软件锁相环的设计与仿真
- 格式:pdf
- 大小:299.36 KB
- 文档页数:4
LANZHOU UNIVERSITY OF TECHNOLOGY毕业设计题 目 基于Multisim 的锁相环解调系统仿真兰州理工大学毕业设计基于Multisim的锁相环解调系统仿真PLL Demodulation System Simulation Based on Multisim莫伟杰(MoWeijie)09250107摘要实现调频波解调的方法有很多,而锁相环鉴频是利用现代锁相环技术来实现鉴频,具有工作稳定,失真小,信噪比高等优点,所以被广泛用在通信电路系统中。
锁相环其原理是通过鉴相检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压,对振荡器输出信号的频率实施控制。
该文首先介绍了锁相环技术发展的现状、方向以及背景,并对PLL的原理进行了阐述。
在以上的基础上,分别设计了2ASK、2PSK、2FSK的调制解调电路,其功能为数字基带信号经过调制输出一个模拟信号,然后用锁相环进行解调,最后采用Multisim软件进行仿真。
在对2ASK、2FSK、2PSK解调时,低通滤波器输出的波形失真比较大,不过最后经过抽样判决电路整形后可以再生数字基带脉冲。
在整个电路设计中,力求要做到电路简单,并完成任务书提到的要求。
关键词:调制;解调;Multisim;锁相环AbstrackThere are many ways to realize frequency wave demodulation, and PLL frequency which has the advantages of stable operation, small distortion, high signal-to-noise ratio and so on is achieved by using modern PLL frequency technology, so it is widely used in communication circuit system. Phase-locked loop through the difference of the phase detection of input signal and the output signal phase, and the detected phase difference signal into output voltage signal, the signal through a low pass filter. After the formation of the voltage control oscillator , the output signal of the oscillator frequency control.This paper first introduces the present situation, development direction, phase-locked loop technology as well as the background, and the principle of PLL is discussed. On the basis of the above, the modulation and demodulation circuit of 2ASK, 2PSK, 2FSK which function is a digital baseband signal is modulated by an analog signal and output were designed, and then useing the PLL demodulation, finally using Multisim software simulation. In the 2ASK, 2FSK, 2PSK demodulation, the output of the low pass filter waveform distortion is relatively large, but finally it can regenerate digital baseband pulse sampling decision circuit after shaping. In the circuit design, and strive to do a simple circuit, and complete the task book mentioned requirements.Keywords:modulate ;modulation ;PLL;Multisim目录第1章绪论 (1)1.1 研究背景 (1)1.2 研究现状 (1)1.3 研究内容介绍 (2)第2章基本原理 (3)2.1 Multisim介绍 (3)2.2 锁相环基本原理 (5)2.2.1锁相环的基本组成 (5)2.2.2 锁相环的工作原理 (5)第3章调制解调电路设计 (8)3.1 2FSK调制解调电路设计 (8)3.1.1 2FSK调制电路设计原理 (8)3.1.2 2FSK调制单元电路的设计 (9)3.1.3 2FSK解调单元电路的设计 (12)3.1.4 2FSK解调电路的整体设计 (15)3.2 2PSK调制解调电路设计 (17)3.2.1 2PSK调制解调电路设计原理 (17)3.2.2 2PSK调制与解调电路的设计与仿真 (18)3.3 2ASK调制解调电路设计 (19)3.3.1 2ASK调制解调电路设计原理 (19)3.3.2 2ASK调制与解调电路的设计与仿真 (21)3.4 解调结果分析 (22)总结 (24)参考文献 (25)附录:(外文翻译) (27)致谢 (51)第1章绪论1.1 研究背景实现调频波解调的方法有很多,而锁相环鉴频是利用现代锁相环技术来实现鉴频方法,具有工作稳定失真小,信噪比高等优点,所以被广泛用在通信电路系统中。
一种软件锁相环的实现方法实现锁相环的方法有很多种,其中一种常见的实现方式是软件锁相环。
下面将介绍软件锁相环的实现方法。
一、什么是锁相环?锁相环(phase-locked loop,简称PLL)是一种电子线路,可将输入信号的相位与本地晶振产生的参考信号的相位同步。
它主要用于时钟恢复、频率合成等应用中。
二、软件锁相环的实现方法软件锁相环是利用计算机程序实现的一种锁相环。
它的实现方法主要有以下几个步骤:1. 产生参考信号:在软件锁相环中,产生参考信号通常是由计算机内部的一个定时器或定时器/计数器实现的。
计算机使用定时器的时钟来产生一个周期性的信号,该信号作为参考信号。
2. 输入信号:软件锁相环的输入信号可以来自电路、传感器或其他外部设备。
输入信号的主要特征是具有与参考信号相同的频率(可能存在相位差)。
3. 比较器:比较器是软件锁相环中的一个关键模块。
其作用是将输入信号与参考信号进行相位比较,并将比较结果作为反馈信号输入到相位调整器中。
4. 相位调整器:相位调整器的作用是根据反馈信号对本地晶振(VCO)的控制电压进行相位调整,从而实现对输入信号的相位同步。
5. 输出信号:软件锁相环的输出信号与相位同步后的输入信号具有相同的频率和相位。
输出信号可以作为时钟、参考信号或其他应用的基本信号源。
三、软件锁相环的应用领域软件锁相环的应用领域非常广泛,主要包括以下几个方面:1. 时钟恢复:软件锁相环可实现对时钟信号的恢复和稳定,保证各种电子设备的正常工作。
2. 频率合成:软件锁相环可利用主参考信号和次参考信号的相位同步实现频率合成,用于生产频率稳定、低相噪的高精度信号源。
3. 信号解码:软件锁相环可实现对数字信号的解码和恢复,保证数据传输的稳定和可靠。
4. 其他应用:软件锁相环还可用于数字信号处理、信号重构等领域。
以上就是软件锁相环的实现方法以及应用领域的简单介绍。
虽然软件锁相环在实现过程中存在一些技术难点,但借助软件优势,它已成为锁相环实现的重要手段。
锁相环
1.svpwm调制
(1)、simulink搭建的结构图为
(2)、三相正弦波经过alpha-beta 坐标变换的x-y坐标图形为
(2)、以上结果经过svpwm调制模块后输出的适量顶点轨迹xy图形为
2
2、三相锁相环的设计
(1)、三相锁相环的原理为
三相锁相环的基本原理是基于坐标变换,采用静止坐标变换和同步坐标变换完成鉴相功能(将输入的三相电压经过坐标变换输出输入电压(相位给定)与输出信号的相位差),然后经过滤波器将高频信号过滤,经过pi调节器锁定到输入信号的频率,然后经过积分器对频率w进行积分得到电角度。
最后将输出反馈到输入端,构成闭环系统。
(2)、结构框图为
Pll局部结构图为
(3)、仿真结果与分析1 三相电源中含有谐波电源波形含有五次谐波
电源波形
仿真结果为
当三相电源不平衡时
仿真结果图为
电源波形为
仿真结果图为
对以上仿真结果的具体分析为
如果电源中含有直流分量,在进行abc到dq变换过程中直流分量会自动消失掉,故输出波形中不会含有直流分量
当电源中含有谐波时变换以后会是一个正弦量这个时候在系统
中添加一个滤波器将高频信号过滤掉即可。
其实锁相环最终的输出量为与输入量同相位的基波分量。
3 单相锁相环的设计
结构图为
pll具体结构图为
该仿真电源含有三相谐波。
1 绪论1.1 课题背景与研究意义在现代集成电路中,锁相环(Phase Locked Loop)是一种广泛应用于模拟、数字与数模混合电路系统中的非常重要的电路模块。
该模块用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。
或者说,对于接收到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。
其作用是使得电路上的时钟和某一外部时钟的相位同步,用于完成两个信号相位同步的自动控制,即锁相。
它是一个闭环的自动控制系统,它将自动频率控制和自动相位控制技术融合,它使我们的世界的一部分有序化,它的输出信号能够自动跟踪输入信号的相位变化,也可以将之称为一个相位差自动跟踪系统,它能够自动跟踪两个信号的相位差,并且靠反馈控制来达到自动调节输出信号相位的目的。
其理论原理早在上世纪30年代无线电技术发展的初期就已出现,至今已逐步渗透到各个领域。
伴随着空间技术的出现,锁相技术大力发展起来,其应用范围已大大拓宽,覆盖了从通信、雷达、计算机到家用电器等各领域。
锁相环在通信和数字系统中可以作为时钟恢复电路应用;在电视和无线通信系统中可以用作频率合成器来选择不同的频道;此外,PLL还可应用于频率调制信号的解调。
总之,PLL已经成为许多电子系统的核心部分。
锁相环路种类繁多,大致可分类如下]1[。
1.按输入信号特点分类[1]恒定输入环路:用于稳频、频率合成等系统。
[2]随动输入环路:用于跟踪解调系统。
2.按环路构成特点分类[1]模拟锁相环路:环路部件全部采用模拟电路,其中鉴相器为模拟乘法器,该类型的锁相环也被称作线性锁相环。
[2]混合锁相环路:即由模拟和数字电路构成,鉴相器由数字电路构成,如异或门、JK触发器等,而其他模块由模拟电路构成。
[3]全数字锁相环路:即由纯数字电路构成,该类型的锁相环的模块完全由数字电路构成而且不包括任何无源器件,如电阻和电容。
[4]集成锁相环路:环路全部构成部件做在一片集成电路中。
锁相环设计与MATLAB仿真锁相环(Phase-Locked Loop,PLL)是一种电路设计技术,用于提取输入信号中的相位信息,并在输出信号中保持输入信号与输出信号的相位差稳定。
PLL广泛应用于通信系统、时钟生成器、频率合成器等领域。
锁相环主要由相位检测器(Phase Detector,PD)、环路滤波器(Loop Filter,LF)、振荡器(Voltage-Controlled Oscillator,VCO)和分频器(Divider)组成。
相位检测器用于比较输入信号和VCO输出信号的相位差,并产生一个低频的误差信号。
传统的相位检测器包括异或门相位检测器(XOR PD)和倍频器相位检测器(Multiplier PD)。
异或门相位检测器适用于窄带相位差测量,倍频器相位检测器适用于宽带相位差测量。
MATLAB提供了用于建模和仿真PLL的工具箱,可以方便地进行相位检测器的设计和性能分析。
环路滤波器用于滤波相位误差信号,根据滤波器的设计方法不同,可以实现不同的环路特性。
传统的环路滤波器包括积分环路滤波器和比例积分环路滤波器。
积分环路滤波器对误差信号进行积分,使得环路系统具有很高的稳定性和抗干扰能力,但响应时间较长。
比例积分环路滤波器在积分环路滤波器的基础上引入比例增益,可以更快地响应相位误差的变化。
振荡器(VCO)根据环路滤波器输出的控制电压来生成输出信号,并提供给分频器进行频率除法操作。
振荡器通常采用压控振荡器(VCO)或电流模式逻辑(Current Mode Logic,CML)结构,可以根据应用需求选择合适的振荡器设计。
分频器用于将振荡器输出的高频信号按照设定的分频比例进行分频,生成与输入信号相位对齐的输出信号。
分频器采用计数器和锁存器设计,计数器用于记录输入信号的周期数,锁存器将计数器的值锁定在一个周期,输出给相位检测器进行相位比较。
锁相环的设计和仿真可以通过MATLAB工具箱进行。
首先,设计相位检测器的传输函数和特性,选择适当的相位检测器类型和设计参数。
- 135 -三相电压不平衡下的软件锁相环设计刘 焕1 滕锦芬1 李银玲2(1.华东交通大学电气与电子工程学院,江西 南昌 330013;2.长江三峡能事达电气股份有限公司,湖北 武汉 430070)【摘 要】网侧电压相位的准确获取是PWM 整流器功能实现的前提,文章采用软件锁相环技术解决电压不平衡条件下硬件锁相不准的问题。
讨论了dq 旋转坐标系下锁相环的工作原理,分析了电压不平衡时的相位关系,并设计了相应的软件锁相环。
设计的软件锁相环在matlab/simulink 仿真中得到了验证,对其它电力电子装置中的软件锁相环设计具有借鉴和指导作用。
【关键词】软件锁相环;电压不平衡;PWM 整流器 【中图分类号】TM461 【文献标识码】A 【文章编号】1008-1151(2011)05-0135-02风力发电、UPFC、HVDC、SSSC、STATCOM 以及变频调速系统中存在的共同结构就是三相PWM 整流器,它可以灵活地控制网侧功率因素的状态运行,具有现能量双向传输的功能。
三相PWM 整流器运行控制的前提是要准确地获取网侧电压相位,主要有硬件和软件两种锁相环技术。
硬件锁相环技术通过捕获某相电压过零比较器输出脉冲的方法实现锁相,该方法具有简单易实现的优点,但在网侧三相电网电压不平衡的情况下,就不能通过某一相的信息获取三相的相位信息,从而影响锁相的精度。
而软件锁相环可以通过对三相电压进行综合处理,从而获取准确的相位信息,其优点在于可以在线修改控制算法,而不必改动硬件电路,使得软件锁相环的应用越来越广泛。
本文围绕三相电压不平衡PWM 整流的锁相问题,说明了三相平衡下的锁相原理,通过分析三相电压不平衡时的相位关系,设计相应的软件锁相环,在MATLAB 下建立了软件锁相环的仿真模型,仿真结果验证了此软件锁相环的有效性和可行性。
(一)软件锁相环原理锁相环由鉴相器、滤波器和压控振荡器三部分组成,假设u i (t),u o (t)为锁相环输入和输出电压信号。
基于DSP的软件锁相环的实现软件锁相环(Software-Defined Phase-Locked Loop,简称软件锁相环,简写为SDPLL)是一种基于数字信号处理(Digital Signal Processing,简称DSP)的锁相环控制算法。
它通过使用数字信号处理器来执行各种计算和调整,实现了锁相环的全部功能。
锁相环(Phase-Locked Loop,简称PLL)是一种闭环控制系统,用于将输入信号的频率和相位与参考信号保持同步。
传统的锁相环通常使用模拟电路来实现,而软件锁相环则通过数字信号处理器中的算法和计算来实现。
软件锁相环的实现步骤如下:1.采样输入信号:软件锁相环首先需要采样输入信号,通常使用高速模数转换器(ADC)将连续的模拟信号转换为离散的数字信号。
2.数字信号处理:采样得到的数字信号经过数字信号处理器进行各种运算和处理。
首先,对信号进行滤波,以去除不需要的频率成分。
然后,进行频率和相位的测量。
这可以通过计算信号的快速傅里叶变换(FFT)来实现。
另外,还可以使用相关函数或自相关函数来测量相位。
3.锁相环控制:基于测量得到的频率和相位信息,软件锁相环通过控制数字信号处理器内部的参数来调整输出信号的频率和相位,使其与参考信号同步。
控制算法通常包括PID控制等经典控制方法,以及其他更复杂的先进算法,如模糊逻辑控制、神经网络控制等。
4.输出信号生成:根据锁相环控制算法的计算结果,软件锁相环生成调整后的输出信号。
通常,使用数字信号处理器内部的数字频率合成器(NCO)来生成所需的频率和相位。
软件锁相环具有以下优点:1.灵活性:软件锁相环可以根据不同的需求进行定制,可以实现更复杂和灵活的控制算法,适应不同的应用场景。
2.可编程性:软件锁相环的算法和参数可以通过编程进行调整和改变,不需要修改硬件电路,提高了系统的可调性和可维护性。
3.数字精度:软件锁相环的计算和控制都是基于数字信号处理器进行的,具有很高的计算精度和稳定性。
基于FPGA的数字锁相环设计与仿真分析简要介绍了在FPGA中实现全数字锁相环(DPLL)的原理和方法,基于具体应用,提出了一种基于FPGA的锁相环模块化设计,通过分析和仿真验证,可以有效的改善锁定时间和抑制相位抖动。
标签:鉴相;滤波器;VHDL1 引言数字锁相环(DPLL)技术在数字通信、无线电电子学等众多领域得到了极为广泛的应用,和传统的模拟电路实现的PLL相比,DPLL具有精度高、环路带宽编程可调、易于构建高阶锁相环等显著优点,并且在数字系统中不需要A-D相互转换。
随着集成电路技术和片上系统的深入研究,数字锁相环必然应用更为广泛。
本文介绍了一种基于FPGA的数字锁相环设计,并对相关参数进行了仿真与分析。
2 数字锁相环的特点和原理2.1 触发型数字锁相环基本原理本文采用触发型数字锁相环如图1所示:由数字鉴相器、数字滤波器和数控振荡器组成。
其中数控滤波器的输入时钟频率为(由晶振电路产生),其值为14336kHz。
数控振荡器的输入频率为2。
通常M和N为2的整数幂。
时钟2 经除计数器得到。
图1 触发型全数字锁相环框图DPLL是一种相位反馈控制系统,它根据输入信号f1与本地恢复时钟f2之间的相位误差,信号送入数字环路滤波器DLF中对相位误差信号进行平滑滤波,并生成控制DCO动作的控制信号,DCO根据控制信号给出的指令,调节内部高速振荡器的振荡频率,通过连续不断的反馈调节,使其输出时钟f2的相位跟踪输入f1的相位。
如果把数字滤波器看成一个分频器,则分频比为Mf cK,输出频率为f′=K′ΔΦMf cK,数控振荡器的输出频率f2=f1+k′ΔΦMf cKN。
只要合理选择K值,就能使输出信号V2的相位较好地跟踪输入V1的相位,以达到锁定的目的。
如果K值选的太大,环路捕捉带就会变小,导致捕捉时间增大;如果K值太小,可能会出现频繁进位、借位脉冲,从而使相位出现抖动。
该全数字锁相环的f2输出信号的频率分别为64kHz,经过计算可确定锁相环的参数M、N。
三相锁相环及仿真Newly compiled on November 23, 20202三相电压软件锁相环仿真实现锁相环有很多种方法,目前在电力电子装置实际应用中常用的锁相环技术是过零比较方式,就是通过硬件电路检测电网电压的过零点来获得相位差的信号,然后用硬件或者软件实现锁相。
这种方案原理和结构都很简单,也易于工程上的实现。
但是一个工频周期内电网电压只能检测到两个过零点,这限制了锁相环的锁相速度;而且,当电网侧电压中有含有的谐波或这三相不平衡时,这种方法就不能准确的确定基波正序的过零点了,进而而影响了锁相的精度[38]。
为了避免过零点检测方法带来的问题,本文采用三相软件锁相环(SPLL)[39]方法。
电压合成矢量u s与d、q轴电压分量u sd、u sq的关系图如图所示,对于三相电网,电压合成矢量u s的幅值是不变的,则q轴电压分量u sq反映了d轴电压分量u sd与电网电压合成矢量u s的相位关系。
从图中可以看出,当u sq<0时,说明d轴超前u s,应该减小同步信号的频率;u sq>0时,说明d 轴滞后u s,此时应该增大同步信号频率;u sq=0时,说明d轴与u s同相。
可见,可以通过控制电网电压q轴分量u sq=0恒成立,使电网电压合成矢量u s定向于d轴电压分量u sd,实现两者同相位,因此可以得到一个对电压矢量u s进行锁相的方法。
采集得到的压三相对称正弦相电压的瞬时值可以表示为:a m1b m1c m1cos2cos()32cos()3u Uu Uu Uθθπθπ⎧⎪=⎪⎪=-⎨⎪⎪=+⎪⎩(2-36)式中,θ1=ω1t,为输入相位角,ω1为电网角频率;U m为电网电压幅值。
三相对称电压变换到两相静止坐标系α、β轴电压分量u sα、u sβ,两相静止αβ坐标系再经两相旋转坐标系变换后得到的d、q轴电压分量u sd、u sq可以表示为:sd m1sq m1cos()sin()u Uu Uθθθθ=-⎧⎪⎨=-⎪⎩(2-36) 式中,θ=ωt,三相电压SPLL的输出相位角,ω输出角频率。
目录中文摘要 (3)英文摘要 (4)前言 (6)第一章绪论 (7)1.1 锁相环的发展及国内外研究现状 (7)1.2 本文的主要内容组织 (9)第二章锁相环的基本理论 (10)2.1锁相环的工作原理 (11)2.1.1鉴相器 (11)2.1.2 低通滤波器 (13)2.1.3 压控振荡器 (15)2.2锁相环的工作状态 (15)2.3锁相环的非线性工作性能分析 (17)2.3.1跟踪性能 (18)2.3.2捕获性能 (18)2.3.3失锁状态 (19)2.4锁相环的稳定性 (20)2.5信号流程图 (21)2.6锁相环的优良特性 (21)2.7锁相环的应用 (22)2.7.1锁相环在调制和解调中的应用 (22)2.7.2锁相环在频率合成器中的应用 (23)2.8本章小结 (23)第三章锁相环的噪声分析 (24)3.1锁相环的输入噪声 (24)3.2压控振荡器的噪声 (24)3.3相位噪声的抑制 (26)3.4本章小结 (27)第四章二阶锁相环仿真及结果 (28)4.1仿真介绍 (28)4.2程序代码 (28)4.3仿真结果 (34)4.4本章小结 (36)结论 (38)致谢 (39)参考文献 (40)毕业设计小结 (41)摘要锁相环电路是使一个特殊系统跟踪另外一个系统,更确切的说是一种输出信号在频率和相位上能够与输入参考信号同步的电路,它是模拟及数模混合电路中的一个基本的而且是非常重要的模块。
由于锁相环具有捕获、跟踪和窄带滤波的作用,因此被应用在通信、微处理器、以及卫星等许多领域。
锁相环是通信电路里时钟电路的一个重要模块。
本文详细介绍了锁相环设计中所涉及的各项指标计。
论文首先对锁相环的发展历史和研究现状做了介绍,然后从其基本工作原理出发,以传统锁相环的结构为基础,得到了锁相环的数学模型,对锁相环的跟踪性能、捕获性能、稳定性以及噪声性能等各种性能进行了分析,对锁相环的各项指标参数进行了详细推导,得出了锁相环数学分析的结论。