社,2005[7]Daniel R Frankl,ELECTROMAGNETIC THEORY,Prentice-Hall,Inc.,1986矢量和张量目录(contens)1.矢量和张量代数(the algebra of vectors and tensors)2.矢量和张量分析(the analysis of vectors and tensors)3.δ函数(δ function)4.球坐标系和柱坐标系1 矢量和张量代数在三维欧几里德空间中,按物理量在坐标系转动下的变换性质,可分为标量(零阶张量),矢量(一阶张量),二阶张量,及高阶张量.(见郭硕鸿,电动力学,P258)分为:0 阶张量,即标量(scalar),在3维空间中,只有30 = 1个分量.标量是空间转动下的不变量.例如,空间中任意两点之间的距离r ,就是坐标系转动下的不变量.温度、任一时刻质点的能量、带电粒子的电荷、电场中的电势,等等,都是标量.1阶张量,即矢量(vector),在3维空间中,由31 = 3个分量构成有序集合.例如,空间中任意一点的位置矢量r ,质点的速度v 和加速度a ,作用力F 和力矩M ,质点的动量p 和角动量L 、电流密度J ,电偶极矩p ,磁偶极矩m ,电场强度E ,磁感应强度B ,磁场矢势A ,等等都是矢量.2阶张量(tow order tensor ),在3维空间中,由32 = 9个分量构成有序集合.例如,刚体的转动惯量→→I ,电四极矩→→D ,等.3阶张量,在3维空间中,由33 = 27个分量构成有序集合.矢量表示印刷——用黑体字母,如 r , A 书写——在字母上方加一箭头,如 A r ,正交坐标系的基矢量正交坐标系(如直角坐标系,球坐标系,柱坐标系)基矢量321,e e e ,的正交性可表示为⎩⎨⎧≠===⋅ji j i ij 01δj i e e (1.1) 一般矢量A 有三个独立分量A 1,A 2,A 3,故可写成∑==++=31332211i i i A A A A ee e e A (1.2)矢量的乘积两个矢量的标积与矢积,三个矢量的混合积与矢积分别满足A B B A ⋅=⋅ (1.3)A B B A ⨯-=⨯ (1.4))()()(B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ (1.5))()()(B A C A C B C B A ⋅⋅=⨯⨯- (1.6)并矢量与二阶张量两个矢量A 和B 并置构成并矢量j i e e e e e e e e AB j j i i B A B B B A A A ∑==++++=31,332211332211))(( (1.7)它有9个分量j i B A 和9个基j i e e ,一般地BA AB ≠.三维空间二阶张量也有9个分量ij T ,它的并矢量形式与矩阵形式分别为j i e e ∑=→→=31,j i ij T T (1.8)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211T T T T T T T T T T (1.9) 张量的迹是其主对角线全部元素(分量)之和:332211tr T T T T ++= (1.10)单位张量的并矢量形式与矩阵形式分别是332211e e e e e e ++=→→I (1.11)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I (1.12)因此(Ⅰ.1)式中的符号ij δ实际上是单位张量的分量.对称张量与反对称张量 若ij ji T T =,称之为对称张量,它有6个独立分量,若对称张量的迹为零,则它只有5个独立分量.单位张量是一个特殊的对称张量. 若ij ji T T -=,称之为反对称张量,由于0332211===T T T ,反对称张量只有3个独立分量.任何张量ij T 均可写成一个对称张量ij S 与一个反对称张量ij A 之和,即ij ij ij A S T +=,只需使)/2(ji ij ij T T S +=,)/2(ji ij ij T T A -=.二阶张量与矢量点乘,结果为矢量.由(Ⅰ.1)式,有∑∑∑∑==⋅=⋅→→ij j ij i j ki ij ji k k k ij ij k k T A e T A T A T e e e e A ji δ,, (1.13) ∑∑∑∑==⋅=⋅→→ij i ij j i ij k j i k k k k ij ij T A e T A A T T e e e e A jk j i δ,, (1.14)一般地A A ⋅≠⋅→→→→T T . 但单位张量与任何矢量点乘,均给出原矢量:A A A =⋅=⋅→→→→I I (1.15) 并矢量与并矢量、或二阶张量与二阶张量双点乘,结果为标量.运算规则是先将靠近的两个矢量点乘,再将另两个矢量点乘:))(()()(D A C B CD AB ⋅⋅=: (1.16)2 矢量和张量分析(1)算符∇和2∇物理量在空间中的分布构成“场”(field).表示“场”的物理量一般地是空间坐标的连续函数,也可能有间断点,甚至会有奇点.例如:温度T 、静电势ϕ的分布都构成标量场;电流密度J 、电场强度E 、磁感应强度B 、磁场矢势A 的分布都构成矢量场.∇是对场量作空间一阶偏导数运算的矢量算符,2∇=∇⋅∇是二阶齐次偏导数运算的标量算符,即拉普拉斯算符.在直角坐标系中z y x z y x ∂∂+∂∂+∂∂=∇e e e ,2222222zy x ∂∂+∂∂+∂∂=∇ (2.1) 三个基矢量z y x e ,e ,e 均是常矢量.(2)标量场的梯度(gradient of a scalar field)标量场ϕ在某点的梯度zy x z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕe e e (2.2)是一个矢量,它在数值上等于ϕ沿其等值面的法向导数,方向沿ϕ增加的方向,即n dnd ϕϕ=∇ (2.3) 例如静电势ϕ的分布是一个标量场,E =-∇ϕ即变成矢量场——静电场.(3)矢量场的散度(divergence of a vector field)矢量场A 通过某曲面S 通量(flux)定义为⎰⋅=ΦSd S A (2.4) 其中n S dS d =是曲面S 某点附近的面积元矢量,方向沿曲面的法向n .对于闭合曲面(closed surface),规定S d 的方向沿曲面的外法向.对于矢量场A 中包含任一点)(z y x ,,的小体积V ∆,其闭合曲面为S ,定义极限A S A ⋅∇=∆⋅⎰→∆Vd SV 0lim (2.5) 为矢量场A 在该点的散度,它是标量.在直角坐标系中zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A (2.6) 若0≠⋅=Φ⎰S d S A , 则该点散度0≠⋅∇A ,该点就是矢量场A 的一个源点; 若0=⋅=Φ⎰Sd S A ,则该点散度0=⋅∇A ,该点不是矢量场A 的源点. 若处处均有0=⋅∇A ,A 就称为无散场(或无源场),它的场线必定是连续而闭合的曲线.磁场B 就是无散场(solenoidal field ).高斯定理(Gaussl theorem ) 对任意闭合曲面S 及其包围的体积V ,下述积分变换定理成立⎰⎰⋅∇=⋅S V A S A dV d (2.7) 由此推知,若A 是无散场,即处处有0=⋅∇A ,则A 场通过任何闭合曲面的净通量均为零.(4)矢量场的旋度(curl of a vector field)矢量场A 沿闭合路径(closed contour)L 的积分⎰⋅Ld l A 称为A 沿L 的环量(circulateon),其中l d 是路径L 的线元矢量.若对任意闭合路径L ,均有0=⋅⎰Ld l A (2.8) 则称A 为保守场(conservative field ).当闭合路径L 所围成的面积元S ∆是某点P 的无限小邻域,我们约定:路径积分的绕行方向即d l 的方向,与其所围成的面积元S ∆的法向n 成右手螺旋关系,并定义极限n LS S d )()(lim 0A n A l A ⨯∇=⋅⨯∇=∆⋅⎰→∆ (2.9)为矢量场A 在该点的旋度A ⨯∇在n 方向的分量.在直角坐标系中z x y y z x x y z yA x A x A z A z A y A e e e A )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇ (2.10) 它是矢量.按上述约定若()0>⨯∇n A ,则A 线在该点周围形成右手涡旋;若()0<⨯∇n A ,则A 线在该点周围形成左手涡旋;若()0=⨯∇n A ,A 线在该点不形成涡旋.如果所有点上均有0=⨯∇A ,A 就称为无旋场.例如静电场E 就是无旋场(irrotational field).斯托克斯定理(stokes theorem) 对任意的闭合路径L 所围的曲面S ,下述积分变换成立()S A l A Sd d L ⋅⨯∇=⋅⎰⎰ (2.11) (5) 矢量场的几个定理标量场的梯度必为无旋场:0=∇⨯∇ϕ (2.12)【证】对任意标量场ϕ的梯度zy x z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕe e e 取旋度,可得[]0)()(=∂∂∂∂-∂∂∂∂=∇⨯∇yx x y x ϕϕϕ, []0=∇⨯∇y ϕ,[]0=∇⨯∇z ϕ 逆定理:无旋场必可表示成某一标量场的梯度,即若0=⨯∇A ,必可令ϕ∇=A例如对于静电场强度E ,就可用标势ϕ的负梯度描写: ϕ-∇=E .矢量场的旋度必为无散场:0=⨯∇⋅∇A (2.13)【证】0)()()(=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=⨯∇⋅∇y A x A z x A z A y z A y A x x y z x y z A 逆定理:无散场必可表成另一矢量场的旋度,即若0=⋅∇B , 必可令A B ⨯∇=例如对于磁感应强度B ,就可用矢势A 的旋度描写.(6)算符运算标量函数ϕ的梯度ϕ∇是矢量,矢量函数f 的散度f ⋅∇是标量,旋度f ⨯∇是矢量,而f ∇是二阶张量:∑∑∑===∂∂=∂∂=∇31,3131j i i j j j i i x f f x j i j i e e e e f (2.14)若ϕ和φ是标量函数,f 和g 是矢量函数,有ϕφφϕϕφ)()()(∇+∇=∇ (2.15) ϕϕϕ)()()(f f f ⋅∇+⋅∇=⋅∇ (2.16) ϕϕϕ)()()(f f f ⨯∇+⨯∇=⨯∇ (2..17) f g g f g f ⋅⨯∇⋅⨯∇=⨯⋅∇)()()(- (2.18) f g g f g f f g g f )()()()()(⋅∇+∇⋅⋅∇-∇⋅=⨯⨯∇- (2.19) g f g f f g f g g f )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ (2.20) g f g f fg )()()(∇⋅+⋅∇=⋅∇ (2.21) f f f 2)()(∇⋅∇∇=⨯∇⨯∇- (2.22)上述运算不必采用化成分量的方法进行,只要抓住算符∇的微分作用及其矢量性质,便可快捷准确地写出结果.当∇作用于两个函数的乘积(或两个函数之和)时,表示它对每一个函数都要作微分运算,可以先考虑∇对第一个量的作用,并将这个量记为∇的下标,以示算符只对此量执行微分运算,第二个量则视为常数,再考虑∇对第二个量的作用,此时亦将第二个量记为∇的下标,第一个量则视为常数;必须注意的是,算符不能与其微分运算对象掉换次序.例如(2.16)式,)(f ϕ⋅∇是对矢量f ϕ求散度,故运算结果的每一项都必须是标量,我们有ϕϕϕϕϕϕ)()()()()(f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇f又如(2.20)式,)(g f ⋅∇是对标量g f ⋅求梯度,结果的每一项都必须是矢量,先把它写成)()()(g f g f g f ⋅∇+⋅∇=⋅∇g f再根据三矢量的矢积公式(1.6)式,但结果中必须体现f ∇对f 的微分作用,以及g ∇对g 的微分作用,故有f g f g g f )()()(∇⋅+⨯∇⨯=⋅∇fg f g f g f )()()(∇⋅+∇⨯⨯=⋅∇gg f g f f g f g g f )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇右方所得结果中第二项实际上是f g ∇⋅,第四项是g f ∇⋅.(7)积分变换⎰⎰⋅=⋅∇SV d dV S A A )( (高斯定理) (2.23.) →→→→⋅=⋅∇⎰⎰T d dV T SV S )( (2.24) ⎰⎰⋅=⋅⨯∇LS d d l A S A )( (斯托克斯定理) (2.25) ⎰⎰⋅∇=∇+∇SV d dV S )()(22φϕϕφφϕ(格林公式) (2.26) ⎰⎰⋅∇-∇=∇-∇SV d dV S )()(22ϕφφϕϕφφϕ(格林公式) (2.27) 3 δ函数一维δ函数定义为 ⎩⎨⎧'≠'=∞='-x x x x x x 0)(δ (3.1) 1)(='-⎰b adx x x δ ,当b x a <'< (3.2) 主要性质为:)(x x '-δ为偶函数,其导数是奇函数;又若函数)(x f 在x x '=附近连续,有)()()(x f dx x x x f ba '='-⎰δ,当b x a <'< (3.3) 这一性质由中值定理可以证明.三维δ函数定义为⎩⎨⎧'≠'=∞='-x x x x x x 0)(δ (3.4) 1)(='-⎰VdV x x δ,当x '在V 内 (3.5) 因此,位于x '的单位点电荷的密度可表示为)()(x x x '-=δρ. (4.3)式可推广到三维情形,若函数)(x f 在x x '=附近连续,便有)()()(x x x x '='-⎰f dV f V δ,当x '在V 内 (3.6)4.球坐标系和圆柱坐标系直角坐标系当坐标),,(z y x 变化时,三个基矢z y x e ,e ,e 的方向保持不变.常用的微 分运算表达式为z y x zy x e e e ∂∂+∂∂+∂∂=∇ϕϕϕϕ (4.1) zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A (4.2) z x y y z x x y z y A x A x A z A z A y A e e e A )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇ (4.3) 2222222z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕ (4.4)曲线正交坐标系任一点的坐标也可用曲线正交坐标系描述,沿三个坐标),,(321u u u 增加方向的基矢量321e ,e ,e 互相正交,随着坐标变化,一般地三个基矢量的取向将会改变.无限小线元矢量l d 、坐标i u 的标度系数i h ,以及微分算符分别为333222111332211e e e e e e l du h du h du h dl dl dl d ++=++= (4.5)21222])()()[(ii i i u z u y u x h ∂∂+∂∂+∂∂= (4.6) 333222111111u h u h u h ∂∂+∂∂+∂∂=∇e e e (4.7) )]()()([13321322132113213212u h h h u u h h h u u h h h u h h h ∂∂∂∂+∂∂∂∂+∂∂∂∂=∇ (4.8) 球坐标系r u =1,θ=2u ,φ=3u ;11=h ,r h =2,θsin 3r h =.三个基矢r e e =1,θe e =2,φe e =3的方向均与坐标θ和φ有关,而与r 无关.与直角坐标系基矢的变换为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x e e e e e e r 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ (4.9) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡φθθθφφθφθφφθφθe e e e e e r 0sin cos cos sin cos sin sin sin cos cos cos sin z y x (4.10)坐标变换为φθcos sin r x =,φθsin sin r y =,θcos r z = (4.11)常用的微分运算表达式为φϕθθϕϕϕφθ∂∂+∂∂+∂∂=∇sin 11r r r re e e (4.12) φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r rr r sin 1)sin (sin 1)(122A (4.13) φθθφθφθφθφθθθe e e A ⎥⎦⎤⎢⎣⎡∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂-∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=⨯∇r r r A A r r r A r r A r A A rsin -))-(1(sin 11)sin (1 (4.14) 2222222sin 1)sin (sin 1)(1φϕθθϕθθθϕϕ∂∂+∂∂∂∂+∂∂∂∂=∇r r r r r r (4.15) 立体角元、球面积元与体积元分别为φθθd d d sin =Ω (4.16) Ω===d r d d r dl dl dS r 2232sin φθθ (4.17) φθθd drd r dl dl dl dV sin 2321== (4.18)柱坐标系r u =1,φ=2u ,z u =3; 11=h ,r h =2,13=h .三个基矢量r e e =1,φe e =2 ,z e e =3中,r e 和φe 的方向均与坐标φ有关,z e 则为常矢量.与直角坐标系基矢的变换为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z e e e e e e r 1000cos sin 0sin cos φφφφφ (4.19) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z z y x e e e e e e r φφφφφ1000cos sin 0sin cos (4.20)坐标变换为φcos r x =,φsin r y =,z z = (4.21)常用的微分运算表达式为z r zr r e e e ∂∂+∂∂+∂∂=∇ϕφϕϕϕφ1 (4.22) z A A r A r r r z r ∂∂+∂∂+∂∂=⋅∇φφ1)(1A (4.23)z r z r r z A A r r r rA z A z A A r e e e A ]([1()1(φφφφφ∂∂-∂∂+∂∂∂∂+∂∂∂∂=⨯∇))-- (4.24)2222221)(1z r r r r r ∂∂+∂∂+∂∂∂∂=∇ϕφϕϕϕ (4.25) 体积元为dz rdrd dl dl dl dV φ==321 (4.26)例1.设u 是空间坐标z y x ,,的函数,证明:u dudfu f ∇=∇)( (1) dud u u AA ⋅∇=⋅∇)( (2) dud u u AA ⨯∇=⨯∇)( (3) 【证】对于)(u f ∇,注意到du df u f =∂∂,有u drdf z u y u x u du df zf y f x f u f z y x z y x∇=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∇)()(e e e e e e在直角坐标系中将矢量A 写成分量形式,便可证明(2)式和(3)式.例2.从源点(即电荷电流分布点)x '到场点x 的距离r 和矢径r 分别为222)()()(z z y x y x x r '-+'-+'-= z y x z z y -y x -x e e e r )-()('+'+'=)(对源变数x '和场变数x 求微商的算符分别为z y x z y x'∂∂+'∂∂+'∂∂=∇'e e e ,zy x zy x ∂∂+∂∂+∂∂=∇e e e 证明下列结果,并体会算符∇'与∇的关系:rr r r=∇'-=∇ (单位矢量) (1) 3=⋅∇'-=⋅∇r r (2) 0=⨯∇'-=⨯∇r r (3)→→=∇'-=∇I r r (单位张量) (4) 311rr r r-=∇'-=∇(5)033=⋅∇'-=⋅∇rrr r ,(0≠r ) (6) 033=⨯∇'-=⨯∇r r r r (7)【证】 将算符∇与∇'分别作用于r 和矢径r 的表达式,可得到(1)至(4)式的结果.利用前面1.2题的第一式和本题(1)至(4)式的结果,得3211)(1rr r r dr r d r rr -=-=∇=∇- 0)(333=⋅∇+⋅∇=⋅∇-r r r -r r r ,(当0≠r ) 0)(333=⨯∇+⨯∇=⨯∇-r r r -r r r同理可证31r r r =∇';03=⋅∇'rr ,当0≠r ;03=⨯∇'r r.事实上,对任意的标量函数)(r f 和矢量函数r )(r f ,不难证明)()(r f r f ∇'-=∇;])([])([r r r f r f ⋅∇'-=⋅∇ ])([])([r r r f r f ⨯∇'-=⨯∇;])([])([r r r f r f ∇'-=∇即算符∇与∇'存在代换关系∇'-→∇.这种代换将会经常用到.。
矢量及张量1. 协变基矢量:321g g g a 321a a a ++=,i a 称为逆变基分量,i g 是协变基矢量。
2. 逆变基矢量:321g g g a 321a a a ++=,i a 称为协变基分量,ig 是逆变基矢量。
3. 爱因斯坦求和约定:省略求和符号,ii g g a i i a a == 4. 逆变基于协变基的关系:ji δ=•j i g g5. 标积:i i j i j i b a b a =•=•g g b a6. 坐标转换系数i i 'β:i i i i i ii i i i i xx x x x x g g r r g '''''β=∂∂=∂∂∂∂=∂∂=7. 转换系数的性质:i j k j i k δββ='',因为''''m l m j i l j i i j g g g g •=•=ββδ8. 张量:分量满足坐标转换关系的量,比如矢量''''''i i i i i i k k i i v v v ββ=•=•=g g g v9. 置换张量:ijk k j i ijk e g ==][g g g ε,其中][321g g g =g ,同理有ijkk j i ijk e g1][==g g g ε 由行列式的性质及线性][][]['''''''''n m l nk m j l i n n k m m j l l i k j i g g g g g g g g g ββββββ==,因此ijk ε是张量分量。
定义置换张量:k j i ijk k j i ijk g g g g g g εεε==10. 基的叉积:k l ijl ijk k j i g g g g g •==•⨯εε,所以l ijl j i g g g ε=⨯,l ijlj i g g g ε=⨯11. 叉积:k ijk j i j i j i b a b a g g g b a ε=⨯=⨯,或写成实体形式ε:ab ab :εb a ==⨯,双标量积用前前后后规则完成。
《连续介质力学》例题和习题第一张、矢量和张量分析第一节 矢量与张量代数一、 矢量代数令 11223A A A =++A e e e 112233B B B =++B e e e 则有 11223A A A αααα=++A e e e 11122233()()()A B A B A B +=+++++A B e ee 1122331122331122()()A A A B B B A B A B A B ∙=++∙++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e 又因为 11⨯=e e 0 123⨯=e e e 132⨯=-e e e 213⨯=-e e e 22⨯=e e 0 231⨯=e e e 312⨯=e e e 321⨯=-e e e 33⨯=e e 0则 2332131132122(_)()()A B A B A B A B A B A B⨯=+-+-A B e e e习题1、证明下列恒等式:1)[]2()()()()⨯∙⨯⨯⨯=∙⨯A B B C C A A B C2) [][]()()()()⨯∙⨯=∙⨯-∙⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 单位为正交的基矢量。
*补充知识:矩阵及矩阵运算1、定义:[]()111213212223313233,1,2,3ij A A A A A A A i j A AA ⎡⎤⎢⎥⎡⎤===⎣⎦⎢⎥⎢⎥⎣⎦A i 表示行,j 表示列;m 和n 相等表示为方阵,称为m (或n )阶矩阵。
《连续介质力学》例题和习题第一章 矢量和张量分析第一节 矢量与张量代数一、矢量代数令112233A A A =++A e e e ,112233B B B =++B e e e ,则有112233A A A αααα=++A e e e111222333()()()A B A B A B +=+++++A B e e e112233112233112233()()A A A B B B A B A B A B •=++•++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e又因为: 11⨯=e e 0;123⨯=e e e ;132⨯=-e e e ;213⨯=-e e e ;22⨯=e e 0;231⨯=e e e ; 312⨯=e e e ;321⨯=-e e e ;33⨯=e e 0则: 233213113212213(_)()()A B A B A B A B A B A B ⨯=+-+-A B e e e 习题:1、证明下列恒等式:1)[]2()()()()⨯•⨯⨯⨯=•⨯A B B C C A A B C2) [][]()()()()⨯•⨯=•⨯-•⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 为单位正交基矢量。
3、试判断[]816549782-⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 是否有逆矩阵;如有,请求出其逆阵[]1-A 。
二、张量代数例1:令T 是一个张量,其使得矢量a ,b 经其变换后变为2=+Ta a b ,=-Tb a b ,假定一个矢量2=+c a b ,求Tc 。
§1 向量代数1.1向量的定义从几何观点来看,向量定义为有向线段。
在三维欧氏空间中,建立直角坐标系,沿坐标方向的单位向量为,即其标架为。
设从坐标原点至点的向量为,它在所述坐标系中的坐标为,那么可写成(1.1)设在中有另一个坐标系,其标架为,它与之间的关系为(1.2)由于单位向量之间互相正交,之间也互相正交,因此矩阵(1.3)将是正交矩阵,即有,其中上标表示转置。
从(1.2)可反解出(1.4)向量在新坐标系中的分解记为(1.5)将(1.4)代入(1.1),得到(1.6)公式(1.6)是向量的新坐标和旧坐标之间的关系,它是坐标变换系数的一次齐次式。
这个式子应该是有向线段的几何客观性质(如:长度、角度)不随坐标的人为主观选取而变化的一种代数反映。
可以说,公式(1.6)表示了向量在坐标变换下的不变性。
这样,我们就从向量的几何定义,得到了向量的代数定义:一个有序数组,如果在坐标变换下为关于变换系数由(1.6)所示的一次齐次式,则称之为向量。
1.2 Einstein约定求和用求和号,可将(1.1)写成(1.7)所谓Einstein约定求和就是略去求和式中的求和号,例如(1.7)可写成(1.8)在此规则中两个相同指标就表示求和,而不管指标是什么字母,例如(1.8)也可写成(1.9)有时亦称求和的指标为“哑指标”。
本书以后如无相反的说明,相同的英文指标总表示从1 至3 求和。
按约定求和规则,(1.2)、(1.4)可写成(1.10)(1.11)将(1.11)代入(1.8),得(1.12)由此就得到了(1.6)式的约定求和写法,(1.13)今引入Kronecker记号,(1.14)例如。
应用,单位向量之间的内积可写成(1.15)向量和向量之间的内积可写成(1.16)上式中最后一个等号是因为只有时,才不等于零,在这里的作用似乎是将换成了,因而也称为“换标记号”。
再引入Levi-Civita记号,(1.17)其中 分别取1,2,3中的某一个值。
向量矢量张量
矢量、向量和张量是数学概念,在物理和工程领域中被广泛使用。
矢量是一种描述物体运动方向的量,它可以表示一个规范的方向,它的大小是有限的,它的方向可以用箭头来表示。
矢量由一个长度和一个向量构成,可以用两个或三个坐标分量来描述。
矢量用来表示物体运动的方向,可以用来确定物体的速度、加速度等。
向量是一种带有方向性的量,它和矢量类似,但不同的是,它的大小可以是任意数值。
向量是由方向和大小组成的,它的大小可以用标量来表示,而方向可以用箭头来表示。
向量可以用来表示物体的加速度、力等量。
张量是一种多维数组,它具有高维空间内的具体形状、大小和方向的数学表示形式。
张量可以表示多维度的物理量,如张量的张力、压强等,也可以表示多个空间维度的物理量,如电场、磁场等。
- 1 -。