小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b)
x x
a
b
这个方法也称为十字相乘法
小结
只要一个形如x2+mx+n的二次三项式的常 数项可以分解成两个有理数相乘,且这两个有理 数的和恰好等于一次项的系数,这个多项式就能 用十字相乘法分解因式。
想一想:
把下列各式分解因式 (1) x2-4xy-5y2 =(x+y)(x-5y) (2) m2+5mn-6n2 =(m-n)(m+6n) (3) y2-8xy+12x2 =(y-2x)(y-6x) 2 2 (4) a -12ab+36b =(a-6b)2
(5)
b2-7bx2-18x4 =(b+2x2)(b-9x2)
二次项系数不是1的二次三项式
例 因式分解:2x2-3x-2 解原式=(x-2)(2x+1)
x 2x
-2
+1
a1a2 x a1c2 a2c1 x c1c2
2
a1 x
c1
a2 x
所以原式可以分解为:a
c2
1 x c1 a2 x c2
因式分解:
6 x 7 xy 5 y
=(m+n-2)(m+n-3)
想一想:
把下列各式分解因式 (3) y2-2y(x-1)-15(x-1)2
=[y+3(x-1)][y-5 (x-1)] =(y+3x-3)(y-5 x+5)