十字相乘法_非常非常好用详解
- 格式:ppt
- 大小:266.00 KB
- 文档页数:13
十字相乘法因式分解十字相乘法是二次三项式因式分解的重要方法.一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++.这个方法的要领可以概括成16个字“头尾分解,交叉相乘,求和凑中,试验筛选”. 若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解. 注意:十字相乘法只适用于二次三项式的因式分解,有些多项式为了能用十字相乘法分解,一般需经过下面两个步骤:⑴将多项式按某一个字母降幂排列,将这个多项式看成是关于这个字母的二次三项式. ⑵若系数为分数,设法提出一个为分数的公因数,使括号内的多项式成为整系数,再利用十字相乘法分解.【例1】分解因式256x x ++1123256(2)(3)x x x x ∴++=++【例2】分解因式210173x x -+2531-- 210173(23)(51)x x x x ∴-+=-- 【例3】分解因式2216312m mn n --11621- 2216312(2)(16)m mn n m n m n ∴--=-+【例4】分解因式()2233kx k x k +-+-1k 13k -()2233(1)(3)kx k x k x kx k ∴+-+-=++-十字相乘法因式分解练习100题(1) 22321845m mn n --(2) 22784830x xy y +-(3) 245428y y --+(4) 2295835x xy y -++ (5) 284236x x --+ (6) 22108272a ab b +-(7) 22186939m mn n --(8) 2232526m mn n ---(9) 22169318x xy y +-(10) 239272a a +-(11) 22186954x xy y --(12) 2288012a a -- (13) 28307x x -+ (14) 22161612m mn n +- (15) 214644x x +- (16) 22334542m mn n +- (17) 22555832a ab b --(18) 22323x x -- (19) 222575126x x --(20) 2242740a ab b --(21) 2232428m mn n +-(22) 22348192x x --(23) 22411514x x ++(24) 2201060x x --(25) 2248448a a --(26) 22965233x xy y --(27) 2812x x --(28) 214143204x x ++(29) 2107214n n -+- (30) 22101545m mn n +- (31) 2551424n n +- (32) 22275427m mn n --- (33) 2309824x x -+ (34) 22268872m mn n -+- (35) 22204642x xy y --(36) 21314x x +- (37) 23215050x x -++(38) 232860b b --+(39) 2218633x x -+(40) 260464b b ++(41) 219698144x x --(42) 22122214a ab b --+(43) 2232328a ab b -+-(44) 2163670x x --+(45) 26040195x x --(46) 21538361x x --+(47) 22123420a ab b ++ (48) 2830x x -++(49) 22183934x xy y --+(50) 22396112a ab b ++ (51) 224512970x xy y +-(52) 22919712a ab b ++ (53) 221510988x xy y -++(54) 2221527m mn n --- (55) 22209157m mn n ---(56) 2262727m mn n -+-(57) 222011575x xy y ++(58) 2229480b b -++(59) 2238434a ab b +-(60) 2192300x -(61) 2701715x x --(62) 296990x x ++(63) 22182296a ab b --+(64) 2244315x xy y -+(65) 22997655x xy y --(66) 242135132x x +- (67) 251015x x --+ (68) 22122210x xy y ---(69) 22681072a ab b +- (70) 22138966m mn n -+-(71) 222868x x -- (72) 2218184x xy y -+(73) 2260733x x ++(74) 22381957a ab b +-(75) 244939x x --(76) 23635100n n +-(77) 22084612x x +-(78) 2480256x x ---(79) 227714445x xy y +-(80) 224495a ab b --(81) 243406x x -+(82) 22186939x xy y --(83) 2284448m mn n ++ (84) 2155550a a -+ (85) 220150130x x -+- (86) 212121304x x -+-(87) 265487a a ++ (88) 236222a a --- (89) 2210448m mn n --+(90) 223411642a ab b -+- (91) 242220n n +-(92) 226636a ab b --+(93) 22145230m mn n ++(94) 2905214b b +-(95) 228015670x xy y ++(96) 2169036x x +-(97) 26135x x +-(98) 2135512y y -+(99) 2210176a ab b -++(100) 22787130x x --+十字相乘法因式分解练习100题答案(1)(23)(1615)m n m n-+ (2)6(135)()x y x y-+ (3)2(14)(21)y y-+-(4)(95)(7)x y x y-+-(5)2(6)(43)x x-+-(6)2(54)(9)a b a b-+ (7)3(313)(2)m n m n-+ (8)2(23)(8)m n m n -++ (9)(163)(6)x y x y-+(10)(34)(1318)a a-+ (11)3(29)(32)x y x y-+(12)4(71)(3)a a+-(13)(41)(27)x x--(14)4(2)(23)m n m n-+ (15)2(711)(2)x x-+ (16)3(2)(117)m n m n+-(17)(52)(1116)a b a b+-(18)(17)(19)x x+-(19)3(1514)(53)x x-+(20)(8)(45)a b a b-+(21)4(87)()m n m n-+ (22)2(1312)(98)x x-+ (23)(314)(81)x x++ (24)10(23)(2)x x+-(25)12(21)(4)a a+-(26)(121)(83)x y x y-+ (27)(28)(29)x x+-(28)(217)(712)x x++ (29)2(7)(51)n n---(30)5(23)(3)m n m n-+ (31)(54)(116)n n+-(32)27()()m n m n-++ (33)2(154)(3)x x--(34)2(1318)(2)m n m n ---(35)2(107)(3)x y x y+-(36)(14)(1)x x+-(37)2(5)(165)x x--+(38)4(45)(23)b b--+ (39)(73)(311)x x--(40)2(32)(101)b b++(41)2(149)(78)x x+-(42)2(37)(2)a b a b-+-(43)8(2)(2)a b a b---(44)2(27)(45)x x-+-(45)5(23)(613)x x+-(46)(319)(519)x x-+-(47)2(65)(2)a b a b++ (48)(815)(2)x x-+-(49)(32)(617)x y x y--+(50)(133)(34)a b a b++ (51)(157)(310)x y x y-+(52)(7)(1312)a b a b++ (53)(8)(151)x y x y--+ (54)(3)(29)m n m n-++ (55)(43)(519)m n m n -++ (56)3(23)(3)m n m n---(57)5(5)(43)x y x y++(58)2(118)(5)b b-+-(59)2()(1917)a b a b+-(60)12(45)(45)x x+-(61)(145)(53)x x+-(62)3(6)(35)x x++(63)2(3)(916)a b a b-+-(64)(4)(115)x y x y--(65)(91)(115)x y x y-+ (66)3(1411)(4)x x-+ (67)5(3)(1)x x-+-(68)2(65)()x y x y-++(69)(47)(173)a b a b+-(70)(131)(6)m n m n---(71)2(111)(4)x x+-(72)2(32)(3)x y x y--(73)(133)(201)x x++(74)19(23)()a b a b+-(75)(13)(43)x x-+ (76)(45)(920)n n-+ (77)2(132)(83)x x-+ (78)4(16)(4)x x-++ (79)(715)(113)x y x y+-(80)(115)(4)a b a b-+ (81)(14)(29)x x--(82)3(313)(2)x y x y-+(83)4(23)(4)m n m n++(84)5(35)(2)a a--(85)10(213)(1)x x---(86)(419)(316)x x---(87)(51)(137)a a++(88)2(91)(21)a a-++ (89)2(512)(2)m n m n -+-(90)2(3)(177)a b a b---(91)2(32)(75)n n-+(92)6(3)(2)a b a b-+-(93)2(3)(75)m n m n++(94)2(97)(51)b b+-(95)2(107)(45)x y x y++(96)2(83)(6)x x-+(97)(15)(9)x x+-(98)(133)(4)y y--(99)(2)(103)a b a b--+(100)(910)(313)x x--+第11页共11页。
专题04 十字相乘法【学习目标】1. 熟练掌握首项系数为1的形如pq x q p x +++)(2型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下: 按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间” (2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:方法分类分组方法特点二项、二项①按字母分组②按系数分组③符合公式的两项分组四项三项、一项先完全平方公式后平方差公式五项三项、二项各组之间有公因式三项、三项二项、二项、二项各组之间有公因式分组分解法六项三项、二项、一项可化为二次三项式要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的方法方法方法技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握方法方法方法技巧和方法.【典型例题】类型一、十字相乘法例1、分解因式: 22(1)(6136)x a x a a ++--+【参考参考参考答案与解析】解:原式=()()()212332x a x a a ++--- ()()()()23322332x a x a x a x a =--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-【总结升华】将a 视作常数,就以x 为主元十字相乘可解决.举一反三:【变式】分解因式:23345xy y x y ++--【参考参考参考答案】解:原式2(34)35(35)(1)y x y x y x y =+-+-=+-+例2、分解因式:【思路点拨】该题可以先将()2a a -看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【参考参考参考答案与解析】解: 因为()()()22221214a a a a a a ----=--所以:原式=[-2][ -12]=22(2)(12)a a a a ---- =()()()()1234a a a a +-+-【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握.举一反三:【变式】分解因式:222(3)2(3)8x x x x ----;【参考参考参考答案】解:原式()()223432x x x x =---+ ()()()()4112x x x x =-+--例3、分解下列因式(1)22(1)(2)12x x x x ++++-(2)22(33)(34)8x x x x +-++-【参考参考参考答案与解析】解:(1)令21x x t ++=,则原式222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++- 2(2)(1)(5)x x x x =+-++(2)令23x x m +=,原式2(3)(4)820(5)(4)m m m m m m =-+-=+-=+- 222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事.类型二、分组分解法例4、分解因式:222332x xy y x y -++-+【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好组成2()x y -,第4、5项→3()x y -.【参考参考参考答案与解析】解:原式2()3()2x y x y =-+-+(1)(2)x y x y =-+-+【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)22a b ac bc-++(2)225533a b a b--+(3)23345xy y x y ++--【参考参考参考答案】解:(1)原式()()()()()a b a b c a b a b a b c =+-++=+-+;(2)原式()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-;(3)原式233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-.【变式2】分解因式:.2242244241a b c ab ac bc ++--+-【参考参考参考答案】解:2242244241a b c ab ac bc ++--+-=()()()2222444241a b ab ac bc c +-+-++-=()()()()222222211b a c b a c c -+-++-=.()()222121b a c b a c -++-+-类型三、拆项或添项分解因式例5、阅读理解:对于二次三项式x 2+2ax +a 2可以直接用公式法分解为(x +a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax +a 2)﹣8a 2﹣a 2=(x +a )2﹣9a 2=[(x +a )+3a ][(x +a )﹣3]=(x +4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x2﹣4xy+3y2=0化为(x﹣ )•(x﹣ )=0并直接写出y与x的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y与x的关系式求值.【参考参考参考答案与解析】解:(1)x2+2ax﹣3a2=x2+2ax+a2﹣4a2=(x+a)2﹣4a2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)x2﹣4xy+3y2=x2﹣4xy+4y2﹣y2=(x﹣2y)2﹣y2=(x﹣2y+y)(x﹣2y﹣y)=(x﹣y)(x﹣3y);x=y或x=3y;故参考参考参考答案为:y;3y(3)原式===﹣,若x=y,原式=﹣2;若x=3y,原式=﹣23.【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【稳固练习】一.选择题1.如果多项式能因式分解为,那么下列结论正确的是 ( ).22mx nx --()()32x x p ++A.=6B.=1C.=-2D.=3m n p mnp 2. 若,且,则的值为( ).()2230x a b x ab x x +++=--b a <b A.5B.-6C.-5D.63. 将因式分解的结果是( ).()()256x y x y +-+-A. B.()()23x y x y +++-()()23x y x y +-++C.D. ()()61x y x y +-++()()61x y x y +++-4.把多项式1+a +b +ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a +1)(b +1)C .(a +1)(b ﹣1)D .(a ﹣1)(b +1)5. 对运用分组分解法分解因式,分组正确的是( )224293x x y y +--A. B.22(42)(93)x x y y ++--22(49)(23)x y x y -+-C. D. 22(43)(29)x y x y -+-22(423)9x x y y +--6.如果有一个因式为,那么的值是( )3233x x x m +-+()3x +m A. -9 B.9C.-1D.1二.填空题7.分解因式: .2242y xy x --+=8. 分解因式:= .224202536a ab b -+-9.分解因式的结果是__________.5321x x x -+-10. 如果代数式有一因式,则的值为_________.a 11.若有因式,则另外的因式是_________.3223a a b ab b --+()a b -12. 分解因式:(1);(2)3)32(2-+-+k x k kx mnm x m n x -+-+22)2(三.解答题13. 已知,, 求的值.0x y +=31x y +=2231213x xy y ++14. 分解下列因式:(1)()()128222+---a a a a (2)32344xy xy x y x y-++(3)42222459x y x y y --(4)43226a a a +-15.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax +by +bx +ay =(ax +bx )+(ay +by )=x (a +b )+y (a +b )=(a +b )(x +y )2xy +y 2﹣1+x 2=x 2+2xy +y 2﹣1=(x +y )2﹣1=(x +y +1)(x +y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1+2)(x +1﹣2)=(x +3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2.【参考参考参考答案与解析】一.选择题1. 【参考参考参考答案】B ;【解析】,()()()223233222x x p x p x p mx nx ++=+++=--∴,解得.22,32p p n =-+=-1n =2. 【参考参考参考答案】B ;【解析】,由,所以.()()23065x x x x --=-+b a <6b =-3. 【参考参考参考答案】C ;【解析】把看成一个整体,分解.()x y +()()()()25661x y x y x y x y +-+-=+-++4. 【参考参考参考答案】B ;【解析】解:1+a +b +ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【参考参考参考答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均()()2323x y x y +-23x y -无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【参考参考参考答案】A ;【解析】由题意当时,代数式为零,解得.3x =-9m =-二.填空题7. 【参考参考参考答案】.()()22x y x y -+--【解析】解:===.2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--8. 【参考参考参考答案】;()()256256a b a b -+-- 【解析】原式()224202536a ab b =-+- ()()()22256256256a b a b a b =--=-+--9. 【参考参考参考答案】;()()()22111x x x x +--+ 【解析】原式.()()()()()()()23222321111111x x x x x x x x x =-+-=-+=+--+10.【参考参考参考答案】16;【解析】由题意当时,代数式等于0,解得.4x =16a =11.【参考参考参考答案】;()()a b a b -+ 【解析】.()()322322a a b ab b a a b b a b --+=---()()2a b a b =-+12.【参考参考参考答案】;;()()31kx k x +-+()()x m x m n --+ 【解析】;()()2(23)331kx k x k kx k x +-+-=+-+.()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦三.解答题13.【解析】解: ()()22231213334x xy y x y x y y ++=+++ 由,解得0x y +=31x y +=12y =所以,原式.21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭14.【解析】解:(1)原式;()()()()()()22261223a a a a a a a a =----=+-+-(2)原式;()()()()222244222xy y x x xy x y xy x y x y ⎡⎤=-++=+-=++-+⎣⎦(3)原式;()()()()()()2422222245949123231y x x y x x y x x x =--=-+=+-+(4)()()()4322222626232a a a a a a a a a +-=+-=-+.15.【解析】解:(1)原式=(a +b )(a ﹣b )+(a ﹣b )=(a ﹣b )(a +b +1);(2)原式= x 2﹣6x +9-16=(x -3)2﹣16=(x -3+4)(x -3-4)=(x +1)(x ﹣7);(3)原式= a 2+4ab ﹣5b 2= a 2+4ab +4b 2﹣9b 2= (a +2b )2﹣9b 2=(a +2b ﹣3b )(a +2b +3b )=(a ﹣b )(a +5b ).知识改变命运。
十字相乘公式法
(最新版)
目录
1.十字相乘公式法的概念
2.十字相乘公式法的应用
3.十字相乘公式法的优点
4.十字相乘公式法的局限性
正文
十字相乘公式法是一种常用的数学计算方法,主要应用于解决乘法运算,尤其是在涉及到两位数相乘时,该方法可以极大地提高计算效率。
首先,我们来了解一下十字相乘公式法的概念。
十字相乘公式法,顾名思义,就是将两个两位数通过十字交叉的方式进行相乘。
例如,我们要计算 23 乘以 45,我们可以将 23 写在上方,45 写在下方,然后通过
十字交叉的方式,将 23 和 45 的每一位相乘,最后将结果相加,就可以得到最终的乘积。
其次,十字相乘公式法广泛应用于各种乘法运算中。
无论是在学校的数学课程中,还是在实际的生活工作中,都可以看到它的身影。
尤其是在涉及到大量的乘法运算时,使用十字相乘公式法可以大大节省时间和精力。
然而,十字相乘公式法也有其优点和局限性。
首先,它的优点在于简单易懂,操作方便。
只需要通过简单的十字交叉,就可以得到乘积,无需进行复杂的计算。
其次,它的局限性在于,只适用于两位数的乘法运算。
对于更大的数字,使用十字相乘公式法会显得非常繁琐,效率也会大大降低。
总的来说,十字相乘公式法是一种简单有效的乘法运算方法,尤其在解决两位数的乘法运算时,可以大大提高计算效率。
十字相乘法技巧
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。
原理就是运用二项式乘法的逆运算来进行因式分解。
十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。
对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
那
么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数为1时,可表达为
x2+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
如需了解更多信息,建议查阅数学书籍或咨询专业人士。
十字相乘法能把某些二次三项式分解因式。
要务必注意各项系数的符号。
概念十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab(^2代表平方)的逆运算来进行因式分解。
十字相乘法能把某些二次三项式分解因式。
对于形如ax^2+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。
当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)。
十字相乘法方法先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写1 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b第四次a=2 b=2 c=二次项系数÷a d=常数项÷b第五次a=2 b=3 c=二次项系数÷a d=常数项÷b第六次a=3 b=2 c=二次项系数÷a d=常数项÷b第七次a=3 b=3 c=二次项系数÷a d=常数项÷b......依此类推直到(ad+cb=一次项系数)为止。
最终的结果格式为(ax+b)(cx+d)例:(^2代表平方)a^2x^2+ax-42首先,我们看看第一个数,是a↑2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出使两项式×两项式。
十字相乘法的运算技巧十字相乘法,就是把一个二次三项式化为两个因式相乘的形式,是一元二次方程解法之一。
“十字相乘法”:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
对于某些首项系数是1的二次三项式2x Px q++【2()x a b x ab+++】的因式分解:即:一般地,∵2()()()x a x b x a b x ab++=+++,∴2()()()x a b x ab x a x b+++=++.这就是说,对于二次三项式2x Px q++,若能找到两个数a、b,使,, a b p a b q+=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b++=+++=++.(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个........数的积,且其和等于一次项系数,...............通常要借助画十字交叉线的办法来确定,故称十字相乘法。
)对于首项系数不是1的二次三项式:十字相乘法相对来说难学一些,但是一旦学会了它,用它来解题,会给我们带来很多方便。
一、十字相乘法的特点:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:①有些题目用十字相乘法来解比较简单,但并不适用于每一道题。
②十字相乘法只适用于二次三项式类型的题目。
二、十字相乘法的应用举例:例1. 十字相乘法的图解及待定系数已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.分析:用十字相乘法分解这个二次三项式有如下的图解:8-5=3=-m解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20∴-m=3m=-3(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?)再如例2:把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6 所以m²+4m-12=(m-2)(m+6)请观察比较例题中的各题,你能发现把常数q分解成两个整数a、b之积时的符号规律吗?⑴若q>0,则a、b同号.当p>0时a、b同为正,当p<0时a、b同为负.⑵若q<0,则a、b异号.当p>0时a、b中的正数绝对值较大,当p<0时a、b中的负数绝对值较大.⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解.例3、因式分解与系数的关系若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )A.5个B.6个C.8个D.4个分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n 为整数)因为16=2×8,16=(-2)×(-8)16=4×4,16=(-4)×(-4)16=1×16,16=(-1)×(-16)所以k=±10,±8,±16答案:B(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大) 例4.分组分解后再用十字相乘把2x2-8xy+8y2-11x+22y+15分解因式解:原式=(2x2-8xy+8y2)-(11x-22y)+15=2(x-2y)2-11(x-2y)+15=[(x-2y)-3][2(x-2y)-5]=(x-2y-3)(2x-4y-5)说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.例5.换元法与十字相乘法把(x2+x+1)(x2+x+2)-6分解因式分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.解:(x2+x+1)(x2+x+2)-6=[(x2+x)+1][(x2+x)+2]-6=(x2+x)2+3(x2+x)-4=(x2+x+4)(x2+x-1)说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.再如、例6、把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].(试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析)例6.因式分解与十字相乘法已知(x2+y2)(x2-1+y2)=12求:x2+y2的值解:(x2+y2)(x2-1+y2)=12(x2+y2)[(x2+y2)-1]-12=0(x2+y2)2-(x2+y2)-12=0[(x2+y2)-4][(x2+y2)+3]=0∵x2+y2≥0∴(x2+y2)+3≠0∴(x2+y2)-4=0∴x2+y2=4说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。
一元二次方程十字相乘十字相乘,作为一元二次方程的求解方法,在数学中有着重要的应用。
本文将就该方法进行详细的介绍和阐述。
一元二次方程是指具有如下形式的方程:ax^2 + bx + c = 0,其中a、b、c为已知系数,且a≠0。
求解一元二次方程的方法有很多种,其中十字相乘法是一种较为常用和简便的方法。
我们来看一下十字相乘法的基本原理。
对于一元二次方程ax^2 + bx + c = 0,我们需要求解其根。
根据十字相乘法,我们将方程的系数b和c进行相乘,得到bc。
然后,我们需要找到两个数m和n,使得它们的和等于b,乘积等于bc。
即m + n = b,mn = bc。
接下来,我们将方程进行分解,得到(ax + m)(ax + n) = 0。
根据乘法公式,我们将方程展开,得到ax^2 + (m + n)x + mn = 0。
由于m + n = b,mn = bc,我们可以将方程化简为ax^2 + bx + c = 0,即与原方程相同的形式。
接下来,我们来看一下如何通过十字相乘法求解一元二次方程。
首先,我们需要找到两个数m和n,使得它们的和等于b,乘积等于bc。
这一步需要通过观察和推理来找到合适的数。
一般情况下,我们可以通过分解b和c的因数来找到m和n。
然后,我们将方程分解为(ax + m)(ax + n) = 0,并根据乘法公式将方程展开。
最后,我们将方程化简为ax^2 + bx + c = 0的形式,得到与原方程相同的结果。
通过这样的方法,我们可以求解一元二次方程的根。
十字相乘法在解一元二次方程中有着重要的应用。
它的优点是简便易行,不需要进行复杂的计算和推导。
通过找到合适的两个数m和n,并进行分解和展开,我们可以将一元二次方程化简为标准形式,从而更加方便地求解方程的根。
除了求解一元二次方程,十字相乘法还有其他的应用。
在数学中,十字相乘法也可以用于因式分解和展开式的化简。
通过观察和推理,我们可以找到合适的数,将多项式进行分解或展开,从而得到简化后的形式。
十字相乘法的原理
十字相乘法是一种用于计算两个多位数相乘的方法,它适用于任意位数的数字相乘。
下面将介绍十字相乘法的原理和具体步骤。
首先,我们假设要计算的两个多位数分别为A和B,其中A
的位数为m,B的位数为n。
1. 将A和B分别写成竖式排列的形式,保持从右向左的顺序。
即A的个位数在最右边,B的个位数也在最右边。
2. 根据A和B的位数,我们可以得到一个m×n的表格。
表格
的行数为A的位数m,列数为B的位数n。
3. 将A的个位数与B的每个位数相乘,然后将结果写在表格
的第一行,每个结果对应的列数就是B的位数。
4. 接下来,将A的十位数与B的每个位数相乘,然后将结果
写在表格的第二行,同样每个结果对应的列数就是B的位数。
5. 重复上述步骤,依次将A的百位数、千位数等与B的每个
位数相乘,将结果填写在相应的行上。
6. 当所有的乘法运算都完成后,需要将同一列上的数相加,并将结果填写在竖直相对应的位置上。
7. 最后,将所有竖直相对应位置上的数相加,并得到最终的乘
法结果。
通过以上的步骤,我们可以用十字相乘法来计算任意位数的两个多位数相乘。
这种方法的优点是可以清晰地展示出乘法运算的每一步骤,简化了计算过程,避免了繁琐的手工运算过程。
十字相乘法十字相乘法数学公式十字相乘法(Cross Multiplication)是因式分解中十四种方法之一,主要用于对多项式的因式分解,基本式子:x² (p q)x pq=(x p)(x q)。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,其实就是运用乘法公式(x a)(x b)=x² (a b)x ab的逆运算来进行因式分解。
中文名十字相乘法外文名Cross multiplication适用领域范围因式分解、数学应用学科数学别称十字相乘表达式x² (a b)x ab=(x a)(x b)适用领域范围二次多项式原理十字相乘法一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设总量为S, A所占的数量为M,B为S-M。
则:[A*M B*(S-M)]/S=CA*M/S B*(S-M)/S=CM/S=(C-B)/(A-B)1-M/S=(A-C)/(A-B)因此:M/S∶(1-M/S)=(C-B)∶(A-C)上面的计算过程可以抽象为:A ^C-B^CB^ A-C这就是所谓的十字分解法。
X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。
判定对于形如ax² bx c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b²-4ac进行判定。
当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。
运算举例a² a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ?)×(a -?),然后我们再看第二项,a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,(-42)是-6×7 或者6×(-7)也可以分解成 -21×2 或者21×(-2)。
十字相乘法的解法步骤十字相乘法是一种常用的因式分解方法,主要用于分解二次三项式。
本文将介绍十字相乘法的解法步骤,帮助读者掌握这种方法。
引言十字相乘法是一种因式分解的方法,主要用于分解二次三项式(也就是具有形式 ax^2+bx+c 的多项式),它能够将多项式分解成两个一次因式的乘积。
下面将介绍十字相乘法的解法步骤。
步骤一:将多项式写成标准形式将多项式写成标准形式,也就是将常数项写在二次项和一次项的中间,使得多项式具有形式 ax^2+bx+c。
如果多项式不是这个形式,可以通过移项和化简的方式将其转化为标准形式。
步骤二:找到两个数的乘积等于常数项,且它们的和等于一次项的系数找到两个数的乘积等于常数项 c,且它们的和等于一次项的系数b。
这两个数通常被称为“十字相乘法因子”。
可以通过因数分解或者试除法来找到这两个因子。
步骤三:将多项式分解成两个一次因式的乘积将多项式分解成两个一次因式的乘积,通常可以将多项式写成以下形式:(ax+m)(ax+n),其中 m 和 n 是两个十字相乘法因子。
展开这个式子可以得到:(ax+m)(ax+n) = a^2x^2 + (m+n)ax + mn比较这个式子和原多项式,可以得到:a^2 = am+n = bmn = c根据第一个等式,可以知道 a 等于 1 或者 -1。
如果 a 等于 1,那么多项式已经是一个一次因式的平方,可以直接写成完全平方式的形式。
如果 a 等于 -1,那么多项式可以写成以下形式:-x^2+bx-c,可以将其分解成两个一次因式的乘积:-(x-m)(x-n)。
步骤四:验证分解是否正确将得到的两个一次因式相乘,看看是否能够得到原来的多项式。
如果乘积等于原来的多项式,那么分解是正确的。
结语以上就是十字相乘法的解法步骤,通过这些步骤,可以轻松地将二次三项式分解成两个一次因式的乘积。
“十字相乘法”是怎样理解,怎样用,原理是什么“十字相乘法”是怎样理解,怎样用,原理是什么1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。
当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳ -4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:因为 1 -31 ╳ -5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程 6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。